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Abstract

Background: To reduce the mortality related to bladder cancer, efforts need to be concentrated on early detection of the disease
for more effective therapeutic intervention. Strong risk factors (eg, smoking status, age, professional exposure) have been identified,
and some diagnostic tools (eg, by way of cystoscopy) have been proposed. However, to date, no fully satisfactory (noninvasive,
inexpensive, high-performance) solution for widespread deployment has been proposed. Some new models based on cytology
image classification were recently developed and bring good perspectives, but there are still avenues to explore to improve their
performance.

Objective: Our team aimed to evaluate the benefit of combining the reuse of massive clinical data to build a risk factor model
and a digital cytology image–based model (VisioCyt) for bladder cancer detection.

Methods: The first step relied on designing a predictive model based on clinical data (ie, risk factors identified in the literature)
extracted from the clinical data warehouse of the Rennes Hospital and machine learning algorithms (logistic regression, random
forest, and support vector machine). It provides a score corresponding to the risk of developing bladder cancer based on the
patient’s clinical profile. Second, we investigated 3 strategies (logistic regression, decision tree, and a custom strategy based on
score interpretation) to combine the model’s score with the score from an image-based model to produce a robust bladder cancer
scoring system.

Results: We collected 2 data sets. The first set, including clinical data for 5422 patients extracted from the clinical data warehouse,
was used to design the risk factor–based model. The second set was used to measure the models’performances and was composed
of data for 620 patients from a clinical trial for which cytology images and clinicobiological features were collected. With this
second data set, the combination of both models obtained areas under the curve of 0.82 on the training set and 0.83 on the test
set, demonstrating the value of combining risk factor–based and image-based models. This combination offers a higher associated
risk of cancer than VisioCyt alone for all classes, especially for low-grade bladder cancer.

Conclusions: These results demonstrate the value of combining clinical and biological information, especially to improve
detection of low-grade bladder cancer. Some improvements will need to be made to the automatic extraction of clinical features
to make the risk factor–based model more robust. However, as of now, the results support the assumption that this type of approach
will be of benefit to patients.

(J Med Internet Res 2025;27:e56946) doi: 10.2196/56946

J Med Internet Res 2025 | vol. 27 | e56946 | p. 1https://www.jmir.org/2025/1/e56946
(page number not for citation purposes)

Cabon et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:sandie.cabon@univ-rennes.fr
http://dx.doi.org/10.2196/56946
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

bladder cancer; clinical data reuse; multimodal data fusion; clinical decision support; machine learning; risk factors; electronic
health records; detection; mortality; therapeutic intervention; diagnostic tools; digital cytology; image-based model; clinical data;
algorithms; patient; biological information

Introduction

Bladder cancer ranks as the 9th most prevalent cancer
worldwide, and it is the 13th leading cause of cancer-related
deaths, claiming over 13,000 lives annually [1,2]. In 2017,
bladder cancer was the 5th most frequently diagnosed cancer
in men, with an incidence 4 times higher than that in women
[3]. Detecting bladder cancer at an early stage significantly
enhances the chance of successful treatment, while late-stage
detection presents more challenges. Current treatments involve
surgical procedures and auxiliary chemotherapy but come with
a relatively poor 5-year prognosis [4]. More precisely, the 5-year
survival is 69.5% for localized disease. The survival rate
decreases to 36.3% for regional disease and only 5% for
metastatic bladder cancer [5]. Today, periodic cystoscopy
associated with urine cytology is the gold standard for the
diagnosis of bladder cancer or to monitor for recurrence [6].
However, cystoscopy is an expensive and invasive procedure
usually associated with discomfort. Urine cytology is a test to
detect abnormal cells in urine samples. Although urine cytology
is the most widely used noninvasive test, it has poor sensitivity,
especially for low-grade tumors [7,8].

Thus, to reduce the mortality associated with bladder cancer,
new diagnostic tools need to be proposed for early detection of
the disease [3]. At the same time, newly proposed methods
should be noninvasive and inexpensive to allow large-scale
dissemination. Research is currently focusing on this objective
through better identification of risk factors or development of
more effective diagnostic tools.

Recently, new diagnostic tools based on the detection of specific
biomarkers in urine tests were proposed [9-11]. ADXBLADDER
is a urine test to detect the mini chromosome maintenance 5
protein in voided urine [9]. It has a sensitivity of 83% and
specificity of 77%. Urodiag is based on genetic and epigenetic
analysis using multiplex quantitative real-time polymerase chain
reaction and consists of detecting 4 mutations of the fibroblast
growth factor receptor 3 gene [10]. It has a sensitivity of 95%
and specificity of 76%. URO17 is an immunocytochemical test
designed to evaluate keratine 17 expression and has a sensitivity
of 100% and specificity of 96% [11]. These tests show
promising performance but have only been studied in small
cohorts (from 26 to 71 patients).

Increasing interest in deep learning algorithms has also led to
the emergence of new diagnostic strategies based on image
processing (see [12,13] for reviews). Although most of them
have been developed from cystoscopy images, some aim to
propose noninvasive techniques and have exploited images
obtained from urine cytology [14-16]. The authors report good
to very good performance, including a sensitivity of 79.5% and
specificity of 84.5% [14]; area under the receiver operating
characteristic (ROC) curve (AUC) of 0.83 [15]; and sensitivity
of 81.0% and specificity of 98.0% [16]. However, studies were

conducted either with populations composed mainly of patients
with high-grade cancer [14] or with a small amount of data and
a limited number of patients (ie, only 398 slides in [15] and 68
patients in [16]). Moreover, a lack of generalization power, as
expressed by a decrease in performance when applying the
model to new data and especially new data sources, hinders
deployment in clinics [13]. In addition, the main challenge is
detecting patients with low-grade cancer to improve their chance
of survival.

On the other hand, several risk factors were identified as strong
determinants of bladder cancer. First, demographic information,
such as age and sex, was identified as a strong factor [5]. In
2012, Letašiová et al [17] also highlighted that smoking;
exposure to arsenic (in water, air, or food); and exposure to
aromatic amines and 4,4'-methylenebis in chemicals that are
typically contained in dyes, hair dyes, paints, fungicides,
cigarette smoke, plastics, metals, and motor vehicle exhaust are
the most notable environmental risk factors [17]. An association
with diabetes has also been described [18]. In addition, positive
associations between bladder cancer and a family history in
first- and second-degree relatives [19] and hypertension [20]
were found. In a more general context, having experienced
stroke [21] or heart failure [22] was also associated with a higher
risk of developing cancer.

The widespread adoption of electronic health records now
provides an opportunity to capture granular patient information
in large populations. The data can be used to develop machine
learning models that could be incorporated in decision support
systems. By incorporating risk factors, such models have the
potential to identify at-risk patients more accurately, enhancing
patient profiles for image-based analysis.

In this paper, we proposed combining knowledge about risk
factors and cytology processing software to investigate the
benefits that this could provide for bladder cancer detection. To
do this, our team worked with a model developed by the
company VitaDX [23]. This image-based model, called
VisioCyt, integrates image cell processing and deep learning
algorithms to predict bladder cancer from voided urinary
cytology. In this study, our focus was on building a detection
model based on risk factors extracted from our local clinical
data warehouse (CDW). We hypothesized that a model trained
on a large data set, offering a probability of bladder cancer based
on a patient's clinical profile, can complement the VisioCyt
scoring system and enhance detection, especially for low-grade
cases.

Methods

Ethical Considerations
Our study followed the relevant guidelines and regulations, in
accordance with the Declaration of Helsinki. The extracted data
did not contain any nominative data, and all information was
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deidentified in accordance with the protocol established for the
improved project. Agreement from the French Commission
Nationale de l’Informatique et des Libertés was obtained
(agreement number 2206739).

Study Design
The proposed workflow for bladder cancer prediction is depicted
in Figure 1. As a first step, 2 distinct prediction models were
built: one based on risk factors (risk factor–based model [RFM])
and the other using cytology images (VisioCyt). The scores
given by each model were then combined to provide a composite
score.

Figure 1. Overview of the designed workflow for the scoring of bladder cancer using risk factors and cytology images, including a description of the
(A) data sets and (B) data processing.

To set up and evaluate our approach, 2 data sets were
considered: Clinical Data Reuse Dataset (CDRD) and VisioCyt
1 Trial Dataset (VTD).

CDRD was extracted according to the inclusion criteria from
eHOP [24], the CDW developed and deployed at Rennes
University Hospital. This database was used to design and select
the bladder cancer prediction model based on risk factors (ie,
the RFM). For that purpose, clinical features were retrieved and
preprocessed to be used as inputs for the machine learning
approaches. In the end, several models were compared to
identify the best model.

The second data set contained clinical data and cytology images
that were acquired during the VisioCyt 1 Trial (NCT02966691).
Images from this data set were first used to set up the bladder
cancer prediction model based on cytology images and deep
learning (ie, VisioCyt). This model was internally developed
by VitaDX. In this study, we focused on the combination of
this model with an RFM. To evaluate and adopt the best strategy
for the combination, the whole data set (ie, images and clinical
data from VTD) was used.

In the following sections, each stage of this workflow is
described. First, we introduce the study population with the
associated inclusion criteria. It is followed by a description of
the data sets. Methods to set up the risk factor–based predictor
are presented, and a description of the Visiocyt model is given.
Finally, the combination strategies to build the final bladder
cancer predictor are described.

Study Population
The eligibility criteria were defined in the VisioCyt 1 Trial [23]
and used to extract data from the CDW.

The inclusion criteria were the following: older than 18 years,
affiliation with a social security system, negative urine culture,
programmed bladder endoscopy for a suspicion of bladder
cancer (de novo, monitoring, or relapse) or exploration of the
lower urinary tract excluding a suspected bladder cancer or
prostate cancer.

The exclusion criteria were as follows: ongoing, untreated
urinary tract infection; presence of bladder cancer excluding
urothelial carcinoma; carcinoma of the high urinary tract,
associated; history of lithiasis pathology; had undergone a renal
transplantation.

Data Sets

Clinical Data Reuse Data Set
With eHOP, administrative and clinical data from electronic
health records are collected, including unstructured (eg, clinical
notes) and structured (eg, drugs, laboratory results) data. Data
are deidentified, and a unique anonymous identifier allows the
linkage among hospital stays of a given patient. The eHOP
CDW currently allows users to search 80 million unstructured
data elements and 430 million structured elements. All these
data cover more than 1.8 million patients. CDRD was extracted
from the eHOP database. All data on hospital stays at Rennes
University Hospital between 2015 and 2017 were considered.

In this study, we considered people who had undergone
endoscopy for vesical tumor resection or had a histology
examination that was positive for bladder cancer. People
considered negative for bladder cancer were those who had
undergone a bladder endoscopy and had a negative histological
examination.
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For this extraction, we used the following data: demographic
data; drugs administered (codification used by the French
hospital information system to identify a drug and date of
administration); Programme de Médicalisation des Systèmes
d'Information (PMSI) data (French diagnosis-related groups)
including International Statistical Classification of Diseases,
Tenth Revision (ICD-10) codes, procedure codes, mortality,
and length of stay; laboratory results described with local
terminology; medical reports.

The extraction resulted in 5422 eligible patients: 1351 bladder
cancer positives and 4071 bladder cancer negatives.

VisioCyt 1 Trial Data Set
The VisioCyt 1 Trial is registered in clinicaltrials.gov
(NCT02966691). This clinical study was designed to evaluate
the diagnostic performance of the VisioCyt test, which would
improve the early diagnosis of bladder cancer. The diagnostic
method used by the VisioCyt device is based on the analysis
by transmission of urinary cytology slides prepared according
to the protocol outlined for VisioCyt [23].

In addition to the inclusion criteria presented in the Study
Population section, other criteria specific to that trial were
considered. Additional inclusion criteria were the ability of the
patient to understand the protocol and signature of a consent
form before beginning the study, while people deprived of
liberty or under guardianship were excluded. In addition,
patients included in the same hospital as that from which CDRD
was extracted were also excluded to avoid double inclusion.

In VTD, patients were considered to have bladder cancer if they
had positive urine cytology and positive histology. This resulted
in 620 patients, that is, 409 bladder cancer positives and 211
bladder cancer negatives. Among the positive patients, 220
patients with low-grade cancer and 189 patients with high-grade
cancer were included. We collected 2 types of data. First,
VisioCyt 1 provides urinary cytology digital slide images at a
size of 50,000 × 50,000 pixels. They were acquired over 3 focal
plans and contain cells of different types (eg, malpighian cells,
urothelial cells, neutrophilic polynucleosis, artifacts, blood
cells). For each VTD patient, the following demographic
variables were retrieved: age, sex, weight (kg), and height (cm).
The following risk factors and comorbidities were also collected:
smoking status (never, former, or current smoker), diabetes,
history of heart failure, hypertension, history of stroke, chronic
obstructive pulmonary disease (COPD), family history of cancer,
and professional exposure to a carcinogenic factor.

Risk Factor–Based Model (RFM)

Clinical Feature Extraction and Preprocessing
For each CDRD patient, the same features as those collected
for VTD patients were retrieved. They were extracted from the
data warehouse using structured and unstructured data. For
structured data, standardized codes of several terminologies and
local codes were used. For unstructured data (ie, medical
reports), regular expressions and some more advanced
techniques based on embeddings (ie, using spacy modeling from
python) were implemented or used [25].

Missing data imputation was performed for weight and height
by using k-nearest neighbor identification (k=10) based on age,
sex, and weight or height according to the feature to be imputed.
Standard scaling was first applied to ensure an equivalent impact
on the distance measurement for numerical variables. For binary
variables, we assumed that patients did not have the feature if
it was not retrieved through the queries used on the data
warehouse. A BMI feature was added and computed as weight
divided by height squared.

A missing data indicator feature was added for each of the
original features except for age and sex, which were complete.
In the end, the clinical feature set had 29 clinical features.

Bladder Cancer Prediction From Clinical Data
We investigated 3 supervised classification algorithms, namely
random forest (RF), logistic regression (LR), and support vector
machine (SVM), to identify patients likely to have bladder
cancer based on their clinical data.

A 2-step strategy, depicted in Figure 2, was designed to identify
the best modeling approach.

First, the most optimal hyperparameters were identified using
3-fold cross-validation and a random grid search on 80% of
CDRD (100 iterations). The best set of hyperparameters was
defined as the one leading to the highest averaged AUC on the
validation sets. During training, class imbalance was handled
using class-weighting to mitigate the risk of bias toward the
majority class in splits (ie, no bladder cancer patients). This
process was repeated for each machine learning algorithm. This
resulted in 3 candidate models composed of a standardizer,
missing data imputer, and classifier ready to be applied to new
data.

Second, model candidates were applied on 20% of CDRD to
verify their generalization power. From there, the best
classification approach was identified by comparing the
performance using AUC, sensitivity, and specificity. At the end
of this step, training using all CDRD data, the best
hyperparameter set, and the best approach was conducted and
resulted in the RFM.
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Figure 2. Identification of the best classification model using 2 steps: (A) The first was training, a selection of the best set of hyperparameters and fit
of a model candidate to use for each classification approach, and (B) the second was testing, identification of the best model among the 3 candidates.
AUC: area under the receiver operating characteristic curve; CDRD: Clinical Data Reuse Dataset; LR: logistic regression; RF: random forest; SVM:
support vector machine.

Image-Based Model
The image-based model works in 5 main steps going from
checking the quality of the data to prediction of bladder cancer
from segmented cell images. The process is depicted in Figure
3.

The process begins with a quality check of the slide, discarding
any that are not properly prepared nor digitized. Following this,
the biological elements on the slide are detected and classified,
retaining only individual urothelial cells and clusters of these
cells. A second quality assessment is then carried out to confirm
the presence of a sufficient number of urothelial cells.

These cells are subsequently segmented to identify the nucleus
and cytoplasm, and the characteristics of the nucleus are
calculated based on established criteria and atypia parameters
[23]. Urothelial clusters are classified using a detector for
atypical urothelial clusters, and the classification score is used
as a feature of the cluster.

Features of both individual urothelial cells and urothelial clusters
are combined into a vector representing the features of the slide.
This vector is ultimately classified by an RF classifier to
determine the VisioCyt slide’s score.
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Figure 3. Workflow of the image-based model.

Combination of Image-Based and Risk Factor–Based
Models
At this stage, prediction scores obtained from the RFM and
VisioCyt are available. To combine these 2 scores and provide
the final combined scoring system, 3 strategies were investigated
using the output probabilities of both models as inputs: custom,
LR, and decision tree (DT).

Experiments and evaluations were performed using the VTD.
At first, stratified random selection, based on grade, was
performed to allocate 520 patients to a training set and 131
patients to a test set. The most optimal hyperparameters of LR
and DT were then identified using 3-fold cross-validation and
a random grid search on the training set as described in the
Bladder Cancer Prediction From Clinical Data section. The best
models were then applied to the test set. For the custom method,
the behaviors of the RFM and VisioCyt scores to build a
decision rule adapted to our data were examined on the training
set.

VisioCyt and RFM were not trained but simply applied on the
training and test sets to compare their performance with those
of the combination approaches.

Statistical Analysis and Evaluation Metrics
The relationships between the clinical variables and target
variable in both CDRD and VTD were investigated. First, the
correlations between bladder cancer status (ie, positive or
negative) and continuous variables were studied using the
point-biserial correlation test. According to Vogt et al [26], only
features with point biserial values >0.25 were considered
significantly correlated with the target variable. Chi-square tests
were conducted for categorical features. This test consists of a
null hypothesis that supposes the independence between the
binary feature and bladder cancer status. Using Bonferroni
correction, we considered that a P<.003 indicated a rejection
of the null hypothesis and therefore implied a correlation
between the binary variable and bladder cancer status.

ROC curve and AUC analyses were carried out to evaluate the
performance of models. In addition, commonly used
performance metrics such as balanced accuracy, specificity, and
sensitivity were assessed for the RFM. They were measured
using the optimal threshold given by the ROC as the
combination maximizing the difference between the true positive
and false positive rates. To better understand how the models
made the predictions, the importance of the features on the
predictions was investigated. Although intrinsically present in
RF and DT models [27], this information is not directly available

J Med Internet Res 2025 | vol. 27 | e56946 | p. 6https://www.jmir.org/2025/1/e56946
(page number not for citation purposes)

Cabon et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


for other approaches such as SVMs. In such cases, the
permutation feature importance was computed [27].

Software and Platforms
All experiments were implemented in Python, version 3.8.8.
Statistical analyses were performed using scipy 1.7.3.
Scikit-learn 1.0.2 was used to train and evaluate the
classification models.

Results

The results are presented in 3 sections. First, examination of
the clinical features was undertaken to assess their univariate

predictive capability for bladder cancer and to evaluate their
consistency or heterogeneity across the 2 studied data sets.
Second, the performances achieved during the design of the
RFM are outlined. Last, the results obtained from the
combination of the 2 scoring systems are discussed.

Clinical Feature Analysis
First, the distribution of the clinical features can be discussed
by comparing either populations (ie, negatives vs positives) or
data sets (ie, CDRD vs VTD). The statistics were grouped within
these objectives and are reported in Table 1.

Table 1. Distribution of variables across positive and negative bladder cancer status for each data set.

Negative statusPositive statusClinical features

VTBb (n=211)CDRDa (n=4071)VTBb (n=409)CDRDa (n=1351)

Continuous variables, mean (SD)

63.9 (13.1)58.8 (17.7)70.7 (10.0)69.8 (12.9)Age (years)

74.6 (16.1)73.4 (33.1)76.1 (14.9)74.6 (13.8)Weight (kg)

168.0 (10.0)167.2 (7.1)170.0 (7.1)168.2 (7.5)Height (cm)

26.2 (4.7)26.3 (11.6)26.0 (4.2)26.4 (4.5)BMI (kg/m2

Binary variables, n (%)

118 (55.9)2189 (53.8)321 (78.5)1069 (79.1)Sex (male)

Smoking status

114 (54.8)641 (17.7)83 (20.5)482 (48.8)Never smoked

27 (13)384 (25)91 (22.5)109 (37.2)Active smoker

67 (32.2)201 (6.9)231 (57)301 (15.4)Former smoker

19 (9)389 (19.3)86 (21)243 (21.9)Diabetes

9 (4.3)380 (30.2)91 (22.2)150 (35.1)Heart failure

55 (26.1)830 (52.1)210 (51.3)311 (69.1)Hypertension

1 (0.5)261 (14.7)22 (5.4)87 (16.3)Stroke

18 (8.5)140 (10.1)83 (20.3)95 (17.9)COPDc

23 (10.9)80 (1.3)101 (24.7)40 (2.7)Professional exposure

40 (19)35 (0.8)67 (16.4)13 (0.9)Family history of cancer

aCDRD: Clinical Data Reuse Dataset.
bVTD: VisioCyt 1 Trial Dataset.
cCOPD: chronic obstructive pulmonary disease.

The distributions of continuous features (age, weight, height,
and BMI) were equivalent in both data sets and between
negatives and positives. For binary features, 3 scenarios
emerged: Some display equivalent percentages and trends (ie,
sex and COPD), while others only shared similar trends (active
smoker, former smoker, heart failure, and hypertension) and
others exhibited differences in both percentages and trends
(never smoked, diabetes, stroke, professional exposure, and
family history of cancer).

For sex and COPD, percentages and trends were similar in
CDRD and VTD. There were more men with bladder cancer
than without (with cancer: 1069/1351, 79.1% in CDRD and

321/409, 78.5% in VTD; without cancer: 2189/4071, 53.8% in
CDRD and 118/211, 55.9% in VTD), and there was a higher
occurrence of COPD among individuals with bladder cancer
(95/1351, 17.9% in CDRD and 83/409, 20.3% in VTD) than in
individuals without bladder cancer (140/4071, 3.4% in CDRD
and 18/439, 8.5% in VTD).

For features with only similar trends, such as being an active
smoker, heart failure, and hypertension, the percentages were
generally higher in CDRD than in VTD, except for being a
former smoker, where lower percentages were observed in
CDRD than in VTD (Table 1).
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For features considered to have different percentages and trends
(never smoked, diabetes, stroke, professional exposure, and
family history of cancer), the key observation was the
equivalence between positives and negatives in CDRD, while

a more pronounced difference existed between positives and
negatives in VTD.

Statistical analyses were performed to observe relationships
between features and bladder cancer status in each data set. The
results are reported in Table 2.

Table 2. Statistical analyses performed to evaluate the correlations between the clinical features and bladder cancer status for each data set.

VisioCyt 1 Trial Dataset (VTD)Clinical Data Reuse Dataset (CDRD)Clinical features

P valueStatisticP valueStatistic

Continuous variables, rpb
a

<.0010.276<.0010.276Age

<.0010.051.180.018Weight

<.0010.133<.0010.059Height

.54–0.025.740.004BMI

Binary variables, χ2 (df)b

<.00110.005 (1)<.001108.534 (1)Sex

Smoking status

<.00149.854 (1).420.659 (1)Never smoked

<.0016.535 (1)<.00153.680 (1)Active smoker

<.00117.705 (1)<.00181.775 (1)Former smoker

<.00111.879 (1).043.375 (1)Diabetes

<.00127.911 (1)<.0017.824 (1)Heart failure

<.00120.809 (1)<.00152.403 (1)Hypertension

<.0019.027 (1).171.710 (1)Stroke

<.00111.822 (1)<.00151.868 (1)COPDc

<.00113.242 (1)<.00113.198 (1)Professional exposure

.460.535 (1).920.073 (1)Family history of cancer

aValues >0.25 considered significant.
bP values <.003 considered significant.
cCOPD: chronic obstructive pulmonary disease.

For 8 features (ie, age, sex, active smoker, former smoker, heart
failure, hypertension, COPD, and professional exposure),
relationships with bladder cancer were highlighted in both
CDRD and VTD, while 3 others were only considered related
to bladder in VTD (diabetes, never smoked, and stroke). Finally,
4 features (weight, height, BMI, and family history of cancer)
were not considered significant in any of the data sets.

Bladder Cancer Prediction Using Clinical Features
This section is dedicated to the investigations of the RFM. First,
the best hyperparameters for each classification approach are
reported. The performance between model candidates is then
compared. To finish, the importance of each feature in the best
model is investigated.

Hyperparameter Tuning
During the training phase, hyperparameters were tuned for each
of the 3 classification approaches (RF, SVM, LR; Table 3).

In the end, the RF model candidate was composed of 45 trees
with a maximum depth of 10 splits, minimum sample split of
10, and minimum sample leaf at 30 samples each. The RF model
had an average AUC of 0.76 (SD 0.02). The SVM candidate
was a linear kernel with a margin at 10 and 0.01 for gamma and
had an average AUC of 0.77 (SD 0.02). The LR candidate
embedded a margin at 0.01 with an l1 penalty and performed
with an average AUC of 0.77 (SD 0.02). Model candidates were
finally trained using these hyperparameters on the CDRD
training set.
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Table 3. Summary of the tuning of the hyperparameters.

Best AUCa, mean (SD)Tested valuesClassifier and tuned hyperparameters

0.76 (0.02)Random forest

(10, 14, 18, 23, 27, 32, 41, 45b, 50)number of trees

(5, 6, 7, 8, 10b, 13, 20)maximal depth

(5, 10b)minimal sample split

(4, 10, 30b, 50)minimal sample leaf

0.77 (0.02)Support vector machine

(linearb, radial basis function)kernel

(0.001, 0.01, 0.1, 1, 10b, 100)margin

(0.001, 0.01b, 0.1, 1, 10, 100)gamma

0.77 (0.02)Logistic regression

(0.001, 0.01b, 0.1, 1, 10, 100)margin

(l1b, l2, none)penalty

Performance Comparison
To identify the best candidate to be deployed, performance on
the training set (80% of CDRD) and applied once to the test set

(20% of CDRD) were compared for each modeling approach.
The resulting performances are reported in Figure 4.

Figure 4. Receiver operating characteristic (ROC) curve comparing the performance of risk factor–based classifiers in terms of the area under the ROC
curve (AUC), balanced accuracy, specificity, and sensitivity for both the training and test sets.

When looking at the AUC, all approaches succeeded, with
values above 0.73 on the test set. However, there was a stronger
overfitting with the RF candidate (ie, a drop of 0.08 between
the training and test sets was observed). The other 2 models had
similar AUCs on the training and test sets: 0.77 for SVM and

0.74 for LR. This indicates that these models generalized the
problem better. Regarding the other evaluation metrics, the LR
candidate had a better sensitivity-specificity balance (ie,
sensitivity of 73.2% and specificity of 62.2% on the test set)
than the SVM (ie, sensitivity of 76.8% and specificity of 57.3%

J Med Internet Res 2025 | vol. 27 | e56946 | p. 9https://www.jmir.org/2025/1/e56946
(page number not for citation purposes)

Cabon et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


on the test set). In the end, the LR candidate was chosen for
further investigation as the RFM (ie, feature importance analysis
and combination with VisioCyt).

Impact of Clinical Features on Predictions
The individual importance of each feature for the prediction
with LR is reported in Table 4.

Table 4. Feature importance of the risk factor–based model.

Importance modelFeature

0.14age

0.05sex

0.03BMI_was_missing

0.03smoking_status_active

0.01smoking_status_former

0.01heart_failure

0.01weight

0.01BMI

<0.01COPD

<0.01stroke

<0.01smoking_status_never

<0.01professional_expo

<0.01diabetes

<0.01height

<0.01COPD_was_missing

<0.01hypertension_was_missing

<0.01heart_failure_was_missing

<0.01stroke_was_missing

<0.01professional_expo_was_missing

<0.01height_was_missing

<0.01smoking_status_active_was_missing

<0.01tumor_family_was_missing

<0.01smoking_status_former_was_missing

<0.01weight_was_missing

<0.01sex_was_missing

<0.01diabetes_was_missing

<0.01smoking_status_never_was_missing

<0.01tumor_family

<0.01hypertension

Unsurprisingly, age and sex were associated with the highest
importance values (0.14 and 0.05, respectively). Information
on patients’ smoking status, through smoking_status_active and
smoking_status_former features, had an impact on the
predictions. In addition, weight and BMI were taken into
consideration along with information on the presence or absence
of BMI features (BMI_was_missing). Finally, the impact of a
history of heart attacks (heart_failure) was also considered by

the model. All other features had negligible univariate
significance.

However, we could assume that the associations between these
variables are the important factor in the model rather than when
they are considered 1 by 1. Looking at 2-feature partial
dependence plots allows us to explore this hypothesis. The
combinations of age with features of low importance were
investigated (ie, COPD, stroke, professional_expo, diabetes,
tumor_family, and hypertension) and are presented in Figure 5.
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Figure 5. Partial dependence plots for 6 feature combinations of age with (A) chronic obstructive pulmonary disorder (COPD), (B) stroke, (C) professional
exposure, (D) diabetes, (E) tumor family, and (F) hypertension.

Patient age played an important role. Indeed, the highest
probabilities (in dark green) were observed in the oldest patients.
Higher risks (darker areas on the right than on the left of figures)
were associated with COPD, professional exposure, and a family
history of bladder cancer (tumor_family). This suggests that the
model successfully captured the effects associated with these
risk factors commonly identified in the literature. A history of
stroke and the presence of diabetes were also considered but

with the opposite effect than expected (absence increases risk).
No impact of the hypertension feature was observed here.

Bladder Cancer Prediction by Combining RFM and
VisioCyt

Building the Custom Method
The resulting scores for the VTD training set are reported in
Figure 6.

Figure 6. 2D plot of risk factor–based model (RFM) and VisioCyt scores on the VisioCyt 1 Trial Dataset (VTD) training set.

The first possible observation was that the detection of
high-grade cancer was broadly identifiable by the high values
of both scores. A VisioCyt score >0.6 indicates a high
probability of cancer. In fact, very few patients without bladder

cancer were in this zone of the scatter plot. Below this threshold,
detection of low-grade cancers seems more difficult using the
insight from VisioCyt alone. However, the RFM score was often
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higher than 0.6 for these patients. From these observations, the
custom combination rule was defined as follows:

Identification of the Best Modeling Approach
At first, the LR and DT models were subjected to 3-fold
cross-validation on the training set to identify the best
hyperparameters. LR with l1 regularization and a margin of
78.8 led to an AUC of 0.81 (SD 0.02) on the validation sets.

DT with a minimum sample leaf of 5, maximum depth of 2,
and a Gini criterion resulted in an AUC of 0.78 (SD 0.02). These
hyperparameters were used to retrain the 2 approaches on the
VTD training set.

The comparison between the 5 bladder cancer predictors is
illustrated in Figure 7. It compiles the AUCs and score
distributions according to bladder cancer severities of the
image-based model, the RFM, and the 3 strategies for score
combination: LR, DT, and custom. Initial scores obtained with
VisioCyt and RFM are reported on the left, while scores from
the combination using LR, DT, and custom lie on the right.
Values obtained on the training and test sets of VTD were
included to discuss the generalization of both approaches.

Figure 7. Distribution of the scores by bladder cancer grade for the VisioCyt 1 Trial Dataset (VTD) training set using (A) VisioCyt, (B) the risk
factor–based model (RFM), (C) logistic regression (LR), (D) decision tree (DT), and (E) a custom strategy and for the VTD test set using (F) VisioCyt,
(G) RFM, (H) LR, (I) DT, and (J) a custom strategy.

The first element to be noted is that combinations of the
image-based model and RFM resulted in better performances
in terms of AUC independent of the combination strategy (LR,
DT, or custom). Indeed, the AUCs were higher for the training
set (0.82 for LR and custom and 0.81 for DT vs 0.79 for
VisioCyt and 0.7 for RFM) and higher or equivalent on the test
set (0.86 for LR, 0.81 for DT, and 0.83 for custom vs 0.81 for
VisioCyt and RFM). In the light of these sole observations, it
was difficult to define the most relevant approach between LR,

DT, and custom. To explore this further, we proposed studying
boxplots of the VisioCyt, CBM, DT, and custom scores on the
VTD training and test sets.

The median values of the scores obtained with LR were distinct
for the 3 groups: (1) for patients without bladder cancer: 0.28
on the training set and 0.23 on the test set; (2) for patients with
low-grade cancer: 0.68 on the training set and 0.72 on the test
set; (3) for patients with high-grade cancer: 0.80 on the training
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set and 0.81 on the test set. The positive effect of this
combination was a slight reduction in the overlap of scores
between low-grade patients and those without cancer observed
with VisioCyt. However, the IQRs remained quite wide.

The median DT scores showed that DT scores were well
separated for patients without (0.30) and with bladder cancer
(0.84 for low-grade cancer and 0.78 for high-grade cancer). At
first glance, these scores appeared to be more discriminating
than the VisioCyt score alone. However, on the test set, IQRs
of the DT scores were null for no bladder cancer and equivalent
for low-grade and high-grade cancers, which does not allow for
continuity in the measurements. This behavior does not allow
for accurate interpretation. The doubt about this behavior was
confirmed by the fact that the DT scores obtained for these
patients during training resulted in a high IQR of 0.42, making
it difficult to be sure that patients with low-grade cancer will
be correctly associated with a high score. This edge effect also
arose because a tree depth of 2 was selected during
hyperparameter tuning, limiting the model’s capacity to create
more granular splits and accurately differentiate between
subgroups in the population.

Regarding the custom approach, the scores associated with
low-grade cancer (0.86 on the training set and 0.86 on the test

set) and high-grade cancer (0.95 on both sets) were higher than
the scores for patients without bladder cancer (0.47 on the
training set and 0.34 on the test set). The range of scores for
high-grade cancer was narrower with custom than with VisioCyt,
indicating that several scores were improved and increased.
Regarding patients with low-grade cancer, the median scores
were higher with custom (eg, 0.89 on the test set) than with
VisioCyt (eg, 0.83 on the test set). In addition, on the test and
training sets, the overlap between scores for no bladder cancer
patients and for patients with low-grade cancer was weaker than
for VisioCyt scores for no cancer. The latter scores were also
higher but remained distinct from those of the other 2 categories.

In light of these observations, the custom combination seems
to be the most effective approach. The 95% CIs for the output
scores were 0.33 to 0.52 for no bladder cancer, 0.68 to 0.83 for
low-grade cancer, and 0.8 to 0.91 for high-grade cancer in the
test set. The main advantage of the custom combination was
improved detection of patients with low-grade cancer and
increased certainty of the presence of high-grade cancer. One
patient in each category was randomly drawn from the test set
to illustrate what may be provided to clinician decision-making
(Figure 8).

Figure 8. Illustration of the scores given by VisioCyt, the risk factor–based model (RFM), and the custom model for 3 patients in the VisioCyt 1 Trial
Dataset (VTD) test set.

For patient 1, who did not have bladder cancer, the 2 initial
scores were quite equivalent: 28% for VisioCyt and 24% for
RFM. This also resulted in a low combined risk (28%). For
patient 2, who had low-grade bladder cancer, the Visiocyt score
was 57%, and the RFM score was 90%, giving a combined
score of 73%. For patient 3, who had high-grade bladder cancer,
the VisioCyt score was 88%, and the RFM score was 80%,
leading to a combined score of 88%. The behaviors of the scores
for these 3 patients were well in line with their actual diagnoses.

Although our goal was to create a decision support tool, not a
bladder cancer detector, we evaluated the sensitivity and
specificity by evaluating the thresholds of the scores obtained
with the custom approach. The optimal cut-off point, which
maximized the difference between true and false positive rates,
was identified through ROC curve analysis. This yielded a
threshold of 0.61 which results in 81% sensitivity and 73%
specificity on the training set and 76% sensitivity and 83%
specificity on the test set.

Discussion

Principal Findings
In this study, our team aimed to reuse large-scale clinical data
to improve the performance of an image-based model to predict
bladder cancer.

As a first step, an RFM was developed using clinical features
from 5422 patients whose data were extracted from the CDW.
Clinical features were selected because they were identified as
important risk factors in the literature. The best RFM, based on
LR, succeeded, with an AUC of 0.74, at classifying patients
with or without bladder cancer from clinical features. The most
predictive factors were age, sex, and smoking status (active or
former). We also saw that risk factors such as COPD,
professional exposure, and family history of bladder cancer,
when combined with age, impacted the model’s predictions.
This model is simple and easily interpretable, successfully
passing both internal (mean AUC 0.72, SD 0.02 during
cross-validation and 0.74 on the CDRD test set) and external
(AUC 0.81 on the VTD test set) validation tests.
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In the second step, several combinations of this model with an
image-based model were proposed. Classical approaches based
on LR and DT were proposed and supplemented by a custom
approach grounded in RFM and VisioCyt score interpretation.
We saw that all combinations gave a better AUC than RFM or
VisioCyt alone. However, to identify the best combination, we
stratified the performance by grade and chose the one that
improved low-grade bladder cancer detection. The custom
method (with an AUC of 0.83 on the VTD test set) provided
the best results by assigning a median score of 0.34 to patients
with no cancer, 0.86 to patients with low-grade cancer, and 0.95
to patients with high-grade cancer. Finally, we proposed
observing the VisioCyt, RFM, and custom scores for 3 randomly
selected patients, 1 from each of the 3 categories.

The resulting scores are supplementary and hold potential for
enhancing the decision-making process. Indeed, they offer
valuable insight into the patient's clinical profile, further
improving image-based tools. Although the AUC bears
resemblance to the figures observed in the studies conducted
by Sanghvi et al [14] and Awan et al [15] (ie, 0.80 and 0.81,
respectively), direct comparison was not feasible due to the
focus on patients with high-grade cancer in those studies, which
did not encompass an evaluation of performance for patients
with low-grade cancer. Nevertheless, it is essential to underscore
that the RFM is not designed for competitive purposes but rather
to serve as a complementary component to these tools, much
in the same manner as it did with VisioCyt. Combining RFM
with these models may result in an even more robust composite
score.

These results show the value of reusing data to propose better
bladder cancer scoring strategies. Indeed, the strength of learning
on thousands of patients has allowed us to propose a model that
enhances the scoring by an image-based model for more accurate
identification of patients with low-grade cancer.

Limitations
Some limitations of this work should be noted. First, the multiple
missing values during clinical feature extraction raise concerns
about the quality of the process. Multimedia Appendix 1
provides insight on the availability of each feature before
imputation. This is an inherent problem in data reuse, which is
not the primary purpose of the collection, because the
information is not collected by default. Indeed, we are uncertain
if these concepts are consistently present in all patient
documents, as some data are recorded subjectively by clinicians.
This is particularly true for variables such as COPD or a family
history of cancer, features for which our data collection was
limited in this study.

However, sometimes the information may still be hidden in
unstructured data, which we are unable to exploit today. We
used relatively straightforward extraction methods, possibly
resulting in incomplete information retrieval from the reports.
To address this, we plan to explore more advanced natural
language processing methods like bilateral long short-term
memory models or large language models [28], but their

implementation and evaluation will be challenging due to limited
annotations of the specific clinical concepts we sought to extract
and the criticality of the confidentiality of electronic health
records.

This last point could explain why we obtained feature
distributions in CDRD that were sometimes different from those
in VTD. However, they also may be explained by the fact that
CDRD is larger than VTD since it includes a broader population.
In fact, the percentage of patients with cancer was higher in
VTD (66%) than in CDRD (25%). Overall, both data sets had
the same characteristics, and most of the features were
significant for bladder cancer detection. Some differences were
nevertheless observed, and we will have to remain vigilant on
these variables (ie, never smoked, stroke). We also observed
the opposite behavior to what might be expected for diabetes
and stroke in the RFM. Hypertension, though recognized as
important in the literature, was not considered by the model.
These are elements that deserve to be studied in greater detail
once extraction methods are more robust.

Moreover, only 29 features were used, and they were often
binary. Obtaining more complete information by either adding
other clinical features (ie, biological measurement) or using a
finer scale (ie, the type of diabetes or the number of cigarettes
smoked per day) is an improvement not to be neglected and
may increase the specificity of RFM. The same strategy can be
used to refine the target. Indeed, it may be relevant to classify
patients according to grade rather than in a binary way.
Similarly, the proposed model was only based on features that
we found to be linked with bladder cancer in the literature, but
it will be interesting to add other comorbidities that may be
cofounding factors (such as having another type of cancer).

In addition, we observed that the custom approach worked best.
Within one of the defined score intervals, a simple average of
the 2 scores was performed. A weighting may be integrated to
fuse scores through an optimal fusion strategy [29].

Finally, although we carefully evaluated our models with regards
to our available data sets, a concern for generalization may be
observed later since only 1 data set with both cytology and
clinical data (VTD) was investigated. First, we expect to enrich
our RFM model by working on all the Hugo network’s health
data warehouses [24]. We also intend to deploy the combined
model on new data to verify its stability and ensure relevance
in routine care. Indeed, at the moment, the proposed combination
has not yet been tested and approved by clinicians. However,
it is important to consider that the collection of cytology images
associated with clinical data requires the implementation of new
acquisition protocols and that it will require time.

Conclusions
The results of this study are encouraging. This is the first time
that the contribution of a prediction model based on risk factors
identified in the literature and on the reuse of massive data has
been studied. We observed that it can reinforce recent tools such
as urine cytology–based models. Specifically, it may improve
low-grade bladder cancer detection.
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