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Abstract

Background: The use of structured electronic health records in health care systems has grown rapidly. These systems collect
huge amounts of patient information, including diagnosis codes representing temporal medical history. Sequential diagnostic
information has proven valuable for predicting patient outcomes. However, the extent to which these types of data have been
incorporated into deep learning (DL) models has not been examined.

Objective: This systematic review aims to describe the use of sequential diagnostic data in DL models, specifically to understand
how these data are integrated, whether sample size improves performance, and whether the identified models are generalizable.

Methods: Relevant studies published up to May 15, 2023, were identified using 4 databases: PubMed, Embase, IEEE Xplore,
and Web of Science. We included all studies using DL algorithms trained on sequential diagnosis codes to predict patient outcomes.
We excluded review articles and non–peer-reviewed papers. We evaluated the following aspects in the included papers: DL
techniques, characteristics of the dataset, prediction tasks, performance evaluation, generalizability, and explainability. We also
assessed the risk of bias and applicability of the studies using the Prediction Model Study Risk of Bias Assessment Tool
(PROBAST). We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist to report
our findings.

Results: Of the 740 identified papers, 84 (11.4%) met the eligibility criteria. Publications in this area increased yearly. Recurrent
neural networks (and their derivatives; 47/84, 56%) and transformers (22/84, 26%) were the most commonly used architectures
in DL-based models. Most studies (45/84, 54%) presented their input features as sequences of visit embeddings. Medications
(38/84, 45%) were the most common additional feature. Of the 128 predictive outcome tasks, the most frequent was next-visit
diagnosis (n=30, 23%), followed by heart failure (n=18, 14%) and mortality (n=17, 13%). Only 7 (8%) of the 84 studies evaluated
their models in terms of generalizability. A positive correlation was observed between training sample size and model performance
(area under the receiver operating characteristic curve; P=.02). However, 59 (70%) of the 84 studies had a high risk of bias.

Conclusions: The application of DL for advanced modeling of sequential medical codes has demonstrated remarkable promise
in predicting patient outcomes. The main limitation of this study was the heterogeneity of methods and outcomes. However, our
analysis found that using multiple types of features, integrating time intervals, and including larger sample sizes were generally
related to an improved predictive performance. This review also highlights that very few studies (7/84, 8%) reported on challenges
related to generalizability and less than half (38/84, 45%) of the studies reported on challenges related to explainability. Addressing
these shortcomings will be instrumental in unlocking the full potential of DL for enhancing health care outcomes and patient
care.
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Trial Registration: PROSPERO CRD42018112161; https://tinyurl.com/yc6h9rwu

(J Med Internet Res 2025;27:e57358) doi: 10.2196/57358
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Introduction

Background
In recent decades, there has been a rapid growth in the use of
electronic health records (EHRs) in health care systems, making
them an important tool for health care workers and allowing
for secondary use for research purposes. Structured EHRs
contain temporal records of patient visits, incorporating various
clinical data such as diagnosis codes, procedures, and laboratory
test results, all of which may help researchers in predicting
patient outcomes. Patient timelines can be organized based on
diagnosis codes and their corresponding visit times, allowing
deep learning (DL) algorithms to model and understand disease
progression, with the time between visits representing the speed
of disease progression. Using sequential diagnostic data from
EHRs in this manner is a promising avenue for DL-based
studies, but the degree to which this information has been used
in published studies and its benefits has not yet been explored
in the context of a systematic review, which is what this study
sets out to do.

Classical machine learning (ML) techniques that require feature
selection can be applied to include diagnosis codes as a binary
feature for outcome prediction; for example, a recent study
applied ML-based algorithms (logistic regression, extreme
gradient boosting, and random forest) to identify
cardiomyopathy [1]. However, traditional ML approaches cannot
take full advantage of structured EHR data due to four key
challenges:

1. Feature selection—manual feature selection, which requires
medical knowledge from professional health care workers,
is a time-consuming task and an expensive process.

2. High dimensionality—models suffer from a
high-dimensional input representation due to the vast
number of medical codes available (eg, Medical Information
Mart for Intensive Care [MIMIC]-IV includes >15,000
unique International Classification of Diseases, Tenth
Revision [ICD-10], codes that appear in the patient records)
[2].

3. Hierarchy—the hierarchical structure of diagnosis codes
may represent relationships between similar disease
categories, but this information is ignored by traditional
ML-based approaches.

4. Temporality—the majority of traditional ML techniques
struggle to effectively capture information contained in the
temporal chronological sequence of patients’ medical
history, where the time between consecutive visits may
vary in length from a few days to numerous months.
Significant predictive insights may be hidden in the
temporal intervals and sequence of diagnosis codes in a
patient’s evolving medical history because deterioration or

improvement in outcomes may follow specific patterns and
frequencies of interactions with the health care system [3-5].

To comprehensively uncover and understand the impact of these
intricate temporal and sequential relationships within the data,
advanced DL methods are essential.

DL approaches have been applied previously in the health care
domain. Systematic reviews show a good progression in
DL-based algorithms for various medical data types, such as
clinical notes [6], medical images [7], and physiological signals
[8]. DL emerges as a solution to overcome the aforementioned
limitations of traditional ML for the following reasons: (1) DL
functions as an end-to-end system that can automatically
uncover an association between input and output with minimal
need for feature engineering or domain expertise; (2) DL models
can generate an effective embedding space to cope with the
high-dimensional problem (eg, a study demonstrated the
effectiveness of an autoencoder in transforming RNA sequence
data with approximately 20,000 features into a low-dimensional
representation with approximately 1000 features, achieving
high classification performance [9]); (3) some DL techniques,
such as graph neural networks (GNNs), have been shown to
give a good representation of hierarchical data [10]; and (4) to
deal with temporal information, long short-term memory
(LSTM) and temporal convolutional neural network (CNN)
models have been adapted widely for complex sequential
information in health care (eg, an LSTM model has been shown
to be able to achieve a good performance in analyzing
information from high-volume regular sequences such as
intensive care unit [ICU] monitoring data [11]).

Although many DL techniques are well suited for hierarchical
and time-series data, they face challenges in handling sequential
diagnosis codes. In EHRs, diagnosis codes occur at irregular
time intervals, reflecting the varying times between medical
events, that is, some patients may have multiple visits within
the same week, while for others, there may be months or years
between visits. This irregularity complicates analysis but is also
a source of information because it may capture the rapid or slow
progression of conditions. Moreover, diagnosis codes require
an embedding layer before being processed by a DL model,
unlike continuous values from ICU monitors, which can be
directly processed. Other challenges with DL are the need for
extensive datasets and concerns about explainability [12]. The
performance of existing DL techniques depends on the volume
and quality of the training dataset, which, in the field of health
data science, may be problematic because large-scale datasets
may not be available due to privacy concerns. This can also
contribute to the generalizability issue because models may
perform well on internal training and test datasets but perform
poorly on independent external data sources. Moreover, DL
model predictions can sometimes be unclear to clinicians, and
there is a need to explain the main factors contributing to the
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model’s output. Therefore, it becomes a significant challenge
for researchers to use special DL techniques for outcome
prediction by using sequential diagnosis codes. This systematic
review will comprehensively explore these challenges and the
approaches used to deal with them in the published literature.

To date, several reviews have analyzed DL methods trained on
EHR data [13-16]. Various kinds of EHR data for DL-based
algorithms have been surveyed: (1) structured data (diagnosis
codes, medication codes, procedure codes, laboratory test results,
and vital signs) and (2) unstructured data (clinical notes, medical
images, and physiological signals). However, none of the
reviews primarily focused on the use of sequential diagnostic
data in DL for outcome prediction. Moreover, none of them
reported on the inclusion of external validation, which can be
problematic because models are applied to different data
distributions. Many questions remain unanswered, such as
common DL techniques, types of diagnosis codes, additional
features (eg, time between visits, demographic data, and
medications), dataset characteristics, prediction tasks,
generalizability, and explainability.

Objectives
We conducted a systematic review to answer these questions
and investigate the current state of DL in the context of outcome
prediction using sequential diagnostic information. By
summarizing the research in this area, our review can help guide
future DL-based prediction studies by identifying current
research gaps and challenges. The main objective of this
systematic review was to identify and summarize existing DL
studies that use sequential diagnosis codes as key predictors of
patient outcomes. In addition, this study investigates the
challenges of generalizability and explainability in these
predictive models.

Methods

Definition
In this systematic review, we defined sequential diagnosis codes
as medical codes (eg, Systemized Nomenclature of
Medicine–Clinical Terms; International Classification of
Diseases, Ninth Revision; and ICD-10 codes) assigned to
patients to represent their visits within the health care system.
This review examined various categories of DL algorithms,
including recurrent neural networks (RNNs), LSTM models,
CNNs, transformer-based models, and GNNs, in addition to
some techniques such as time-awareness and attention
mechanisms. No restrictions were placed on study outcomes,
which included mortality, hospitalization status, and onset of
disease (eg, hypertension, diabetes, heart attack, stroke, and
cancer).

Search Strategy
As our review combines knowledge from both health care and
engineering, we sought to identify all relevant studies in both
domains using 4 databases: PubMed, Embase, IEEE Xplore,
and Web of Science. In addition, we conducted a manual search
of the reference lists of the included studies to identify additional
relevant articles. We searched the databases up to May 15, 2023.

To promote transparency and prevent duplication, the study
protocol was registered in PROSPERO (CRD42023434032).

We used 4 main groups of keywords centered around DL
techniques, EHRs, sequence, and prediction. The literature
search included the following search terms: (“deep learning”
OR “RNN” OR “LSTM” OR “CNN” OR “transformer” OR
“BERT” OR “time attention” OR “attention based” OR “graph
neural network”) AND (“electronic health records” OR “EHRs”
OR “electronic health record” OR “EHR” OR “electronic
medical record” OR “EMR” OR “electronic medical records”
OR “EMRs”) AND (“longitudinal” OR “visit” OR “sequential”
OR “sequence” OR “temporal”) AND (“risk” OR “predictions”
OR “prediction” OR “patient outcome” OR “prognosis”). The
search query returned the same set of results as those obtained
using the built-in search functionality of the literature databases.

Inclusion and Exclusion Criteria
This systematic review followed the Population, Intervention,
Comparison, and Outcomes framework to identify and select
articles in the databases [17]. The population included patients
of all ages in EHR databases, the intervention involved
DL-based methods for sequential diagnosis codes, the
comparison was between different algorithms, and the outcome
was model performance.

We included all studies using DL algorithms to predict patient
outcomes by training the models on sequential or longitudinal
diagnosis codes, as defined in the aforementioned search terms.
We excluded review articles and non–peer-reviewed papers. In
addition, we excluded papers that primarily dealt with other
nondiagnostic EHR data types, including physiological signals,
clinical notes, and medical images. To reduce bias, 2 reviewers
independently screened all studies. Any discrepancies between
the reviewers were resolved through discussion to reach a
consensus. The level of agreement between the reviewers was
assessed using the Cohen κ coefficient.

Extraction and Analysis
We used the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) checklist [18] (Multimedia
Appendix 1) to report our findings. We evaluated the following
aspects in the included papers: DL techniques, characteristics
of the datasets, prediction tasks, and performance evaluation.
For each study, we selected either the novel, proposed technique
or the best-performing technique as the main DL model
architecture. The findings are presented using plots, figures,
and tables.

This review followed the suggestions of a previous study [19]
to assess the generalizability of the applied models.
Generalizability was evaluated based on the potential
applicability of outcome predictive models beyond their original
development context, focusing on 3 key aspects:

1. Demographic validation, which investigates the model’s
adaptability to distinct clinical contexts, including disparities
related to sex or ethnicity and variations in age groups

2. Temporal validation, which focuses on assessing the
model’s performance over time within its original
development environment
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3. Geographic validation, which explores the model’s capacity
to extend its utility beyond its original development setting
to different locations, institutions, or geographic contexts

In addition, we evaluated the explainability of the model in each
included study.

Risk-of-Bias and Quality Assessment
The Prediction Model Study Risk of Bias Assessment Tool
(PROBAST) [20] was used to evaluate both the risk of bias
(ROB) and the applicability of the best-performing DL models
in the included studies. ROB was evaluated based on a set of
20 questions categorized into 4 domains: participants, predictors,
outcome, and analysis. Applicability was evaluated via a main
question for each of the following 3 domains: participants,
predictors, and outcomes. Each domain was rated as having
low, unclear, or high ROB. If multiple models were reported
in a study, only the model with the highest area under the
receiver operating characteristic curve (AUROC) and F1-score

was evaluated. One reviewer conducted the PROBAST
assessment for all included studies.

Results

Study Selection
Figure 1 presents the PRISMA diagram of the search and
screening results. Initially, our search identified 740 records,
of which 377 (50.9%) duplicates were removed. The screening
process consisted of 2 stages: title and abstract screening,
followed by full-text screening. During the title and abstract
screening, we assessed the study aim, objectives, and methods
to determine whether each paper fell within the scope of our
review. Ultimately, 84 (11.4%) of the initially identified 740
articles were included in the final analysis. The agreement
between reviewers had a Cohen κ coefficient of 0.65, indicative
of a moderate agreement [21]. All included studies are listed in
Table 1 and Multimedia Appendix 2 [22-105].

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of the search and screening results.
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Table 1. Summary list of included studies, highlighting deep learning (DL) approaches, prediction tasks, additional features, included time, performance
evaluation, risk of bias (ROB), and concern of applicability (COA).

COAROBPerformance evalua-
tion

Included
time

Additional featuresPrediction taskDL approachStudy; year

LowUnclearAccuracy, AUROCa,
and F1-score

NoDemographic data,
medications, proce-
dures, laboratory

New onset of diseaseAutoencodersMiotto et al [22];
2016

test results, and
clinical text

UnclearHighAccuracyYes (as
month)

NoReadmissionCNNbNguyen et al
[23]; 2016

UnclearHighRecallYesMedications and
procedures

Next-visit diagnosisGRUcChoi et al [24];
2016

UnclearHighF1-scoreYes (as day)Procedures, medica-
tions, and admis-
sion type

ReadmissionLSTMdPham et al [25];
2016

LowHighAUROCYesMedications and
procedures

Heart failureRNNeChoi et al [26];
2016

UnclearHighAccuracyNoProceduresNext-visit diagnosisGRUMa et al [27];
2017

LowHighAccuracy and AU-
ROC

NoNoNext-visit diagnosis
and heart failure

RNNChoi et al [28];
2017

UnclearHighAUROC, F1-score,

and MCCf

NoNoMortalityGRUSha and Wang
[29]; 2017

LowHighAUROCYesMedications and
procedures

Heart failureGRUChoi et al [30];
2017

UnclearHighAccuracyNoNoDiabetes, obesity, and

COPDg
CNNSuo et al [31];

2017

LowLowAUROCYes (as day)Medications and
laboratory test re-
sults

Colorectal cancerLSTMAmirkhan et al
[32]; 2017

LowHighAccuracy, AUCh,
and F1-score

NoDemographic data,
laboratory test re-
sults, medications,
and procedures

Mortality and comor-
bidity

RNNLei et al [33];
2018

UnclearHighSensitivity, specifici-
ty, positive predic-

YesMedicationsCVDsiRNNPark et al [34];
2018

tive value, F1-score,
and AUROC

HighHighAccuracy and
F1-score

YesProceduresNext-visit diagnosisRNNBai et al [35];
2018

LowHighAUROC and

AUPRCj
NoMedications and

procedures
Heart failure and next-
visit diagnosis

GRU and CNNChoi et al [36];
2018

UnclearHighRecall and AUROCYesProceduresNext-visit diagnosisRNNQiao et al [37];
2018

UnclearHighPrecision and
F1-score

NoMedications and
demographic data

Next-visit diagnosisGRUWang et al [38];
2018

UnclearHighAccuracy and preci-
sion

Yes (as
week)

NoNext-visit diagnosisLSTMMa et al [39];
2018

LowUnclearAUROC, sensitivity,
specificity, and
F2-score

NoDemographic dataHospitalizationGRUZhang et al [40];
2018

UnclearHighAUROC, AUPRC,
and F1-score

NoNoHeart failureLSTMJin et al [41];
2018
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COAROBPerformance evalua-
tion

Included
time

Additional featuresPrediction taskDL approachStudy; year

UnclearHighAccuracy, recall,
precision, and
F1-score

NoMedicationsNext-visit diagnosisLSTMGuo et al [42];
2019

UnclearUnclearAUC and recallYes (as
hour)

Vital signs and de-
mographic data

ReadmissionLSTMLin et al [43];
2019

UnclearHighPrecisionNoPhysical symptoms
and medications

Next-visit diagnosisRNNWang et al [44];
2019

UnclearHighRecall and precisionNoDemographic dataNext-visit diagnosisGRUGao et al [45];
2019

UnclearHighPrecision and accura-
cy

NoNoNext-visit diagnosisGNNkMa et al [46];
2019

LowHighAUROCNoNoAsthmaLSTMAlSaad et al [47];
2019

UnclearHighAUROC and
F1-score

NoNoMCIl, Alzheimer dis-
ease, and Parkinson
disease

LSTM and CNNZhang et al [48];
2019

UnclearHighAUROC and
F1-score

NoHuman-derived
features, proce-
dures, medications,
and laboratory test
results

ReadmissionLSTMAshfaq et al [49];
2019

LowHighAUROCNoMedications, labo-
ratory test results,
and demographic
data

MortalityRNN-DAEmRuan et al [50];
2019

LowHighAccuracy, AUROC,
and AUPRC

NoLaboratory test re-
sults

MortalityLSTMHuang et al [51];
2019

UnclearHighAUROCYesMedications and
procedures

Heart failureLSTMXiang et al [52];
2019

LowHighAUROCYes (as
month)

Demographic data,
conditions, proce-
dures, medications,
and measurement

ObesityLSTMGupta et al [53];
2019

LowHighAccuracy, recall,
and F1-score

NoDemographic dataMortalityLSTMShi et al [54];
2020

LowLowAUROC and preci-
sion

NoAgeNext-visit diagnosis
and new onset of dis-
ease

TransformersLi et al [55];
2020

LowUnclearAUPRC and preci-
sion

Yes (as day)ProceduresReadmission and
next-visit diagnosis

TransformersPeng et al [56];
2020

UnclearHighAUROC, recall,
specificity, preci-
sion, and AUPRC

NoDemographic dataFractureLSTMAlmog et al [57];
2020

UnclearHighAccuracy, precision,
recall, F1-score, and
AUROC

YesNoCOPD, heart failure,
and kidney disease

TransformersLuo et al [58];
2020

UnclearHighPrecision, accuracy,
and AUROC

NoNoNext-visit diagnosis,
heart failure, diabetes,
and chronic kidney
disease

TransformersZhang et al [59];
2020

UnclearUnclearAUROCNoProcedures, labora-
tory test results,
medications, clini-
cal events, and de-
mographic data

MortalityLSTMRongali et al
[60]; 2020
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COAROBPerformance evalua-
tion

Included
time

Additional featuresPrediction taskDL approachStudy; year

UnclearUnclearAUROC, precision,
recall, and F1-score

NoNoHeart failure, kidney
disease, and dementia

Transformers and
CNN

Ye et al [61];
2020

LowHighRecallYesProcedures and
medications

Next-visit diagnosisTransformersZeng et al [62];
2020

LowHighJaccard similarity
score, AUPRC, re-
call, and F1-score

NoMedications and
procedures

Next-visit diagnosisLSTMAn et al [63];
2020

LowLowPrecision, AUROC,
and AUPRC

Yes (as day)Medications, proce-
dures, and length
of stay

Relapse of urinary
problems

LSTM and GRUKabeshova et al
[64]; 2020

UnclearUnclearAUROC and
AUPRC

NoDemographic data
and clinical text

Readmission, mortali-
ty, length of stay, and
next-visit diagnosis

TransformersDarabi et al [65];
2020

LowLowRecall, precision,
F1-score, and AU-
ROC

NoDemographic data,
patient type, hospi-
tal visit times, and
surgery history

Risk of CVDsLSTMAn et al [66];
2021

LowHighAUROC and
AUPRC

NoDemographic data
and visit

DepressionTransformersMeng et al [67];
2021

LowLowAUROCNoNoHeart failure and can-
cers

TransformersRasmy et al [68];
2021

UnclearUnclearAccuracy, and AU-
ROC

Yes (as day)Vital signs, demo-
graphic data, medi-
cations, allergies,
and smoking status

Diabetes and heart
failure

CNNJu et al [69];
2021

UnclearHighAccuracy, AUROC,
AUPRC, F1-score,
and linear weighted
κ

NoDemographic data,
free-text diagnosis,
procedures

Length of stay and
mortality

GRUHarerimana et al
[70]; 2021

LowHighAUROC, sensitivity,
specificity, and preci-
sion

Yes (as
week)

Demographic data
and medications

Risk of OAn kneeCNNNingrum et al
[71]; 2021

UnclearHighRecall, precision,
and AUC

NoNoNext-visit diagnosisTransformersFlorez et al [72];
2021

LowHighAUROCYes (as day)Demographic dataCardiac complication
risk

TransformersPham et al [73];
2021

UnclearHighPrecision and recallYesDemographic data,
medicine, and
treatment

Next-visit diagnosisTransformersBoursalie et al
[74]; 2021

LowLowAUROC, precision,
recall, and F1-score

NoProcedures, labora-
tory test results,
medications, clini-
cal events, and de-
mographic data

Opioid use disorderLSTMDong et al [75];
2021

LowLowAUROC and
AUPRC

NoMedication and de-
mographic data

CVDsGRUKwak et al [76];
2021

LowHighAUROC, AUPRC,
and accuracy

YesNoMortality, readmis-
sion, sepsis, and heart
failure

GRUSun et al [77];
2021

LowHighAUROC, precision,
recall, and F1-score

YesDisease types and
demographic data

Next-visit diagnosisLSTMMen et al [78];
2021

UnclearHighAccuracyNoMedicationsNext-visit diagnosisCNNShi et al [79];
2021
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COAROBPerformance evalua-
tion

Included
time

Additional featuresPrediction taskDL approachStudy; year

LowHighAUROC and
F1-score

NoNoNext-visit diagnosis
and heart failure

Multilayer percep-
tron

Lu et al [80];
2021

UnclearHighAccuracyYesNoNext-visit diagnosisTransformersPeng et al [81];
2021

UnclearHighRecall, precision,
F1-score, and AU-
ROC

YesMedications, labo-
ratory test results,
and examination

CVDsBi-LSTM-CNNoAn et al [82];
2021

UnclearHighMSEpYes (as age)Demographic dataRisk of CVDsTransformersPoulain et al [83];
2021

LowUnclearAUROC and
AUPRC

Yes (as
month)

Medications, proce-
dures, and age

Heart failure, mortali-
ty, diabetes, and hospi-
talization

TransformersPang et al [84];
2021

LowLowAUROC and
AUPRC

Yes (as year)Medications, age,
and calendar year

Heart failureTransformersRao et al [85];
2022

LowHighAccuracy, AUROC,
and F1-score

NoNoMortalityLSTMDu et al [86];
2022

UnclearHighRecall, precision,
AUROC, and
F1-score

NoNoNext-visit diagnosisLSTMDe Barros and
Rodrigues [87];
2022

LowHighAUROC, AUPRC,
and recall

YesMedications, labo-
ratory test results,
clinical events, and
demographic data

Next-visit diagnosis
and mortality

TransformersLiu et al [88];
2022

LowHighAUC, precision, re-
call, and F1-score

Yes (as day)Admission typeMortalityLSTMYang et al [89];
2022

LowLowPrecision and recallYesProceduresNext-visit diagnosis
and new onset of dis-
ease

TransformersChen et al [90];
2022

UnclearHighF1-score and recallNoNoNext-visit diagnosisGRUSun et al [91];
2022

LowHighAccuracy, precision,
recall, and F1-score

NoMedications and
procedures

Next-visit diagnosis
and mortality

Logical perceptionYu et al [92];
2022

UnclearUnclearAUROC, F1-score,
precision, sensitivi-
ty, and specificity

NoDemographic data,
procedures, medica-
tions, and vital
signs

MortalityGRUNiu et al [93];
2022

LowLowAUROC, AUPRC,
and F1-score

NoNoEmergency visitRNNAlSaad et al [94];
2022

LowHighAUROC and
F1-score

NoNoNext-visit diagnosis
and readmission

TransformersGerrard et al
[95]; 2022

LowUnclearAUROC, AUPRC,
sensitivity, and
specificity

NoProcedures, medica-
tions, and laborato-
ry test results

Preterm birthRNNAlSaad et al [96];
2022

LowHighAUROC, F1-score,
sensitivity, and
specificity

YesDemographic dataHospitalization for
COVID-19 infection

RNNRamchand et al
[97]; 2022

LowHighAccuracy, AUROC,
recall, specificity,
precision, and
F1-score

NoNoLung cancer, breast
cancer, cervix uteri
cancer, and liver can-
cer

LSTM and GRUAndjelkovic et al
[98]; 2022 [98]

UnclearHighPrecision, recall,
AUROC, accuracy,
and F1-score

NoMedications and
procedures

MortalityLSTMYu et al [99];
2022
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COAROBPerformance evalua-
tion

Included
time

Additional featuresPrediction taskDL approachStudy; year

LowLowAUROC and preci-
sion

Yes (as age)AgeHeart failure, stroke,
and coronary heart
disease

TransformersLi et al [100];
2022

LowLowAUROC and
AUPRC

NoMedications, proce-
dures, laboratory
test results, blood
pressure, drinking
status, smoking
status, and BMI

Heart failure, dia-
betes, chronic kidney
disease, and stroke

TransformersLi et al [101];
2023

LowLowprecision, recall,
F1-score, and AU-
ROC

NoMedications, labo-
ratory test results,
clinical events, and
demographic data

Opioid overdoseLSTMDong et al [102];
2023

UnclearUnclearAUROC and
AUPRC

YesDemographic data,
laboratory test re-
sults, procedures,
and medications

Mortality, long length
of stay, readmission,

and ICUq admission

TransformersGuo et al [103];
2023

LowHighAccuracy, AUROC,
and F1-score

NoDemographic data,
laboratory test re-
sults, procedures,
and medications

Heart failureTransformersLiang and Guo
[104]; 2023

LowHighAUROC, sensitivity,

specificity, PPVr,

and NPVs

YesMedicationsPsoriatic arthritisCNNLee et al [105];
2023

aAUROC: area under the receiver operating characteristic curve.
bCNN: convolutional neural network.
cGRU: gated recurrent unit.
dLSTM: long short-term memory.
eRNN: recurrent neural network.
fMCC: Matthews correlation coefficient.
gCOPD: chronic obstructive pulmonary disease.
hAUC: area under the curve.
iCVD: cardiovascular disease.
jAUPRC: area under the precision-recall curve.
kGNN: graph neural network.
lMCI: mild cognitive impairment.
mRNN-DAE: recurrent neural network–based denoising autoencoder.
nOA: osteoarthritis.
oBi-LSTM-CNN: bidirectional long short-term memory–convolutional neural network.
pMSE: mean squared error.
qICU: intensive care unit.
rPPV: positive predictive value.
sNPV: negative predictive value.

DL Techniques
We analyzed 84 DL models from the included studies. Among
these 84 models, the most commonly applied DL technique for
learning sequential diagnosis codes was RNNs and their
derivatives (n=47, 56%), followed by transformers (n=22, 26%),
which have been regularly applied in studies since their
introduction in 2017 (Figure 2). Among the 38 studies that used

embedding techniques to represent diagnostic data, the most
frequently used embedding method was Word2Vec (n=15,
39%), followed by GNNs (n=9, 24%) and transformers (n=3,
8%). More than half of the 84 studies presented their input
feature as a sequence of visit embeddings (n=45, 54%), followed
by a sequence of diagnosis codes (n=24, 29%), a sparse matrix
(n=10, 12%), and a mixed representation (n=5, 6%).
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Figure 2. The publication pattern in terms of (A) the number of deep learning models, (B) embedding techniques, and (C) explainability. The thin bar
representing 2023 reflects the partial year of data because the search only extended to May 2023. CNN: convolutional neural network; GRU: gated
recurrent unit; PV-DBOW: paragraph vector–distributed bag of words; RNN: recurrent neural network.

Dataset Characteristics
Across 125 training datasets, the median sample size was 29,256
(IQR 92,572; range 1095-5,231,614) patients. The most
frequently used datasets (82/125, 65.6%) originated from the
United States. Moreover, there is an increase in sample size for
training models (Figure S1 in Multimedia Appendix 3). The
publicly available MIMIC-III dataset (31/125, 24.8%) was the
most popular, followed by the Clinical Practice Research
Datalink (11/125, 8.8%), Cerner Health Facts (8/125, 6.4%),

Sutter Health (5/125, 4%), and MIMIC-IV (3/125, 2.4%; Figure
S2 in Multimedia Appendix 3). The most frequently used coding
system was International Classification of Diseases, Ninth
Revision (82/125, 65.6%), followed by ICD-10 (30/125, 24%).
The most frequently incorporated additional feature in the 84
studies was medications (n=38, 45%), followed by demographic
data (n=33, 39%), procedures (n=29, 35%), laboratory test
results (n=15, 18%), and clinical events (n=4, 5%; Figure S3
in Multimedia Appendix 3). Some studies (35/84, 42%)
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integrated time information into their DL models for
understanding patient prognosis.

Prediction Tasks
The highest frequency of predicted outcome variables were
patient trajectory (n=51, 39.8%), cardiovascular disease and
risks (n=33, 25.8%), admission (n=15, 11.7%), neurological

diseases (n=6, 4.7%), and malignancy (n=6; 4.7%). The main
subgroups of prediction tasks were next-visit diagnosis (n=30,
23.4%), heart failure (n=18, 14.1%), and mortality (n=17,
13.3%). Figure 3 presents the chord diagram illustrating the
relationships between features and outcome predictions. The
widest band is the connection between medications and
next-visit diagnosis (10/263, 3.8%).

Figure 3. Chord diagram showing the relationship between features (red) and predictions (blue), derived from the “Additional features” and “Prediction
task” columns in Table 1, respectively. In the chord diagram, “No” represents the absence of any features; “Visit” refers to the number of times a patient
visited a health care provider; “Human-derived features” refers to features extracted from human input, such as manually recorded clinical observations
or patient-reported outcomes; “Measurement” represents objective quantifications, such as laboratory test results, vital signs, and other instrument-based
evaluations; “Medications” refers to prescribed drugs; “Medicine/treatment” is a broader term that includes medications and surgical procedures;
“Calendar year” denotes the year of a patient’s clinic visit; and “Conditions” refers to medical conditions.

Performance Evaluation
A variety of model performance metrics were reported across
the 84 included studies. The best DL model performance in
each study was reported using AUROC (41/84, 49%), F1-score
(25/84, 30%), area under the precision-recall curve (13/84,
15%), precision (16/84, 19%), and recall (14/84, 17%). The
relationship between sample size, the number of features, and
AUROC was examined (Figure S4 in Multimedia Appendix 3).
A statistically significant relationship was found between sample

size and AUROC (P=.02), indicating that changes in sample
size have a notable impact on AUROC. However, there was no
statistically significant relationship between the number of
features and AUROC.

Generalizability and Explainability
An assessment of generalizability with external validation was
uncommon among the included studies. Overall, only 7 (8%)
of the 84 studies evaluated generalizability across ≥1 of the
following categories: demographic validation (n=3, 43%)
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[39,48,55], temporal validation (n=2, 29%) [100,103], and
geographic validation (n=4, 57%) [24,39,68,100]. Regarding
explainability, less than half of the studies (38/84, 45%)
incorporated a mechanism to interpret their predictions. The
publication pattern in terms of explainability is shown in Figure
2.

ROB and Concern of Applicability
Overall, the included studies had a high ROB (59/84, 70%),
which was mainly driven by high ROB in the analysis domain
(53/84, 63%). The main reason for high ROB in the analysis

domain was the imbalance between the number of patients and
their outcomes. Our assessment found low ROB in the
participant (66/84, 79%) and predictor (81/84, 96%) domains
due to broad inclusion criteria in general and similar predictor
definitions across all participants, respectively. Within the
applicability assessment, 3 domains were evaluated: participants,
predictors, and outcomes. Overall, 45% (38/84) of the included
studies showed either unclear or high concern of applicability
because the characteristics of most included studies were not
clearly mentioned. The full results of the ROB and applicability
assessment are shown in Figure 4.

Figure 4. The Prediction Model Study Risk of Bias Assessment Tool (PROBAST) results: (A) risk of bias (ROB) and (B) concern of applicability
(COA).

Discussion

Model Architecture
This systematic review offers insights into the contemporary
DL approaches used to model patients’ diagnostic history to
predict outcomes. We explored 84 studies that met our inclusion
criteria in this research area. The application of DL for advanced
modeling of sequential medical codes is a rapidly growing
research area. This is evident from the increasing number of
publications found each year in this review. Considering the
escalating interest in DL, there have been obvious publication
patterns since 2016. After the emergence of bidirectional
encoder representations from transformers (BERT) at the end
of 2018 [106], transformer models have been increasingly used
for sequential diagnosis codes, as reflected in the literature.
More recently, there has been a prominent and highly successful
showcase of transformers, with OpenAI’s ChatGPT with
GPT-3.5 and ChatGPT with GPT-4 [107] serving as prime
examples of their capabilities.

Diagnosis code and language share some similar aspects. We
can consider diagnosis codes as words and code sequences in
a medical history as sentences. Typically, DL models designed
for diagnosis codes aim to capture relationships between
diagnosis codes within patient visits and across patient visits,
which is similar to natural language processing (NLP)
approaches that learn connections between words within
sentences and across different sentences. Numerous studies in

our review applied recent NLP techniques, such as RNNs and
transformers, to sequential diagnosis codes. The main difference
between diagnosis codes within patient visits and words within
sentences is the irregular time interval between medical events.
To accommodate this difference, many studies adjust the original
DL algorithms to make them suitable for sequential diagnosis
codes. Some examples include RETAIN [26], Dipole [27],
EHAN [34], Timeline [35], Patient2Vec [40], DeepRisk [108],
COAM [42], CLOUT [60], HAN [70], IoHAN [86],
AttentionHCare [87], DeepMPM [89], and tBNA-PR [104], all
of which use attention mechanisms and show superior
performance compared to models without attention mechanisms.

Although RNNs and their derivatives made up the majority of
the models (47/84, 56%) used for patient outcome prediction,
several studies (15/84, 18%) showed that transformers have
s u p e r i o r  p e r f o r m a n c e
[55,56,59,62,67,72,73,81,83-85,88,90,95,104]. The transformer
model consists of a multihead self-attention unit that computes
in parallel. A crucial part of this architecture is the positional
encoder, which enables transformers to understand the order
and adjacency of information, in a similar way to CNNs and
RNNs, respectively. Evidence from 2 (2%) of the 84 studies
included in this review shows that positional embedding can
improve model performance [55,64]. Moreover, models that
combine transformers and RNNs have been introduced; for
example, the medical BERT model combined with bidirectional
gated recurrent unit improved the AUROC of the base models
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by 1.62% to 6.14% [68]. Pretrained transformers models such
as BERT for EHRs [55] and medical BERT [68] demonstrate
impressive performance; however, both require a huge amount
of pretraining patient data—approximately 1.6 million and 28
million samples, respectively.

Encoding diagnosis codes is a challenging task. Word2Vec is
the most common method used for code-level embedding.
Originally, Word2Vec was designed to capture the semantic
relationships between words from large text corpora through
unsupervised learning. Similarly, Word2Vec for diagnosis codes
enables the encoding of meaningful relationships between
medical conditions. Some models use separate training for the
input data, with methods such as Word2Vec, GNNs, or
transformers, while others that skip this step still require some
form of embedding for codes during the training process.
Consequently, it is challenging to make direct comparisons
between DL models with embeddings and those without. Some
studies show that learning hierarchical information through
code-level embeddings can enhance the power of model
prediction; for example, code-level embedding using Word2Vec
can improve model performance [24]. GNNs can be a powerful
tool for a hierarchical encoder with the potential to capture
relationships between diagnosis codes. Many studies have
demonstrated that using GNNs to embed diagnosis codes can
provide effective predictions, including models such as
Graph-Based Attention Model, knowledge-based attention
model, Co-Attention Memory networks for diagnosis Prediction,
multirelational EHR representation learning method,
self-supervised graph learning framework with hyperbolic
embeddings for temporal health event prediction, Sequential
Diagnosis Prediction with Transformer and Ontological
Representation, hypergraph-based disease prediction model
using EHRs, Sequential visits and Medical Ontology, and
integrated deep learning model combining long short term
memory and graph neural networks. Interestingly, using
multilevel representations, combining visit level and variable
level, for a patient is better than single-level representation based
on visit or variable alone [89].

Large language models (LLMs) have revolutionized NLP. LLMs
are trained on huge amounts of text data from the internet,
books, and other sources; and they can perform a wide range
of language-related tasks. Recently, researchers have explored
the ability of LLMs to understand medical codes; for example,
a study evaluated several LLMs, including ChatGPT with
GPT-3.5, ChatGPT with GPT-4, Gemini Pro, and Llama2-70b
Chat, for their ability to generate correct medical codes based
on code descriptions [109]. However, the study found that LLMs
frequently generated incorrect codes. The findings suggest that
LLMs lack an understanding of the meaning of medical codes.
Therefore, it is still a challenge to use LLMs for clinical codes.

Characteristics and Features
Generally, the performance of DL models depends on the setting
of the training dataset, such as inpatient or outpatient
populations. Most of the included studies (31/125, 24.8%) used
models trained on the MIMIC-III dataset, which focuses on
ICU admissions in the United States, with a short interval
between diagnosis codes and patients considered high risk [110].

Patients in the MIMIC dataset will have more severe illnesses
than a general hospital population, which would be a mix of
inpatients and outpatients. The type of clinical data in the
training dataset is very important for robust disease prediction.
The dataset should not be focused only on specific clinical
settings, such as hospital admissions or ICUs, due to data
availability. However, more than half of the included studies
(52/92, 57%) did not clearly report the setting of their training
dataset. Moreover, a study showed that patient vital signs had
a greater influence on mortality prediction in ICU settings than
diagnosis codes [93]; yet, vital signs are not available in every
dataset. Therefore, we suggest that it is important to provide
the details of the clinical setting of the training dataset.

There may be inherent biases in how diagnosis codes are
recorded in EHR data, influenced by their primary billing
sources. In addition, for a single appointment, acute conditions
are more likely to be recorded than chronic diseases. Any biases
in the recording of diagnosis codes may transfer to the learning
process of a DL algorithm. This potential transfer of bias should
be carefully considered when interpreting the results. Most of
the included studies (42/125, 33.6%) used datasets, such as
MIMIC-III and Clinical Practice Research Datalink, that provide
long-term follow-up data for large patient populations. These
datasets typically include diagnosis codes for a wide range of
acute and chronic medical conditions. DL studies can benefit
from the availability of longer sequences of these codes,
reflecting longer periods of the patient’s medical history and
therefore more likely to capture both conditions.

The performance of the DL model in predicting patient outcomes
depends not only on diagnosis codes but also on other features,
such as demographic data [43], treatments [40,56,71], the
number of visits [56], and the interval between visits [64,88].
Several studies have shown that diagnosis codes alone cannot
provide the best predictive performance compared to models
incorporating multiple features, such as medications, procedures,
laboratory test results, demographic data, and so on
[82,88,101,108]. Moreover, a study that applied BERT for EHRs
has highlighted that combining diagnosis codes with factors
such as age, segment, and position lead to improved precision
scores compared to relying solely on diagnosis codes [55]. We
propose that integrating a wide array of supplementary features,
including demographic data, medication records, medical
procedures, and laboratory test results, can potentially improve
the performance of DL models when analyzing sequential
diagnosis codes.

Many of the studies (33/84, 39%) included basic demographic
data, such as gender and age, as model features. Ethnicity is
another important demographic factor because it is a significant
risk factor for many diseases, such as heart disease [111].
However, only a few studies (4/84, 5%) specifically described
ethnicity as an input feature of their models. Most of the datasets
reviewed (63/84, 75%) originated from the United States and
European countries. In addition, research has shown that race
and ethnicity data in EHRs are often incomplete and inaccurate,
especially for minority populations [112]. These limitations can
make it challenging to generalize the developed models to
external settings with different patient populations and health
care systems.

J Med Internet Res 2025 | vol. 27 | e57358 | p. 13https://www.jmir.org/2025/1/e57358
(page number not for citation purposes)

Hama et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


As diagnosis codes occur at irregular time intervals, adding time
intervals as a feature can help a model to understand disease
progression. Hypothetically, patients with shorter follow-up
times are more likely to have severe conditions. Ablation studies,
which assess model performance by removing some features,
have demonstrated that integrating time intervals between patient
visits can enhance predictive power. This improvement has
been demonstrated across multiple models, including BiteNet
[56], CATNet [88], CEHR-BERT [84], Deepr [23], DL-BERT
[90], EHAN [34], and SETOR [81]. Moreover, research
applying HiTANet has shown that integrating time intervals
between the last visit and current visit can improve model
performance [58]. A study that examined the impact of
integrating time intervals as days, weeks, and months into model
predictions found that using weeks as the unit yielded the best
prediction performance, corresponding to the weekly follow-up
pattern in real clinical practice [78]. We believe that the time
interval between visits can serve as an indicator of disease
progression.

Next-visit prediction is a widely applied task for evaluating DL
performance in sequential diagnosis codes. However, this task
carries an ROB; for example, while DL-BERT performs well
in predicting the next disease based on a patient’s existing
history, its precision drops—by approximately 50%—when
predicting a new-onset disease that has not previously occurred
in the patient’s history. This indicates that the model relies
heavily on prior diagnoses rather than capturing underlying
disease progression [90]. Another challenge for next-visit
prediction is the issue of missing data. Sometimes, patients seek
care at a different location or with a different provider, and this
information may not be captured in the available data. This is
a major limitation for most studies, which can be mitigated
through better data linkage and information sharing across health
providers.

Evaluation, Generalizability, and Explainability
Model evaluation in health care is often complicated by class
imbalance due to the nature of the medical domain, where the
number of individuals with a disease is usually lower than the
number of individuals without it. AUROC and F1-score are
commonly used evaluation metrics in publications for health
care research area and were reported by 82% (69/84) of the
studies included in this review. However, F1-score focuses on
positive prediction and avoid the value of true negatives.
Alternatively, a study suggested using the Matthews correlation
coefficient for model evaluation because it provides a more
balanced assessment of positive and negative predictions [113].

Generalizability is an important issue for outcome prediction
in health care. When a model is trained on a specific population,
it will only perform well on patients with similar characteristics.
The evaluation should include both internal and external
validation. Assessing performance on different data distributions
is crucial for outcome prediction [19,114]. Predictive
performance degrades when models are tested on
out-of-distribution years [103]; however, only a small proportion
of the included studies (7/84, 8%) validated their models using
data outside of their training distribution. Validating models

across different settings—demographic, temporal, and
geographic—is very important for real-world applications.

While DL models can yield a good performance in outcome
prediction, they are frequently regarded as black box models,
lacking the explainability needed to understand their internal
processes and the main contributing factor for a given prediction.
This lack of explainability—when the underlying reasoning is
unclear—is a significant concern because it may reduce trust
in predictions among health care workers and complicate the
explanation of clinical decisions to patients. In recent years,
researchers have focused on explainability. Shapley additive
explanations (SHAP) was introduced to understand model
predictions [115]. SHAP can be used to explain the decisions
of LSTM models and transformers; for instance, SHAP values
can explain meaningful medical codes to predict the risk of
opioid overdose with 11 codes related to medications and 2
codes related to mental disorders [102]. A study introduced a
tool to visualize multihead self-attention in transformer models,
which can show the relationship between 2 sentences [116].
Some studies used this tool to show disease relationship between
2 sequences of diagnosis codes [55,67]. We propose that
explainable artificial intelligence should be included in research
studies in this area.

Limitations
This review has several limitations. First, while our search was
effective in capturing a significant proportion of the papers in
this research area, it is important to note that variations in search
terms may have led to the unintentional exclusion of other
relevant studies, which is why we conducted a manual search
to identify additional relevant articles. Second, the included
studies exhibited heterogeneity, which made it difficult to
compare the studies and conduct a meta-analysis. There was
variability in input features and prediction tasks. Moreover,
model evaluation metrics were reported differently. Although
many of the included studies (57/84, 68%) introduced single,
novel DL-based models, some studies (27/84, 32%) applied
multiple standard models for outcome prediction. In such cases,
we considered only the best-performing DL model in each study.
Finally, it is important to note that PROBAST was not originally
designed for evaluating DL models, and certain questions in
the analysis domain are not suitable for these models.

Recommendations and Future Work
On the basis of the findings of this review, our main
recommendation for future studies using DL alongside
sequential diagnostic patient information is to ensure that the
generalizability of the developed models is tested on
independent datasets. This will significantly reduce the ROB
in key findings. Given the aforementioned limitations, we also
think that studies should apply a more specific ROB assessment
tool to DL models because not all questions in the current
PROBAST assessment framework are suitable.

Conclusions
The application of DL for advanced modeling of sequential
medical codes has demonstrated remarkable promise in
predicting patient outcomes. The main limitation of this study
was the heterogeneity of methods and outcomes. However, our
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analysis found that using multiple types of features, integrating
time intervals, and including larger sample sizes were generally
related to an improved predictive performance in the included
studies. This review also highlights that very few studies (7/84,
8%) reported on the challenges related to generalizability and

almost half (38/84, 45%) of the studies reported challenges
related to explainability of DL models. Addressing these
shortcomings will be instrumental in unlocking the full potential
of DL for enhancing health care outcomes and patient care.
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PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PROBAST: Prediction Model Study Risk of Bias Assessment Tool
RNN: recurrent neural network
ROB: risk of bias
SHAP: Shapley additive explanations
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