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Abstract

Background: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although
the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection
remains challenging due to its insidious symptoms. Current diagnostic methods, including clinical assessments and laboratory
tests, frequently lack the speed and specificity needed for timely intervention, particularly in vulnerable populations such as older
adults, intensive care unit (ICU) patients, and those with compromised immune systems. While bacterial cultures remain vital,
their time-consuming nature and susceptibility to false negatives limit their effectiveness. Even promising existing machine
learning approaches are restricted by reliance on complex clinical factors that could delay results, underscoring the need for faster,
simpler, and more reliable diagnostic strategies.

Objective: This study introduces innovative machine learning models using complete blood count with differential (CBC+DIFF)
data—a routine, minimally invasive test that assesses immune response through blood cell measurements, critical for sepsis
identification. The primary objective was to implement this model within an artificial intelligence–clinical decision support system
(AI-CDSS) to enhance early sepsis detection and management in critical care settings.

Methods: This retrospective study at Tri-Service General Hospital (September to December 2023) analyzed 746 ICU patients
with suspected pneumonia-induced sepsis (supported by radiographic evidence and a SOFA score increase of ≥2 points), alongside
746 stable outpatients as controls. Sepsis infection sources were confirmed through positive sputum, blood cultures, or FilmArray
results. The dataset incorporated both basic hematological factors and advanced neutrophil characteristics (side scatter light
intensity, cytoplasmic complexity, and neutrophil-to-lymphocyte ratio), with data from September to November used for training
and data from December used for validation. Machine learning models, including light gradient boosting machine (LGBM),
random forest classifier, and gradient boosting classifier, were developed using CBC+DIFF data and were assessed using metrics
such as area under the curve, sensitivity, and specificity. The best-performing model was integrated into the AI-CDSS, with its
implementation supported through workshops and training sessions.

Results: Pathogen identification in ICU patients found 243 FilmArray-positive, 411 culture-positive, and 92 undetected cases,
yielding a final dataset of 654 (43.8%) sepsis cases out of 1492 total cases. The machine learning models demonstrated high
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predictive accuracy, with LGBM achieving the highest area under the curve (0.90), followed by the random forest classifier (0.89)
and gradient boosting classifier (0.88). The best-performing LGBM model was selected and integrated as the core of our AI-CDSS,
which was built on a web interface to facilitate rapid sepsis risk assessment using CBC+DIFF data.

Conclusions: This study demonstrates that by providing streamlined predictions using CBC+DIFF data without requiring
extensive clinical parameters, the AI-CDSS can be seamlessly integrated into clinical workflows, enhancing rapid, accurate
identification of sepsis and improving patient care and treatment timeliness.

(J Med Internet Res 2025;27:e56155) doi: 10.2196/56155
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Introduction

The World Health Organization classifies sepsis as a critical
global health issue, responsible for approximately 20% of all
deaths worldwide in 2017, with 48.9 million cases and 11
million fatalities [1,2]. Sepsis, a life-threatening condition
triggered by the body’s response to infection, leads to severe
consequences, such as septic shock, organ failure, and even
death if not promptly managed [3]. The mortality rate for sepsis
is alarmingly high at 32.2%, and it rises significantly to 38.5%
for those who develop septic shock, as reported in a
meta-analysis [4]. It predominantly affects high-risk groups
such as older adults, intensive care unit (ICU) patients, and
those with chronic conditions or compromised immune systems
[5]. The prevalence of sepsis, which is intensified by
drug-resistant infections, highlights the need for more effective
prevention and treatment methods [6] and rapid diagnostic
strategies [7], particularly in optimizing their implementation
in clinical settings [8]. The key to mitigating the heavy health
toll of sepsis lies in its efficient management and, crucially,
early detection, which significantly enhances the probability of
recovery and diminishes its overall detrimental health impact
[1,9].

According to the Surviving Sepsis Campaign, sepsis diagnosis
relies on the Sequential Organ Failure Assessment (SOFA)
score, which evaluates organ dysfunction resulting from
infection by assessing 6 components: respiratory function
through the ratio of partial pressure of oxygen in arterial blood
to the fraction of inspiratory oxygen concentration, coagulation
through the platelet count, liver function with bilirubin levels,
cardiovascular status through hypotension or the use of
vasopressors, central nervous system function using the Glasgow
Coma Scale, and renal function measured through creatinine
levels or urine output [3]. An increase of 2 or more points in
the SOFA score, combined with suspected infection, indicates
sepsis [3,10]. For rapid assessments outside of ICUs, the quick
SOFA criteria, altered mental state, respiratory rate of ≥22
breaths per minute, or low blood pressure (systolic blood
pressure≤100 mm Hg) are used for prompt evaluation, which
is critical for reducing sepsis-related health impacts [3,10].
Alongside identifying and addressing the source of infection or
removing suspected infected routes or devices, immediate
administration of broad-spectrum antimicrobial agents within
1 hour of detecting sepsis is crucial for effective management
[3,10,11]. Rapid intravenous crystalloid resuscitation and

ongoing fluid adjustments are essential to maintain circulatory
volume and ensure organ perfusion [3,10]. Vasopressors, such
as norepinephrine, should be applied if a mean arterial pressure
of at least 65 mm Hg cannot be maintained [3,10]. Dynamic
monitoring of stroke volume, pulse pressure variations, and
respiratory status is essential for effective treatment, enabling
precise, real-time adjustments to fluid therapy [3,10].

Traditional diagnostic methods such as clinical assessments,
laboratory evaluations, and patient histories, while foundational,
often lack the immediacy and specificity required to promptly
confirm infections [3,5,12]. The progression from infection to
sepsis can be insidious, with initial clinical manifestations that
are highly variable and influenced by both host and pathogen
factors [10]. This variability can be particularly detrimental, as
rapid identification within the first crucial hours is vital; delays
in diagnosis or the initiation of antibiotic treatment can lead to
rapid deterioration in the patient’s condition, significantly
worsening the prognosis [10]. While existing machine learning
models have sought to reduce these delays by expediting the
diagnosis of sepsis, many rely on complex clinical factors that
can still delay results or affect accuracy [13-15]. In addition,
blood cultures, though critical for identifying pathogens, could
take days and are prone to false negatives, further complicating
the timely management of sepsis [3,5,12]. This highlights a
critical need for simpler, more effective diagnostic approaches
that can be swiftly applied and have high reliability.

Addressing these challenges, our research introduces a novel
machine learning model centered on complete blood count with
differential (CBC+DIFF) data, a routine and minimally invasive
test that measures the levels of various blood cell types,
including white blood cells, red blood cells, and platelets. This
approach was selected for its broad clinical use, rapid analytical
time, and ability to evaluate immune response through white
blood cell differential analysis (such as neutrophils and
lymphocytes), which are crucial for early sepsis detection. This
makes it an accessible and cost-effective tool for diagnostics,
allowing us to simplify the diagnostic process without sacrificing
accuracy. The primary objective of this study was to develop
and implement an artificial intelligence–clinical decision support
system (AI-CDSS) that uses this model to provide rapid and
precise indications of sepsis. This system aims to facilitate
earlier intervention and potentially improve patient outcomes
across various medical settings, from outpatient departments to
emergency departments, with a particular focus on high-stakes
environments such as ICUs, where timely decisions are crucial.
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Methods

Study Focus and Data Collection
In our retrospective study conducted at the ICU of Tri-Service
General Hospital from September to December 2023, we
focused on cases suspected of pneumonia-induced sepsis, as
approved by the hospital’s institutional review board. The study
site, a major teaching hospital affiliated with the National
Defense Medical Center in Taipei, Taiwan, is a facility with
approximately 1800 beds, serving as the primary referral center
for 3 branch hospitals in northern Taiwan. This comprehensive
medical center provides advanced medical facilities and
multidisciplinary care to both civilian and military patients,
while its branch hospitals focus on chronic condition
management and refer complex acute cases, including sepsis,
to the main facility. This centralized health care network
structure enabled us to collect data from a diverse patient
population across various clinical settings. Our data were
exclusively derived from the electronic medical records of
patients who were either transferred from the general ward
owing to deteriorating conditions or directly admitted from the
emergency department owing to severe initial clinical
presentations. These records include admission notes, progress
notes, laboratory results, and radiographic findings. We included
only those patients whose records indicated pneumonia as the
suspected cause of sepsis, corroborated by radiographic evidence
consistent with pneumonia and an increase in the SOFA score
of 2 or more points, indicating significant organ dysfunction.
Specifically, we extracted and analyzed data on CBC+DIFF,
sputum cultures, blood cultures, and FilmArray analyses. These
selected data points formed our core dataset used to analyze the
diagnostic and management strategies for pneumonia-induced
sepsis in the ICU.

Control Group Selection
In addition to the groups directly involved in the sepsis
investigation, the study included a control group of 746
randomly selected outpatients from the same hospital, enrolled
during the same period. These patients typically visited the
hospital for routine follow-up appointments. On their
appointment days, they first stopped at our blood draw station,
where standard blood tests were performed. The results of these
tests were available to their physicians within 1 hour, ensuring
that the most current health data would be reviewed during their
visit. Data from these patients were obtained from the hospital’s
electronic medical records. These records confirmed that none
of these individuals required subsequent transfer to the
emergency department for acute issues, verifying their stable
health condition at the time of their visit. CBC+DIFF data were
collected specifically for this group.

Ethical Considerations
Our retrospective study was conducted following strict ethical
guidelines approved by the Tri-Service General Hospital’s
Institutional Review Board (approval C202305073). The study
adhered to the principles outlined in the Declaration of Helsinki
and relevant local ethical regulations. The study involved
analyzing anonymized patient data to ensure privacy and
confidentiality and was exempt from the requirement for patient

consent under local and international ethical regulations. No
compensation was provided to the patients as no direct
interaction was involved.

Sepsis Identification and Classification Criteria

Criteria for Confirming Sepsis
We initially considered all ICU patients with suspected sepsis.
Confirmation depended on positive sputum or blood cultures,
or FilmArray test results [16], in conjunction with clinical
symptoms and identified infection sources.

Exclusion Parameters
Cases lacking data or with poor sample quality (including blood
samples with volumes less than 10 mL, sputum samples less
than 1 mL, or showing contamination indicators such as
squamous cell count>10/low power field or mixed bacterial
flora), impacting the trustworthiness of culture reports, were
excluded.

Determination of Nonseptic Status
Patients with negative results in both culture and FilmArray
tests were classified as nonseptic.

Data Processing and Model Formulation

Data Organization
We meticulously organized the patient data using Python’s
Pandas framework (Python Software Foundation) to enhance
data handling and analysis efficiency.

Selection of Features
Our approach involved a comprehensive analysis of
hematological parameters from the CBC+DIFF data using the
Sysmex XN-9100 system, focusing on parameters relevant to
sepsis pathology. These included white blood cell count

(103/µL), red blood cell count (106/µL), hemoglobin (g/dL),
hematocrit (%), mean corpuscular volume (fL), mean
corpuscular hemoglobin (pg), mean corpuscular hemoglobin

concentration (g/dL), platelet count (103/µL), neutrophil
percentage (%), lymphocyte percentage (%), monocyte
percentage (%), eosinophil percentage (%), basophil percentage

(%), immature granulocyte count (103/µL), immature
granulocyte percentage (%), neutrophil side scatter light
intensity, neutrophil cytoplasmic complexity, and
neutrophil-to-lymphocyte ratio. Special attention was paid to
neutrophil side scatter light intensity and neutrophil cytoplasmic
complexity regarding their insights into neutrophil
characteristics. Heat map visualization aided in identifying the
most significant features of our predictive model and in
discarding less relevant features to optimize the dataset for
targeted analysis. In addition, we used Shapley additive
explanations (SHAP) values to interpret feature importance and
contribution to the model’s output. SHAP summary plots
generated with the TreeExplainer illustrated the impact of
individual features on sepsis risk predictions, enhancing our
understanding of the model’s decision-making process and
ensuring interpretability and reliability.
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Model Development and Evaluation

Data Segmentation
The dataset was divided, with data from September to November
forming the training set and data from December used for
validation.

Using Machine Learning Algorithms
We used a diverse range of machine learning models for the
extensive analysis of predictive capabilities. These included
logistic regression (LR), linear discriminant analysis, the random
forest classifier (RFC), the gradient boosting classifier (GBC),
the AdaBoost classifier, extreme gradient boosting (XGBoost),
and the light gradient boosting machine (LGBM). Each model
was selected to provide a comprehensive perspective on the
individual and collective abilities to accurately predict sepsis.

Assessment of Predictive Accuracy
These models were stringently tested using receiver operating
characteristic curves, the area under the curve (AUC),
sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), and the F1-score to measure the
accuracy of sepsis prediction. We also evaluated the models
using the Brier score and Brier skill score (BSS) to assess the
accuracy and calibration of probabilistic predictions. The Brier
score measures the mean squared difference between predicted
probabilities and actual outcomes, with lower scores indicating
better accuracy. The BSS compares the model’s performance
against a baseline model using LR, which provides a more
representative benchmark. Values above 0 for the BSS indicate
superior performance.

Clinical Utility Evaluation
To select the best-performing model for accurate sepsis
prediction, we validated the models using data collected in
December and evaluated key performance metrics, including
AUC, sensitivity, specificity, PPV, NPV, and F1-score. The
optimal model was saved using Python’s joblib package for
seamless implementation. For clinical deployment, we created
a web-based, AI-CDSS interface that allows clinicians to initiate
sepsis risk assessment by entering a patient ID. The system
retrieves laboratory values, sends them to a Python Flask server
for analysis, and then displays the calculated sepsis probability.
In addition, health care professionals received comprehensive
support through group workshops and online training sessions.
Feedback collected through surveys and interviews was used
to continuously refine the tool, enhancing its usability and
integration into clinical workflows.

Results

Patient Demographics and Analysis
Our study included 746 ICU patients and a control group of 746
randomly selected healthy outpatients, which served as a
normative benchmark. Among the ICU patients, 654 were
classified in the sepsis group based on confirmed pathogen
detection: 243 were identified through FilmArray tests and 411
through culture tests. The remaining 92 patients, initially
suspected of sepsis, were reclassified into the nonsepsis group
due to the absence of pathogen detection, suggesting alternative
etiologies for their symptoms. This classification ultimately
yielded a final dataset consisting of 654 (43.8%) sepsis cases
out of a total of 1492 cases (Figure 1). We compiled the
demographic and clinical characteristics, including the
CBC+DIFF parameters, for each group, as detailed in Table 1.
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Figure 1. Patient selection flowchart.
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Table 1. Demographic and hematological characteristics of study groups.

Control group (n=746)Nonsepsis group (n=92)Sepsis group (n=654)Parameter

55.52 (17.6)67.98 (18.17)69.04 (16.4)Age (years), mean (SD)

482/746 (64.61)57/92 (61.96)425/654 (64.98)Sex (male), n/N (%)

6.88 (3.67)11.34 (6.15)10.06 (5.84)WBCa (103/µL), mean (SD)

4.47 (0.77)3.35 (0.71)3.51 (0.82)RBCb (106/µL), mean (SD)

13.05 (2.14)9.89 (2.02)10.26 (2.14)Hbc (g/dL), mean (SD)

40.01 (6.04)30.15 (6.18)31.62 (6.45)HCTd (%), mean (SD)

90.21 (8.33)90.45 (6.72)90.76 (7.35)MCVe (fL), mean (SD)

29.42 (3.31)29.68 (2.3)29.46 (2.7)MCHf (pg), mean (SD)

32.56 (1.26)32.83 (1.39)32.45 (1.45)MCHCg (g/dL), mean (SD)

238.41 (87.26)196.45 (106.68)187.63 (110.81)Platelet count (103/µL), mean (SD)

60.92 (12.82)84.62 (9.99)78.45 (13.85)Neutrophil (%), mean (SD)

29.13 (11.86)9.31 (7.27)13.43 (10.9)Lymphocyte (%), mean (SD)

6.57 (2.52)5.08 (3.35)6.18 (4.43)Monocyte (%), mean (SD)

2.79 (2.7)0.76 (1.58)1.65 (4.07)Eosinophil (%), mean (SD)

0.6 (0.39)0.23 (0.19)0.3 (0.26)Basophil (%), mean (SD)

0.06 (0.2)0.25 (0.56)0.17 (0.34)Immature granulocytes (103/µL), mean (SD)

0.64 (1.4)1.78 (2.68)1.51 (2.41)Immature granulocytes (%), mean (SD)

47.03 (3.34)52.7 (5.41)52.38 (9.22)Neutrophil side scatter light intensity, mean (SD)

608.05 (79.31)681.86 (110.85)688.13 (184.1)Neutrophil cytoplasmic complexity, mean (SD)

3.19 (4.35)20.81 (51.03)13.76 (39.89)Neutrophil to lymphocyte ratio, mean (SD)

aWBC: white blood cell count.
bRBC: red blood cell count.
cHb: hemoglobin.
dHCT: hematocrit.
eMCV: mean corpuscular volume.
fMCH: mean corpuscular hemoglobin.
gMCHC: mean corpuscular hemoglobin concentration.

In Figure 1, a comprehensive flowchart illustrates the patient
selection process used in our study. It outlines the initial
screening of ICU patients with suspected pneumonia; the criteria
used to confirm sepsis (such as positive results from sputum or
blood cultures or FilmArray tests); and how patients were
categorized into groups of confirmed sepsis, suspected
nonsepsis, and outpatient control. In addition, this flowchart
delineates the number of patients at each stage and the reasons
for exclusion.

Data Visualization and Feature Analysis
For feature selection, we used heat maps to graphically represent
the correlation between various CBC+DIFF parameters and
sepsis, as shown in Figure 2. This visualization technique

enabled us to eliminate parameters, such as the mean corpuscular
hemoglobin concentration, mean corpuscular volume, and
monocyte percentage, which had minimal impact on our model’s
predictions. The SHAP summary plot, as shown in Figure S1
in Multimedia Appendix 1, further revealed that lymphocyte
percentage was the most influential feature, with high values
decreasing the sepsis risk. Neutrophil percentage and
neutrophil-to-lymphocyte ratio strongly correlated with an
increased sepsis risk. Features such as mean corpuscular
hemoglobin concentration, mean corpuscular volume, and
monocyte percentage also show the least impact, aligned with
the interpretation from Figure 2. This confirms the critical role
of specific blood parameters in sepsis detection and enhances
our model’s interpretability and clinical relevance.
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Figure 2. Correlation heat map of complete blood count with differential (CBC+DIFF) parameters and sepsis. BASO: basophil (%); EO: eosinophil

(%); HCT: hematocrit (%); HGB: hemoglobin (g/dL); IG#: immature granulocytes (103/µL); IG%: immature granulocytes (%); LYMPH: lymphocyte
(%); MCH: mean corpuscular hemoglobin (pg); MCHC: mean corpuscular hemoglobin concentration (g/dL); MCV: mean corpuscular volume (fL);
MONO: monocyte (%); NE-SFL: neutrophil side scatter light intensity; NEU: neutrophil (%); NE-WY: neutrophil cytoplasmic complexity; NLR:

neutrophil-to-lymphocyte ratio; PLT: platelet count (103/µL); RBC: red blood cell count (106/µL); WBC: white blood cell count (103/µL).

In Figure 2, the heat map depicts the correlations between
various CBC+DIFF parameters and the occurrence of sepsis.
This effectively shows the relevance of each parameter in
predicting sepsis and serves as a crucial tool for identifying and
selecting key features for the machine learning model. The color
gradients in the heat map correspond to the varying strengths
of these correlations.

Machine Learning Model Performance
Our analysis of the machine learning models for detecting sepsis
yielded significant results, as detailed in Table 2 and illustrated
in Figure 3. The GBC and RFC models exhibited superior
predictive performance, with the GBC model achieving a perfect
training AUC of 0.99 and a testing AUC of 0.88. The RFC
model demonstrated excellent reliability, with a training AUC
of 0.94 and a testing AUC of 0.89.
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Table 2. Overview of machine learning models’ performance.

BSSdBrier
Score

F1-scoreNPVcPPVbSpecificitySensitivityAccuracyTesting
AUC

Training

AUCa
Model

Ref0.150.770.850.740.800.800.800.850.86LRe

0.17%0.150.760.850.730.800.800.800.860.86LDAf

15.79%0.130.780.880.730.790.840.810.890.94RFCg

12.54%0.130.800.890.750.810.860.830.880.99GBCh

–47.29%0.220.740.830.720.800.770.790.850.90ABCi

14.33%0.130.770.860.730.800.810.800.880.97XGBoostj

10.38%0.130.800.890.760.820.850.830.900.99LGBMk

aAUC: area under the curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dBSS: Brier skill score.
eLR: logistic regression.
fLDA: linear discriminant analysis.
gRFC: random forest classifier.
hGBC: gradient boosting classifier.
iABC: AdaBoost classifier.
jXGBoost: extreme gradient boosting.
kLGBM: light gradient boosting machine.

Figure 3. Receiver operating characteristic curves of the evaluated machine learning models.
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Moreover, the LGBM model surpassed the others in terms of
testing accuracy, scoring a testing AUC of 0.90, highlighting
its analytical efficiency. The XGBoost model also showed
substantial potential for accurately predicting sepsis with an
AUC of 0.88.

The GBC model showed a high PPV of 0.75, indicating its
effectiveness in correctly identifying septic cases. Furthermore,
the RFC and LGBM models also demonstrated strong predictive
reliability with PPV of 0.73 and 0.76, respectively, reinforcing
their utility for sepsis detection.

Brier score and BSS evaluations reveal that the RFC model
achieved the best performance with the lowest Brier Score (0.13)
and highest BSS (15.79%), substantially outperforming the
baseline LR model with a Brier score of 0.15. The GBC, LGBM,
and XGBoost models also showed strong performance, each
with a Brier score of 0.13 and BSS values of 12.54%, 10.38%,
and 14.33%, respectively. In contrast, the AdaBoost classifier
had the highest Brier score (0.22) and a negative BSS (-47.29%),
indicating poorer performance. These findings highlight that
RFC, GBC, LGBM, and XGBoost models provide both accurate
and well-calibrated probabilistic estimates for sepsis, as detailed
in Table 2.

In Figure 3, the receiver operating characteristic curves for the
various machine learning models are assessed in the study,
including the LR, linear discriminant analysis, RFC, GBC,
AdaBoost classifier, XGBoost, and the LGBM models. These
curves graphically represent the true-positive rate versus the
false-positive rate for each model, elucidating their efficacy in
differentiating sepsis from nonsepsis cases. The AUC values

were also provided to gauge the predictive accuracy of each
model.

The receiver operating characteristic curves depicted in Figure
3 provide a direct comparison of the model performances. These
curves plot the true-positive rate against the false-positive rate
and identify the ensemble models (GBC, RFC, and LGBM) that
are particularly effective in differentiating between sepsis and
nonsepsis cases, making them valuable tools for ICU
diagnostics.

In summary, our findings suggest that the GBC, RFC, and
LGBM models, with their high AUC values, balanced
performance, and strong PPV scores, are robust tools for early
sepsis prediction and can substantially enhance the clinical
workflow by enabling timely and accurate sepsis interventions.

Clinical Application of the Predictive Model
Following a comprehensive evaluation, the LGBM model was
selected as the backbone of our AI-CDSS owing to its superior
performance on key metrics such as the AUC, sensitivity, and
specificity. A key advancement in clinical decision-making is
the development of a web-based interface for health care
professionals. This tool allows for the quick input of CBC data
to obtain an immediate assessment of the sepsis risk. A
screenshot of this user-friendly functional interface is shown in
Figure 4, demonstrating its applicability in real-time clinical
settings. This interface marks a significant step forward in
applying our machine learning model for swift and reliable
sepsis risk evaluation, thereby optimizing the diagnostic process
in ICU settings.

Figure 4. Interface demonstration for web-based sepsis risk assessment. A screenshot of the innovative web-based interface developed in this study.
This interface was designed to allow health care professionals to load complete blood count data and swiftly assess sepsis risk. AI-CDSS: artificial
intelligence–clinical decision support system.

Discussion

Principal Findings
Our research contributes to advancements in rapid sepsis
diagnostics through the development and validation of machine

learning models that use CBC+DIFF data. The encouraging
performance of the LGBM, GBC, and RFC models, as indicated
by their AUC values during the testing phases, suggests a
potential shift from traditional, more cumbersome diagnostic
methods to a swift, data-driven approach using routine blood
tests for the early detection of sepsis.
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Importance of Early Sepsis Detection and Advanced
Diagnostic Technologies
Early detection of sepsis is crucial to prevent progression to
severe sepsis and septic shock, improving patient outcomes and
reducing mortality. The mortality rate for septic shock (38.5%)
is higher than that for sepsis (32.2%) [4], highlighting the need
for early intervention and treatment for sepsis. Early intervention
can significantly reduce the length of hospitalization; lower
health care costs; and most importantly, improve the survival
rates of patients [1,9]. Enhanced diagnostic accuracy can be
achieved using new parameters that provide information on the
morphological and functional characteristics of leukocytes,
reflecting their activation and functional activity in response to
infections [17]. In our study, we use the Sysmex XN-9100
system, which uses fluorescence flow cytometry along with
blood-cell membrane surfactant reagents and fluorescent dyes
targeting nucleic acids and proteins. This advanced technology
provides detailed insights into the morphological characteristics
of neutrophils, lymphocytes, and monocytes, further enhancing
our ability to detect and understand sepsis at the cellular level.

Interpreting the Models’ Effectiveness
The strong efficacy of LGBM, GBC, and RFC models
underscores the potential of regular CBC+DIFF data as a
valuable yet underexplored tool for early sepsis detection. The
ability of these machine learning models to distinguish between
septic and nonseptic states is particularly critical in ICU settings,
where prompt diagnosis is of paramount importance [18], as
multiple studies endeavor to detect early sepsis using machine
learning models [15]. To further understand the contribution of
each feature, we used heat map visualizations and SHAP values.
The heat map analysis highlighted significant features such as
neutrophil percentage, lymphocyte percentage, and
neutrophil-to-lymphocyte ratio from the CBC+DIFF data, and
SHAP values offered an additional perspective on how each
feature influenced the model’s predictions, enhancing clinical
interpretability. In addition to the AUC, we evaluated the models
using other metrics, including accuracy, sensitivity, specificity,
PPV, NPV, and the F1-score. The LGBM model outperformed
the RFC and GBC models in these metrics, showcasing its
superior overall performance. Furthermore, we assessed the
models using the Brier score and BSS. The Brier score for the
RFC, GBC, and LGBM models was 0.13, indicating similar
accuracy among these models. However, the BSS showed that
the RFC model had a slightly higher value of 15.79%, compared
to the GBC model’s 12.54% and the LGBM model’s 10.38%,
reflecting better performance relative to the baseline LR model,
despite the LGBM model outperforming the RFC model in other
metrics. Therefore, the LGBM model was integrated into our
AI-CDSS backbone core owing to its overall performance.

Comparison to Previous Work
Our sepsis prediction model based on CBC+DIFF data provides
a streamlined and efficient approach compared to existing
models that require numerous physiological and clinical
parameters from laboratory profiles, electronic health records,
vital signs, and monitoring devices [13,14,19]. Unlike these
complex models, our approach relies exclusively on readily
available hematological data, making it highly accessible across

various clinical settings, including non-ICU environments.
Despite its simplicity, our model achieves an AUC of 0.90,
surpassing the performance of more complex models that report
AUCs ranging from 0.83 to 0.87, demonstrating that
comprehensive predictive capability can be achieved using basic
hematological parameters alone [13,14,19]. The model’s
simplicity offers significant advantages in terms of speed,
cost-efficiency, and ease of implementation, particularly in
settings where extensive data collection is challenging. By
enabling rapid risk assessment through routine blood work, our
model provides relative real-time decision support that facilitates
efficient patient management across diverse health care settings,
from emergency departments to resource-constrained
environments.

Workflow Integration
Currently, our AI-CDSS web system is deployed on our
hospital’s internal server after validation. Physicians can log in
to the system with their account, input the patient’s medical
record number, and select the relevant CBC+DIFF test values
for analysis. The system analyzes the test data and provides an
estimated probability of sepsis. This deployment allows for
seamless integration into daily clinical workflows, enabling
quick and accurate assessments that support timely and informed
clinical decisions. Compared to traditional methods, even when
physicians use the SOFA score to assess sepsis, they typically
have to wait approximately 3 days to confirm a positive bacterial
culture from blood or sputum samples. In contrast, our new
AI-CDSS system can provide an earlier indication of infection
within minutes, allowing physicians to confirm sepsis sooner
and intervene earlier, thereby improving patient outcomes.

Clinical Relevance and Implementation
Considering the complex interplay of sepsis-related mortality
and underlying diseases [20], the development of more precise
diagnostic tools, such as our machine learning models, is
essential to improve the early detection and management of
sepsis in ICU settings. Our research, centered on the LGBM,
GBC, and RFC, aligns with the broader trend of integrating
diverse machine learning models in health care [21], reflecting
the growing significance of artificial intelligence in enhancing
sepsis diagnostics across various hospital settings [15].
Incorporating these models into ICU practices aligns with the
emerging trends in health care [7] and could show potential to
transform sepsis diagnostics, offering a rapid and precise
alternative to traditional diagnostic approaches with only a
minimally invasive blood draw required. The models’ adoption
is expected to enable early therapeutic intervention, thereby
enhancing patient outcomes [15]. The creation of a user-friendly,
web-based interface for health care professionals exemplifies
the practicality of these models, facilitating real-time clinical
decision-making and improving patient care.

In resource-limited countries, our study presents a potential
innovation for sepsis management using machine learning for
CBC+DIFF analysis, providing a rapid, effective alternative to
traditional methods, essential where resource constraints cause
life-threatening diagnostic delays [22]. Using routine blood
tests, health care providers in these regions can rapidly identify
sepsis risk, enabling quicker intervention and potentially
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reducing the heavy dependence on limited antibiotics [23]. This
method could assist in areas with limited access to advanced
diagnostic facilities. Our study highlights the potential global
impact of artificial intelligence–enhanced blood analysis,
offering a promising approach to enhance sepsis diagnosis and
improving patient outcomes in under-resourced settings.

Limitations
Although our findings are encouraging, there are some
limitations to our study. The retrospective nature of data
collection may introduce selection bias, and reliance on a
singular data source (CBC+DIFF) could restrict the breadth of
the models. In addition, this study was conducted at a single
center, although supported by branches that refer to sepsis cases
and focused exclusively on pneumonia-induced sepsis, which
may limit the generalizability of the findings to other causes of
sepsis. Although our results are promising, they are preliminary
and require further confirmation through prospective studies in
various clinical settings to verify their robustness and
applicability.

Future Research
We recommend conducting extensive validation studies to
confirm each model’s generalizability and performing

cost-benefit analyses to evaluate their impact on health care
systems. As these models are integrated into clinical practice,
it is essential to provide comprehensive training for health care
professionals to ensure the optimal utilization of web-based
tools. Expanding the model data inputs to encompass more
patient-specific factors could further improve the accuracy of
sepsis prediction.

Conclusions
In summary, our study contributes to advancements in sepsis
diagnostics by exploring the use of machine learning to interpret
CBC+DIFF data for enhanced sepsis diagnosis. This innovative
approach may represent a significant shift in critical care and
has the potential to impact diagnostics in various health care
settings, including outpatient and emergency departments. By
aiming to enable faster and more precise detection of sepsis,
these models could significantly contribute to global health care
efforts against sepsis, potentially aiding in improvements in
patient care and outcomes. This approach may offer benefits in
resource-limited countries, where diagnosing sepsis with only
CBC+DIFF data provides a crucial alternative in scenarios
where traditional diagnostic means are lacking.
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