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Abstract

Background: Sepsis is an organ dysfunction caused by a dysregulated host response to infection. Early detection is fundamental
to improving the patient outcome. Laboratory medicine can play a crucial role by providing biomarkers whose alteration can be
detected before the onset of clinical signs and symptoms. In particular, the relevance of monocyte distribution width (MDW) as
a sepsis biomarker has emerged in the previous decade. However, despite encouraging results, MDW has poor sensitivity and
positive predictive value when compared to other biomarkers.

Objective: This study aims to investigate the use of machine learning (ML) to overcome the limitations mentioned earlier by
combining different parameters and therefore improving sepsis detection. However, making ML models function in clinical
practice may be problematic, as their performance may suffer when deployed in contexts other than the research environment.
In fact, even widely used commercially available models have been demonstrated to generalize poorly in out-of-distribution
scenarios.

Methods: In this multicentric study, we developed ML models whose intended use is the early detection of sepsis on the basis
of MDW and complete blood count parameters. In total, data from 6 patient cohorts (encompassing 5344 patients) collected at
5 different Italian hospitals were used to train and externally validate ML models. The models were trained on a patient cohort
encompassing patients enrolled at the emergency department, and it was externally validated on 5 different cohorts encompassing
patients enrolled at both the emergency department and the intensive care unit. The cohorts were selected to exhibit a variety of
data distribution shifts compared to the training set, including label, covariate, and missing data shifts, enabling a conservative
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validation of the developed models. To improve generalizability and robustness to different types of distribution shifts, the
developed ML models combine traditional methodologies with advanced techniques inspired by controllable artificial intelligence
(AI), namely cautious classification, which gives the ML models the ability to abstain from making predictions, and explainable
AI, which provides health operators with useful information about the models’ functioning.

Results: The developed models achieved good performance on the internal validation (area under the receiver operating
characteristic curve between 0.91 and 0.98), as well as consistent generalization performance across the external validation
datasets (area under the receiver operating characteristic curve between 0.75 and 0.95), outperforming baseline biomarkers and
state-of-the-art ML models for sepsis detection. Controllable AI techniques were further able to improve performance and were
used to derive an interpretable set of diagnostic rules.

Conclusions: Our findings demonstrate how controllable AI approaches based on complete blood count and MDW may be
used for the early detection of sepsis while also demonstrating how the proposed methodology can be used to develop ML models
that are more resistant to different types of data distribution shifts.

(J Med Internet Res 2025;27:e55492) doi: 10.2196/55492
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Introduction

Sepsis is a life-threatening organ dysfunction caused by a
dysregulated host response to infection [1]. The progression
from infection to sepsis is influenced by both host and pathogen
features and, accordingly, is characterized by a high
interindividual variability. Sepsis represents a medical
emergency, with a strong time dependency, especially for septic
shock [2,3]. Therefore, early detection is fundamental to
improving the patient outcome by promptly starting treatment.
However, sepsis, especially in the early stage, may be
characterized by nonspecific signs and symptoms, mainly when
diagnosis of infection is still uncertain. Thus, its early
recognition is challenging, particularly in the emergency
department (ED) and outside the intensive care unit (ICU), due
to the lack of data needed to apply the Sepsis-3 criteria (ie,
assessment of organ dysfunction due to Sequential Organ Failure
Assessment Score [SOFA], plus probable or certain infection).
Therefore, reliable tools to screen sepsis are strongly sought
after. The UK National Screening Committee underlines that
the aim of screening is to propose a test to a population who
“do not necessarily perceive that they are at risk of, or are
already affected by, a disease or its complications” [4]. In the
scenario of sepsis screening, laboratory medicine could have a
crucial role by providing biomarkers mirroring the
pathophysiological mechanisms underpinning sepsis and whose
alteration could be detected before the onset of clinical signs
and symptoms [5].

To date, hundreds of biomarkers have been investigated, but
several limitations have hampered the translation from research
to clinical practice, such as cost and the request for additional
blood samples [6]. Intensive scientific research is ongoing to
discover accurate, affordable, easy-to-measure, and rapidly
available biomarkers for guiding clinicians to identify patients
at higher risk of sepsis, allowing close monitoring or early
treatment.

In clinical practice, C-reactive protein (CRP) and procalcitonin
are the most used sepsis biomarkers. However, they are not
specific to sepsis, and their levels can increase in several clinical,
noninfectious conditions. In addition, they are usually ordered
when sepsis is clinically suspected, leading to a diagnostic delay
[7] and making them unsuitable as a screening tool. The ideal
biomarker for sepsis screening should have the following
characteristics: (1) easy to measure, (2) high sensitivity and
negative predictive value for sepsis, (3) low turn-around time,
and (4) always available to clinicians, especially when sepsis
is not (yet) suspected. Complete blood count (CBC) parameters
fulfill all of these features [8]. Indeed, CBC is the first-level
laboratory test most ordered in all clinical wards, from ED to
ICU. It is easy to perform, cheap, and provides important clinical
information on the health status. Beyond the classic CBC
parameters, the new generation of hemocytometers provides
cell population data, which reflect the morphological and
functional characteristics of neutrophils, lymphocytes, and
monocytes. In the last decade, the role for monocyte distribution
width (MDW) as a sepsis biomarker has emerged [9]. MDW
reflects the dispersion around the mean monocyte volume. It is
automatically calculated by the last generation DxH hematology
analyzer (Beckman Coulter, Inc) based on volume, conductivity,
and scattering technology and is provided together with the
basic CBC parameters. Noteworthy, MDW received approval
from the Food and Drug Administration and European
Community In-Vitro Diagnostic Medical Device as an early
sepsis indicator in adult patients in the ED. MDW has great
potential to be used in clinical practice because it is timely and
fruitfully measured without further samples, additional costs,
or even a different request from clinicians. Thus, it represents
a cost-effective tool for early sepsis screening. This is an
important feature in the health care of the third millennium. To
date, several authors have shown good performance of MDW
for early diagnosis of patients with sepsis in different clinical
wards, especially the ED and ICU [10-17]. All studies have
shown excellent specificity and negative predictive value (NPV)
but suboptimal sensitivity and positive predictive value (PPV)
[9]. Thus, while individual CBC biomarkers and MDW represent
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ideal candidates for sepsis screening in general settings, their
performance should be improved to be applied for sepsis
screening.

Machine learning (ML) techniques offer the promise to
potentially offset the limitations mentioned earlier by combining
different parameters, beyond the capabilities of rule-based
systems and humans, and increasing the performance of single
laboratory parameters [18,19]. Indeed, in recent years, ML
methods have been increasingly adopted in health care settings
[20], including sepsis screening and prediction [21-24].
However, as also noted in the study by Shashikumar et al [25],
most existing ML sepsis models have been developed and
validated on data from a single hospital only, with no external
validation. Thus, their robustness has not been proven, and their
performance may degrade when applied in settings that differ
from the one in which they are developed, due to either data or
missingness shifts [26], limiting their generalizability and
adoption in clinical practice. Indeed, widely applied
commercially available models (eg, Epic) have been shown to
be severely impacted by the aforementioned issues [27-30].
This is especially true for models based on laboratory
parameters, wherein state-of-the-art models have not been
externally validated [31]. Most notably, no previous work, to
the best of our knowledge, combined the use of ML methods
with MDW [32].

According to these premises, the aim of this study is to develop
and externally validate ML models whose intended use is the
early detection and screening of sepsis on the basis of CBC
parameters, including MDW and other clinical and laboratory
features commonly available in all clinical laboratories. In this
multicentric study we used CBC data from an Italian hospital
ED (training set) to develop ML models, by adopting both
traditional ML models as well as more advanced techniques
inspired by controllable artificial intelligence (AI) [33] (ie,
cautious classification and explainable AI) that were
successively validated by data from multiple settings
(encompassing both ED and ICU settings, as well as different
forms of data shifts) and different Italian hospitals, to evaluate
their robustness and generalization.

Methods

Overview
Herein, we briefly summarize the adopted methodology, which
is better detailed in the following sections. The reporting follows
the Checklist for Assessment of Medical AI checklist [34] and
the “Guidelines for Developing and Reporting Machine Learning
Predictive Models in Biomedical Research” [35].

The study was conducted as a multicentric, retrospective study
aimed at developing ML models for the classification problem
of sepsis detection from clinical laboratory parameters. To this
aim, ML models were trained on data from 1 patient cohort
(Palermo, Emergency Department [PA-ED], coming from
Palermo, Italy) and evaluated on 5 different patient cohorts
(Palermo, Intensive Care Unit [PA-ICU], Padova, Intensive
Care Unit [PD-ICU], Udine, Emergency Department [UD-ED],
Arezzo, Emergency Department [AR-ED], and Ospedale

Galeazzi Sant’Ambrogio, Intensive Care Unit [OGSA-ICU],
coming from 5 different hospitals in Italy, respectively from
Palermo, Padova, Udine, Arezzo, and Milano [refer to Dataset
Collection, Description, and Processing section]), encompassing
5344 records for as many single patients. We decided to consider
5 different external validation cohorts to comprehensively assess
the generalizability of the developed models, as well as their
robustness to multiple forms of data variation (refer to the
subsequent paragraphs). The 6 patient cohorts were collected
at 5 different hospitals: 3 cohorts (PA-ED, UD-ED, and AR-ED)
were from the ED setting, while the remaining 3 (PA-ICU,
PD-ICU, and OGSA-ICU) were from the ICU setting. The
PA-ED, PA-ICU, PD-ICU, UD-ED, and AR-ED datasets
encompassed 19 features, including the following: demographic
information (age and sex), the MDW, other laboratory test
results (ie, the CBC, including the differential, and the CRP),
together with a derived feature (the neutrophils-lymphocytes
ratio). The OGSA-ICU dataset encompassed the same features
as in the other cohorts, except for the MDW feature that was
missing. The PA-ED cohort was used for training,
hyperparameter optimization, and internal validation, while all
the other cohorts were used only for external validation. The 5
external datasets allowed for the validation of the robustness of
the developed models under different shift settings, including
covariate shifts due to different clinical settings (ICU vs ED),
label shifts (sepsis-2 vs sepsis-3), missingness shifts [26], and
instantial variation [36]. In particular, the AR-ED cohort was
used to evaluate the robustness of the developed models in a
conservative scenario of label shift (refer to the Dataset
Collection, Description, and Processing section), as the
population of this dataset only encompassed patients who
exhibited clinical signs for suspected sepsis. By contrast, the
OGSA-ICU cohort was used to test the performance and
robustness of non-MDW systems (that integrate the ML models
described earlier) that can also be applied in settings that lack
the MDW parameter; indeed, the laboratory parameters for the
OGSA-ICU dataset did not contain the MDW feature as they
were collected using a Sysmex (rather than the one by
Beckmann Coulter, Inc) analyzer. Thus, this cohort was
characterized by missingness shift [26] (ie, differences in the
distribution of missing values) and differing analytical variation
[36] (refer to the Non-MDW Systems Validation section).
Notably, no dataset pooling was performed to ensure that the
validation sets were entirely blind and guarantee an unbiased
estimate of performance and generalizability; hence, each dataset
was considered as an entirely separate cohort.

The PA-ED was split into 2 datasets according to a 75/25 split:
the largest 75% set was used for training and hyperparameter
optimization in cross-validation, while the remaining 25% set
was used for internal validation. The split was stratified to
preserve the proportion of sepsis and no sepsis cases in the 2
splits of the dataset. Further details on the models’ design and
development can be found in the Methods section. We
considered 5 different classes of models, namely logistic
regression (LR), support vector machine (SVM), random forest
(RF), extreme gradient boosting (XGB), and decision trees
(DTs). The performance of the models was evaluated according
to different criteria, namely: area under the receiver operating
characteristic curve (AUC), sensitivity, specificity, PPV, NPV,
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and average PPV (A-PPV; as measures of discrimination power),
Brier score (as a measure of calibration), and the standardized
net benefit (sNB, as a measure of utility). Following the
state-of-the-art development of medical decision support models
for sepsis diagnosis [25], and as a way to increase
generalizability and reduce overconfident predictions according
to the tenets of controllable AI [33], we also considered cautious
classifiers based on the trained models (refer to Cautious
Classification Methods section). Such models can abstain from
labeling instances, with the aim of implementing a trade-off
between coverage (labels for which a prediction is available)
and performance metrics (in particular, sensitivity and PPV).
The cautious classifiers were evaluated in terms of their
coverage, as well as with respect to the high-confidence (HC)
metrics, which simply consider the metrics defined earlier only
on the subset of the nonabstained-upon cases.

Dataset Collection, Description, and Processing
The PA-ED data refer to patients who were admitted to the ED
of the University Hospital “Policlinico Paolo Giaccone” between
September, 4, 2019, and November 30, 2019, as described in
the study by Agnello [37]. The inclusion criteria were adult
(aged ≥18 years) patients presenting to the ED, and whose initial
evaluation included a CBC. Exclusion criteria were (1) aged
<18 years, (2) incomplete data collection, (3) discharge from
the ED within 2 hours from the ED presentation, (4) readmission
to the ED within 12 hours, (5) inadequate blood samples (eg,
analyzed >4 hours after collection), (6) failure to determine the
MDW parameter, and (7) diagnosis of a hematological disorder.
The sepsis diagnosis was made according to sepsis-2 criteria
[38]. Demographical, clinical, and laboratory data of patients
were recorded from the electronic health records of the hospital.
Laboratory parameters were measured upon ED admission.
MDW and CBC parameters were measured on blood samples
collected in the EDTA-K3 tube by a UniCel DxH 900
hematology analyzer (Beckman Coulter, Inc) within 2 hours of
collection, as recommended by the manufacturer, after the
laboratory analysis ordered by clinicians was performed. CRP
and procalcitonin were measured on serum by a fully automated
platform (Cobas 8000, Roche Diagnostics).

The PD-ICU data refer to patients who were admitted to the
ICU of the University Hospital of Padova and were collected
between January 13, 2020 and April 8, 2020. The inclusion
criteria were adult (aged >18 years) patients presenting to the
ICU, who remained hospitalized for at least 24 hours, enrolled
no more than once, with a CBC and differential testing
performed at presentation and over the entire course of the
length of stay, as part of standard medical care, and procalcitonin
or CRP tests ordered at the same time. Exclusion criteria were
an incomplete data collection, a failure to determine MDW at
least once, and patients with hematological disorders. Sepsis
diagnosis was made according to the sepsis-3 criteria, using the
SOFA score. Septic shock was recognized in the cases with
hypotension requiring vasopressors and with an elevated serum
lactate (>2 mmol/L).

The PA-ICU data refer to patients who were admitted to the
ICU of the University Hospital “P. Giaccone” between
September 10, 2019, and March 19, 2020, as previously

described in the study by Agnello et al [8]. The inclusion criteria
were all consecutive adult (aged ≥18 years) patients who were
admitted to the ICU. Exclusion criteria were (1) individuals
aged <18 years; (2) incomplete data collection; (3) failure to
determine the MDW parameter; and (4) underlying conditions
potentially associated with deregulation of the immune system,
including AIDS, organ or bone marrow transplantation, and
hematologic diseases. Sepsis diagnosis was made according to
sepsis-3 consensus criteria [1]. Laboratory parameters were
measured upon ICU admission. MDW and CBC parameters
were measured on blood samples collected in the EDTA-K3
tube by a UniCel DxH 900 hematology analyzer (Beckman
Coulter, Inc) within 2 hours of collection, as recommended by
the manufacturer, after the laboratory analysis ordered by
clinicians was performed. CRP and procalcitonin were measured
on serum by a fully automated platform (Cobas 8000, Roche
Diagnostics).

The AR-ED data refer to patients who were admitted in the ED
of the San Donato Hospital and were collected between July 5,
2019, and April 17, 2020. The inclusion criteria were all
consecutive adult (aged ≥18 years) patients who were admitted
to the ED and had a clinical presentation of suspected sepsis (at
least 2 of the following signs: SOFA≥2, body temperature ≥38
°C or ≤36 °C, infection, respiratory rate ≥20 beats/min, heart
rate ≥90 beats/min, or altered mental status). Sepsis diagnosis
was made according to the sepsis-3 criteria. MDW and CBC
parameters were measured by a UniCel DxH 900 hematology
analyzer (Beckman Coulter, Inc) within 2 hours of collection
and directly extracted from the analyzer. CRP was measured
by a Cobas 8000 instrument (Roche Diagnostics) and manually
extracted from the hospital’s laboratory information system
(LIS).

The OGSA-ICU data refer to patients who were admitted to the
ICU of the Istituto di Ricovero e Cura a Carattere Scientifico
Ospedale Galeazzi Sant’Ambrogio between January 1, 2023
and April 31, 2023. The inclusion criteria were adult (aged ≥18
years) patients who were hospitalized in the ICU for at least 2
days (to exclude patients who were temporarily admitted to the
ICU because of specific intervention protocols) and for whom
blood culture and procalcitonin were requested. All
hematological parameters were measured by a Sysmex XN2000
blood analyzer and manually extracted from the hospital’s LIS
(BeSimpleLIS, Siemens SpA), using QlikView (Qlik, Inc). CRP
and procalcitonin were measured by the Atellica IM Analyzer
(Siemens) and manually extracted from the hospital’s LIS using
QlikView.

The UD-ED data refer to patients who were admitted to the ED
of the University Hospital of Udine between November 1, 2019,
and December 31, 2019. The inclusion criteria were adult (aged
≥18 years) patients who were enrolled in the ED and had a CBC
exam (with differential) requested as part of the standard
diagnostic pathway. Sepsis diagnosis was made according to
the sepsis-2 criteria. MDW and CBC parameters were measured
by a UniCel DxH 900 hematology analyzer (Beckman Coulter,
Inc), and directly extracted from the analyzer. CRP was
measured by the Cobas C analyzer (Roche Diagnostics) and
manually extracted from the hospital’s LIS.
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Model Design and Development
We considered 5 different classes of statistical machine learning
models, namely LR, SVM, RF, XGB, and DTs. These model
classes were selected as they exhibited state-of-the-art in-sample
[39] and generalization [40] performance on diagnostic tasks
from laboratory data in previous work; particularly, we decided
to not focus on deep learning models due to several limitations
of these latter models on tabular data tasks [41-43], such as
requiring extensive hyperparameter optimization and having
subpar generalization performance.

The ML models were implemented in Python, using the
scikit-learn library (version 1.0.2; Python Software Foundation).
Particularly, all models were implemented as 3-step pipelines
encompassing a feature scaling step (the scaling technique was
selected as a hyperparameter during model training), a feature
selection step (using the recursive feature elimination method
with an LR model for feature scoring), and the classification
step. The full set of hyperparameters, for all the evaluated
models, is available in Table S1 in Multimedia Appendix 1.
Particularly, except for model-specific hyperparameters, the set
of common hyperparameters encompassed the scaling method
to be used, the number of features to be selected, and class
weights to manage label imbalance.

Model training, hyperparameter selection, and internal model
validation were performed on the PA-ED dataset. Specifically,
model training and hyperparameter selection were performed
on the training fold of the dataset (which encompassed 75% of
the total number of cases), while internal validation was
performed on the test fold of the same dataset (which
encompassed 25% of the total number of cases). Hyperparameter
selection was performed by means of randomized search, with
a budget of 1000 evaluations, in a 5-fold stratified
cross-validation design (RandomizedSearchCV). The training
set was split into 5 folds (each containing 20% of the cases in
the training data and 15% of the total number of cases in the
PA-ED dataset). Following this, for each of the 1000 randomized
search evaluations, a random set of hyperparameters was
selected and then the models with the specified hyperparameter
values were evaluated by means of a 5-fold cross-validation
procedure by which they were trained on 4 of the
cross-validation folds and evaluated on the remaining fold.
Stratified cross-validation was used to preserve the proportion
of sepsis and no sepsis cases across all folds. Each evaluated
hyperparameter configuration was scored by the average AUC
score across the 5 cross-validation folds. For each model class,
we selected the hyperparameter configuration that had the
highest average AUC score.

After hyperparameter selection, the models were retrained on
the entire training set and evaluated on the hold-out test set
according to different evaluation criteria, namely sensitivity,
specificity, PPV, NPV, AUC, A-PPV, Brier score, and sNB
(with a threshold equal to 0.5). On the basis of the internal test
set, we compared the developed ML models with 4 different
baselines: a fixed MDW threshold (threshold value 23.5 [37]),
a fixed CRP threshold (threshold value 80 [44]), a fixed Sepsis
Index threshold (threshold value 1 [45]), and the state-of-the-art
SVM model (MindraySVM) for sepsis diagnosis based on

laboratory biomarkers proposed in the study by Aguirre and
Urrechaga [31]. In regard to the latter model, due to the different
laboratory instrumentation used in our study, we trained an
SVM model using the hyperparameter settings specified in the
study by Aguirre and Urrechaga [31] on the same training data
used for our models. We also compared the developed models
with the state-of-the-art Conformal Multidimensional Prediction
of Sepsis Risk (COMPOSER) model proposed in the study by
Shashikumar et al [25].

External Validation
The developed ML models were subsequently externally
validated, after retraining on the entire PA-ED dataset, on the
4 external validation cohorts (AR-ED, PA-ICU, PD-ICU, and
UD-ED), in terms of the same evaluation criteria used for
internal validation. As described earlier, the considered external
validation allowed us to evaluate the generalizability of the
developed ML models in a variety of settings that differed in
terms of hospital (4 different hospitals across different regions
in Italy), reference population (ED vs ICU), as well as diagnostic
criteria (sepsis-2 vs sepsis-3). Therefore, we decided to keep
the external validation datasets separate from the internal
training set (PA-ED) and did not perform any data pooling. In
particular, the choice to consider 4 external validation datasets
(as well as an additional external dataset for validation in
settings with missing MDW) enabled us to comprehensively
assess the robustness of the developed models under a varied
selection of distribution shifts. We also evaluated the similarity
between the PA-ED cohort and the 5 external validation cohorts,
using the degree of correspondence metric (ψ) proposed in the
study by Cabitza et al [46]. The ψ metric is a similarity measure
used to compare 2 datasets and provides a P value for the
hypothesis test that 2 datasets come from the same distribution.
The ψ metric has been used as a way to evaluate the robustness
of ML models in the context of out-of-domain generalization
[40] by assessing the ability of ML models to report good
performance also on datasets with low ψ value. We used the
implementation of the ψ metric provided [47]. In the paper we
used the ψ metric to assess the similarity between the training
set (PA-ED) and the external validation cohorts, as well as how
the performance of the models varied with respect to the value
of ψ.

Validation of Non-MDW Systems
Because the MDW feature was not available in the OGSA-ICU
cohort (missingness rate: 100%), we developed non-MDW ML
systems for use in settings that lack the MDW parameter. These
systems encompassed the ML models trained on the PA-ED
cohort, without any retraining, as well as a preprocessing
imputation model used to fill in the missing MDW values. The
imputation model was derived from the data from the other
cohorts (PA-ED, AR-ED, PA-ICU, PD-ICU, and UD-ED),
which were used as a training set. The MDW was considered
the target feature, while all the other features were used as
predictors. The imputation model was an RF regression model
with default hyperparameters and was implemented in Python
using the scikit-learn library (version 1.0.2). To evaluate the
goodness of fit of the imputation model, the training set was
split into folds according to a 75/25 split: the 75% was used to
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fit the imputation model, while the remaining 25% was used
for model evaluation. The performance of the imputation model

was assessed by means of the adjusted R2 score computed
between the predicted and true MDW values. After assessment,
the imputation model was retrained on the entire training dataset
and applied as a preprocessing step to the OGSA-ICU dataset
to impute the MDW values for subsequent analysis.

The non-MDW systems were then evaluated by adopting the
same methodology described in the Model Design and
Development section on the OGSA-ICU cohort. Specifically,
we simply applied the developed ML models to the imputed
data from the OGSA-ICU cohort.

Cautious Classification Methods
To enable the models to detect a control loss [33] and abstain
from providing a diagnosis, to control error rates and reduce
misdiagnosis, we implemented cautious classification models
based on the ML models trained on the PA-ED cohort. Cautious
classification refers to a set of uncertainty quantification
techniques that enable an ML model to abstain from providing
a prediction, for a given case, whenever the model is not
sufficiently confident [48]. Cautious classification has been
successfully applied for error rate control in recent work [49,50],
also in the context of sepsis diagnosis [25], and provides a
simple approach to improve the performance and perceived
utility of an ML model. Specifically, we adopted a simple,
thresholding-based strategy to implement the cautious
classification models: given any new case, the cautious
classifiers provided the same diagnosis as the corresponding
ML model if the confidence provided by this latter was >0.75;
otherwise, it abstained from providing a diagnosis. Thus, for a
given case, if the ML model would associate with the sepsis
class a confidence score larger or equal to 0.75, the cautious
classifier would also classify that case as sepsis; similarly, if
the confidence score for sepsis was <0.25 (ie, the confidence
score for the absence of sepsis was >0.75), the cautious classifier
would classify the case as no sepsis; finally, if the confidence
score was between 0.25 and 0.75, then the cautious classifier
would be considered as abstaining from providing a diagnosis.
We decided to apply this cautious classification strategy, rather
than other approaches, such as 3-way decision [51] or conformal
prediction [52], due to its increased efficiency (the
computational complexity cost of the thresholding strategy is
O(1), while it is on the order of O(log n), for n being the dataset
size, for conformal prediction), ease of interpretation, and its
equivalence, in the binary classification setting and under weak
assumptions, with the 2 aforementioned methods [51].
Regarding the implementation of the cautious classifiers, we
used the HC metrics implemented in the scikit-cautious library
[53], and applied them to the ML models trained on the PA-ED
dataset, setting the threshold hyperparameter (th) to 0.75. The
HC metrics evaluate the performance of the models on the set
of nonabstained cases; hence, they select the cases for which
either the confidence score of sepsis or that of no sepsis is >0.75.
We considered, particularly, the HC metrics for PPV, NPV,
sensitivity, specificity, AUC, A-PPV, Brier score, and sNB, as
well as the coverage (the percentage of nonabstained-upon
cases).

Statistical Analysis
For all continuous variables, we reported mean and SD, while
for all categorical variables, we reported the frequency of each
value. The sNB was computed at the fixed threshold value of
0.5. CIs for sensitivity, specificity, PPV, and NPV were
calculated using the Wald CI formula [54], namely,

(1)

where p is the estimated value, n is the sample size, and za/2 is
the (1- a/2) quantile for the standard normal distribution. CIs
for the AUC, A-PPV, and sNB were calculated based on the
formulas defined in the study by Riley et al [55] for estimation
of the SE and Wald CI formula, namely,

(2)

(3)

where v is the estimated AUC or A-PPV value, π is the
proportion of patients with sepsis in a given cohort, and sens
(respectively, spec) is the estimated sensitivity (resp. specificity).
CIs for the Brier score were computed based on Hoeffding
inequality [56] for bounding the difference between the sample
estimate of a continuous, bounded random variable and its
expected value, namely:

(4)

For each pair of developed ML models and each evaluation
metric, we evaluated the hypothesis that the 2 classifiers had
the same (null hypothesis) or different average performance:
we used a 2-tailed chi-square test to test the hypotheses and
computed the P values. For each developed ML model and each
dataset, we evaluated the hypothesis that the cautious classifier
provided an improvement in terms of sensitivity, specificity,
PPV, or NPV compared to the corresponding standard ML
model: we used a 1-tailed chi-square test to test the hypotheses
and compute the P value. Finally, for each developed ML model,
each external validation dataset, and each evaluation metric, we
evaluated the hypothesis that the performance of the ML model
was not worse than what was reported on the internal validation
dataset. We used a 2-tailed chi-square test to test the hypotheses
and compute the P values. To control the increased type I error
(mistaken rejection of a null hypothesis) due to multiple
hypothesis testing, we adjusted the computed P values using a
false discovery rate correction procedure. Particularly, we used
the optimal adaptive procedure by Gavrilov et al [57], which
computes the k-th adjusted P value pk (with the P values sorted
in increasing order) as given in the following:

(5)
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(6)

where α=0.05 is the confidence threshold for null-hypothesis
rejection, and 1≤k≤m, where m was the number of tested
hypotheses. All code for statistical analysis was implemented
in Python. We used pandas and numpy for data loading and
management, scipy for implementation of the chi-square test,
and statsmodels for implementation of the false discovery rate
correction procedure. We used custom Python implementations
of the CIs for the AUC, A-PPV, sNB, and Brier score.

Ethical Considerations
The collection of data at the different sites, as well as the
multicentric study, was conducted in compliance with the
guidelines established by the local ethics committees, relevant
ethical and legal regulations, and in agreement with the World
Medical Association Declaration of Helsinki. Regarding the

ethics review, the study used only secondary data that had been
previously collected at different sites in earlier studies, in
accordance with an approved ethical framework from the local
ethical boards. The present study does not introduce any new
risks, burdens, or interactions with participants beyond those
already considered and approved in the original ethical reviews.
Since the study did not require any blood draws or procedures
from the enrolled patients that would not already have been
performed as part of standard medical care, and because the
data was rendered anonymous before analysis, written informed
consent and approval were exempted by the local committees,
and no compensation was provided to the enrolled patients.

Results

Overview
The full information about the features’ distribution, as well as
the sample sizes, in the 6 datasets is reported in Table 1.
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Table 1. Characteristics of the populations in the 6 cohorts.

OGSA-ICUfUD-EDePD-ICUdPA-ICUcAR-EDbPA-EDaFeature

64.3 (18.1)66.5 (19.2)66.3 (14.9)66.5 (13)69 (21.4)55.1 (20)Age (y), mean (SD)

13.4 (6.2)8.9 (4.6)11.5 (5.4)13.9 (6.6)11.3 (6.4)10.2 (4.1)WBCg (109/L), mean (SD)

12.3 (9.4)6.4 (3.8)9.4 (5)12.7 (6.7)8.7 (5.4)7.2 (3.9)Neutrophils(109/L), mean (SD)

0.8 (0.5)0.7 (0.4)0.9 (0.5)0.8 (0.4)0.8 (0.4)0.8 (0.3)Monocytes(109/L), mean (SD)

—i21.2 (4.2)24.1 (5)24.6 (7.5)25.6 (6.4)20.1 (3.2)MDWh, mean (SD)

56.6 (80.7)25.3 (52.9)93.9 (81)81.4 (96.5)83 (93)22.6 (49.3)CRPj (mg/L), mean (SD)

1.2 (1.9)1.7 (2.3)1 (0.6)1 (0.5)1.6 (3.6)2.1 (1.1)Lymphocytes (109/L), mean (SD)

0.1 (0.1)0.1 (0.1)0.2 (0.4)0.1 (0.5)0.1 (0.2)0.1 (0.2)Eosinophils (109/L), mean (SD)

0.1 (0.1)0 (0)0 (0.1)0 (0)0 (0.1)0.1 (0.1)Basophils(109/L), mean (SD)

3.9 (0.6)4.4 (0.7)3.5 (0.6)3.9 (0.8)4.2 (0.8)4.6 (0.7)RBCk (1012/L), mean (SD)

11.5 (1.8)13.1 (2.1)10.4 (1.5)10.9 (2.3)12.3 (2.3)13.4 (2.1)Hemoglobin level (G/100 mL), mean
(SD)

34.3 (5.1)38.8 (5.8)31.7 (4.8)32.6 (7)37.6 (6.5)39.3 (5.9)Hematocrit test (%), mean (SD)

89.1 (5.3)88.9 (6.4)90.1 (6.1)85.3 (9.5)91 (6.7)86.5 (7.9)MCVl (fL), mean (SD)

29.9 (2.3)30.1 (2.6)29.5 (2.2)29.3 (7.7)29.6 (2.4)29.5 (3.2)MCHm (pg), mean (SD)

66.1 (327.5)33.8 (1)32.7 (0.9)33.1 (1.5)32.5 (1.1)34 (1.2)MCHCn (G/100 mL), mean (SD)

14.5 (2.2)14.7 (2.1)15.7 (2.9)48 (7.6)15.8 (2.4)14.6 (2.1)RDWo (%), mean (SD)

196.3 (89.5)241.7 (88.5)236.7 (145.3)243.3 (120.8)229.6 (105.2)254.4 (90.4)Platelet count (PLT) (109/L), mean (SD)

16.7 (15.8)5.8 (7.1)14.4 (17.2)18 (19.1)10.3 (11.3)5 (5.7)NLRp, mean (SD)

Sex, n (%)

50 (50)441 (47)1612 (76.25)46 (61)169 (54.9)870 (48.59)Male

50 (50)497 (53)502 (23.75)29 (39)139 (45.1)930 (51.41)Female

Sepsis, n (%)

6 (6)63 (6.7)709 (33.54)22 (29)76 (24.7)83 (4.59)Yes

94 (94)875 (93.3)1405 (66.46)53 (71)232 (75.3)1726 (95.41)No

100 (1.87)938 (17.55)2114 (39.56)75 (1.40)308 (5.76)1809 (33.85)Patients, n (%)

aPA-ED: Palermo, Emergency Department.
bAR-ED: Arezzo, Emergency Department.
cPA-ICU: Palermo, Intensive Care Unit.
dPD-ICU: Padova, Intensive Care Unit.
eUD-ED: Udine, Emergency Department.
fOGSA-ICU: Ospedale Galeazzi Sant’Ambrogio, Intensive Care Unit.
gWBC: white blood cell.
hMDW: monocyte distribution width.
iNot available.
jCRP: C-reactive protein.
kRBC: red blood cell.
lMCV: mean corpuscular volume.
mMCH: mean corpuscular hemoglobin.
nMCHC: mean corpuscular hemoglobin concentration.
oRDW: RBC distribution width.
pNLR: neutrophils-lymphocytes ratio.
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Internal Validation Results
The results of the models on the interval validation set are shown
in Table 2 and Figures 1 to 3 (Figure S1 in Multimedia
Appendix 1). XGB significantly outperformed all other models
in terms of AUC, A-PPV, and sNB (Figure S2 in Multimedia
Appendix 1). LR and XGB had greater sensitivity and PPV,
respectively, than all other models, although not significantly
so. XGB, RF, and LR significantly outperformed all the baseline
comparison methods (ie, MDW [37], CRP [44], Sepsis Index
[45], COMPOSER [25], as well as the SVM model developed
in the study by Aguirre and Urrechaga [31]; Figures 1 and 2;
Figure S1 in Multimedia Appendix 1) and did so across all
possible decision thresholds. The importance of the most
relevant features for the models with the highest AUC and PPV
(XGB) and sensitivity (LR) are depicted in Figures 4 and 5. It
was identified that MDW was the single most predictive feature
(for all models), followed by the CRP, the

neutrophils-lymphocytes ratio, the leucocytic formula
composition, the hematocrit, and red blood cell count, which
also had significant predictive power. An interpretable DT model
is given in (Figure 5): after discussion with the clinical experts,
we derived from the DT a highly interpretable, cautious decision
rule model (Partial Decision Rule [PDR]) defined by the
following rules: if MDW>24.1, then sepsis; if MDW ≤24.1 and
neutrophils ≤8.6 then no sepsis; if MDW ≤20.5 and neutrophils
>8.6 then no sepsis; otherwise abstain.

PDR had better PPV and specificity than the developed ML
models, although not significantly so. In terms of sensitivity
and NPV, it was significantly worse than only LR. Furthermore,
among the nonidentified sepsis cases, most of them (14% of
the total number of sepsis cases in the internal test set) were
classified by the PDR model classified in the abstain group,
while only 1 sepsis case was classified in the no sepsis group.
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Table 2. The results of the developed machine learning models (with the optimal configuration of hyperparameters) on the internal hold-out test set,
together with the corresponding 95% CIs (in parenthesis). The considered models were logistic regression (LR), support vector machine (SVM), random
forest (RF), extreme gradient boosting (XGB), decision tree (DT), and the cautious decision rule model (PDR). We also report the performance of
state-of-the-art baselines monocyte distribution width (MDW), CRP, Sepsis Index, Mindray SVM, and Conformal Multidimensional Prediction of
Sepsis Risk (COMPOSER).

COMPOS-
ER (95%
CI)

Sepsis in-
dex (95%
CI)

CRP
(95% CI)

MDW
(95% CI)

Mindray
SVM (95%
CI)

PDR
(95% CI)

XGB
(95% CI)

DT
(95%
CI)

RF
(95%
CI)

SVM
(95% CI)

LR
(95%
CI)

0.80 (0.04)0.90

(0.03)a
0.67
(0.04)

0.90

(0.03)a
0.19 (0.04)0.81

(0.04)
0.86

(0.03)b
0.86

(0.03)b
0.81
(0.04)

0.86

(0.03)b
0.90

(0.03)a
Sensitivity

0.93 (0.02)0.93 (0.02)0.94
(0.02)

0.89
(0.03)

0.99 (0.01)0.98

(0.01)a
0.97

(0.02)b
0.91

(0.03)b
0.97

(0.02)b
0.96
(0.01)

0.94
(0.02)

Specificity

0.30 (0.04)0.45 (0.05)0.37
(0.04)

0.28
(0.04)

0.50 (0.05)0.65

(0.04)a
0.60

(0.05)b
0.32
(0.04)

0.57

(0.05)b
0.59

(0.04)b
0.43
(0.05)

PPVc

0.98 (0.01)1 (0.01)a0.98
(0.01)

1 (0.01)a0.96 (0.02)0.99

(0.01)b
0.99

(0.01)b
0.99

(0.01)b
0.99

(0.01)b
0.99

(0.01)b
1.00

(0.01)a
NPVd

————0.91 (0)—f0.98 (0)a0.91 (0)0.97 (0)0.95 (0)0.96 (0)AUCe

————0.04

(0.02)b
—0.03

(0.01)b
0.05
(0.02)

0.03

(0.01)b
0.02

(0.01)a
0.05
(0.02)

Brier

————0.44 (0.01)—0.83 (0)a0.67
(0.01)

0.77
(0.01)

0.81 (0)0.78
(0.01)

A-PPVg

————0.11 (0.03)0.94

(0.02)a
0.90

(0.03)b
0.85
(0.03)

0.86
(0.03)

0.81
(0.04)

0.90

(0.03)b
HCh sensitivity

————0.99

(0.01)a
0.98

(0.01)b
0.98

(0.01)b
0.99

(0.01)a
0.99

(0.01)a
0.98

(0.01)b
0.96
(0.02)

HC specificity

————0.33 (0.04)0.65

(0.04)b
0.72

(0.04)a
0.67

(0.04)b
0.71

(0.04)b
0.62
(0.04)

0.51
(0.05)

HC PPV

————0.96 (0.02)1 (0.01)a1 (0.01)a0.99

(0.01)b
0.99

(0.01)b
0.99

(0.01)b
0.99

(0.01)b
HC NPV

————0.99

(0.01)a
0.90
(0.03)

0.97

(0.02)b
0.92
(0.03)

0.92
(0.03)

0.98

(0.01)b
0.94
(0.02)

Coverage

————0.16 (0)—0.62

(0.01)a
0.24
(0.01)

0.35
(0.01)

0.60

(0.01)b
0.22
(0.01)

sNBi

aBest performing model.
bModels whose 95% CIs overlap with the best model.
cPPV: positive predictive value.
dNPV: negative predictive value.
eAUC: area under the receiver operating characteristic curve.
fNot available.
gA-PPV: average positive predictive value.
hHC: high confidence.
isNB: standardized net benefit.
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Figure 1. Performance (in terms of sensitivity, specificity, positive predictive value [PPV], and negative predictive value [NPV]) of the developed
models, each represented by a colored circle, on the 6 considered datasets (represented on the y-axis), together with the corresponding 95% CIs. AR-ED:
Arezzo, Emergency Department; DT: decision tree; LR: logistic regression; OGSA-ICU: Ospedale Galeazzi Sant’Ambrogio, Intensive Care Unit;
PA-ED: Palermo, Emergency Department; PA-ICU: Palermo, Intensive Care Unit; PDR: Partial Decision Rule; PD-ICU: Padova, Intensive Care Unit;
RF: random forest; SVM: support vector machine; UD-ED: Udine, Emergency Department; XGB: extreme gradient boosting.

J Med Internet Res 2025 | vol. 27 | e55492 | p. 11https://www.jmir.org/2025/1/e55492
(page number not for citation purposes)

Campagner et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Receiver operating characteristic curves for the models, along with their area under the receiver operating characteristic curve (AUC) values,
on the Palermo, Emergency Department (PA-ED) internal validation dataset. In the plot we also report on the sensitivity and specificity of 4 baselines:
binary thresholds based on the monocyte distribution width (MDW) [35] and C-reactive protein (CRP) [42], a binary threshold based on the Sepsis-Index
parameter [43], the Conformal Multidimensional Prediction of Sepsis Risk model [25], and the support vector machine (SVM) model developed in the
study by Aguirre and Urrechaga [31]. DT: decision tree; LR: logistic regression; PDR: Partial Decision Rule; RF: random forest; XGB: extreme gradient
boosting.
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Figure 3. Sensitivity–positive predictive value (PPV) curves for the models, along with their average PPV (A-PPV) values, on the Palermo, Emergency
Department (PA-ED) internal validation dataset. The plot also shows the sensitivity and PPV of 4 baselines: binary thresholds based on the monocyte
distribution width (MDW) [35] and C-reactive protein (CRP) [42], a binary threshold based on the Sepsis-Index parameter [43], the Conformal
Multidimensional Prediction of Sepsis Risk model [25], and the support vector machine (SVM) model developed in the study by Aguirre and Urrechaga
[31]. DT: decision tree; LR: logistic regression; PDR: Partial Decision Rule; RF: random forest; XGB: extreme gradient boosting.
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Figure 4. Feature importances for the logistic regression (LR; left) and extreme gradient boosting (XGB; right) models. The feature importance for
the LR model represents the coefficients of the induced linear model, shown as bar plots. For each feature, the color represents the sign of the coefficient.
The width of the bar represents the magnitude of the coefficient: larger width denotes greater importance. The feature importance for the XGB model
was computed through the Shapley Additive Explanations method and is represented in terms of violin plots: for each feature, red denotes high values,
while blue denotes low values; values at the right of the middle vertical bar denote an increased confidence score for the positive class (sepsis), while
values at the left denote a decreases confidence score. CRP: C-reactive protein; MCHC: mean corpuscular hemoglobin concentration; MCV: mean
corpuscular volume; MDW: monocyte distribution width; NLR: neutrophils-lymphocytes ratio; RBC: red blood cell; WBC: white blood cell; HCT:
hematocrit test; HGB: hemoglobin; PLT: platelet count.
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Figure 5. Interpretable decision tree: the color of each node denotes the majority class for the corresponding subset of instances (blue: sepsis and
orange: no sepsis). Each non–leaf node contains 3 data elements: a selected feature and corresponding threshold (top); the proportion of samples
corresponding to that node (middle); and the proportion of samples belonging to each class (bottom). Leaf nodes contain 2 data elements: the proportion
of samples corresponding to that node (top) and the proportion of samples belonging to each class (bottom). MDW: monocyte distribution width; RBC:
red blood cell; WBC: white blood cell.

External Validation Results
The results of all models, including the PDR model, on the
external validation datasets (PA-ICU, PD-ICU, UD-ED, and
AR-ED) are reported in Table S2 in Multimedia Appendix 1
and Figure 1, as well as in Figures S3 to S6 in Multimedia
Appendix 1, in terms of receiver operating characteristic and
sensitivity-PPV curves. The results of the external validation
for the model with the highest AUC on the internal validation
(XGB), are represented in Figure 6 in the form of an external

performance diagram [40]. The XGB model achieved
acceptable-to-excellent performance on all external datasets
and with respect to all metrics, except for the sNB on the
UD-ED: this dataset was, among the external validation datasets,
the most dissimilar to the internal training set (PA-ED). The
external performance diagrams for the other models are in
Figures S7 to S10 in Multimedia Appendix 1. While the
performance of all models worsened compared with the internal
test sets, the differences were not significant, as shown in Figure
S11 in Multimedia Appendix 1.
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Figure 6. External performance diagram [40] for the extreme gradient boosting (XGB) model on the external datasets. The diagram illustrates the
performance of the XGB model according to 3 different aspects: discrimination power (in terms of area under the receiver operating characteristic curve
[AUC]), utility (in terms of standardized net benefit), and calibration (in terms of Brier score). The size of the ellipses associated with the datasets
denotes the 95% CIs; the transparency of the ellipses denotes the achievement of the minimum sample size (the lower the transparency, the closer the
sample size to the minimum sample size). The diagram has been produced with the tool available on the Metimeter website [58]. AR-ED: Arezzo,
Emergency Department; OGSA-ICU: Ospedale Galeazzi Sant’Ambrogio, Intensive Care Unit; PA-ICU: Palermo, Intensive Care Unit; PD-ICU: Padova,
Intensive Care Unit; UD-ED: Udine, Emergency Department.

Non-MDW Validation Results
The data from all cohorts except OGSA-ICU were used to
develop an imputation model to predict the value of the MDW
feature from all the other considered parameters. The developed
imputation model was then used to impute the values of MDW
in the OGSA-ICU dataset. The results of the imputation process
are in Figure S12 in Multimedia Appendix 1, while additional
detail about the implementation of the imputation model is in
the Methods section.

The results of the non-MDW systems, on the OGSA-ICU cohort,
are reported in Figure 1 as well as in Figure S13 in Multimedia
Appendix 1, in terms of ROC and sensitivity-PPV curves. The
results of the validation, for the system encompassing the model
with the highest AUC on the internal validation (XGB), are
represented in Figure 6 in the form of an external performance
diagram [40]. The XGB-based system achieved low PPV and
sNB on the OGSA-ICU dataset, as also shown in Figure S13
in Multimedia Appendix 1, which was also the second most
dissimilar to the internal training set (PA-ED).
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Analysis of Cautious Classifiers
The use of cautious classifiers reduced the amounts of error for
almost all models, datasets, and metrics, as is shown in Figure
7 and Figure S14 in Multimedia Appendix 1. For XGB, PDR,
RF, and LR (except for the OGSA-ICU dataset), cautious
classification led to an improvement in both sensitivity and PPV

and equivalent or better performance in terms of NPV. For all
models and datasets, the coverage of the cautious classifiers
was >50%, and, in all but 3 cases (all for the RF model), >70%.
These results indicate that cautious classification could be useful
to reduce false negatives, with minimal deleterious effects in
terms of the increase of false positives or the number of
undecided cases.

Figure 7. Difference between the performance of cautious models and the corresponding standard models: values greater than 0 denote an improvement
in performance in the cautious inference model as compared with the corresponding standard one. The 95% CIs were computed using the pooled SD.
Each model is represented by a colored circle. AR-ED: Arezzo, Emergency Department, DT: decision tree; LR: logistic regression; OGSA-ICU: Ospedale
Galeazzi Sant’Ambrogio, Intensive Care Unit, PA-ED: Palermo, Emergency Department; PA-ICU: Palermo, Intensive Care Unit; PDR: Partial Decision
Rule; PD-ICU: Padova, Intensive Care Unit; RF: random forest; SVM: support vector machine; UD-ED: Udine, Emergency Department; XGB: extreme
gradient boosting.
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Discussion

Principal Findings
Sepsis recognition, especially in the ED, is challenging due to
the potentially limited data that can be timely collected and
difficult logistic settings. The recognition of sepsis triggers the
application of validated bundles (ie, fluid resuscitation, antibiotic
administration, blood culture and collection of other relevant
specimens, and lactate dosage) that can reduce mortality if
applied timely [2]. However, there is a risk of overtreatment in
the case of false positive cases, with potential detrimental effects
of therapies and waste of resources.

In this study, we developed and validated 5 ML models, as well
as an interpretable set of rules derived from the latter, for sepsis
screening based on clinical and laboratory features. The main
findings of our study can be summarized as follows: (1) XGB
and LR models showed the best performance for sepsis
screening; (2) the most important features for the XGB and LR
model were MDW and CRP; (3) the ML models have been
validated on 4 external datasets, showing good generalizability
in terms of both discrimination power, calibration, and utility;
(4) the interpretable, cautious decision rules had performance
comparable to that of black-box ML models, while being more
easily understandable by clinicians; (5) cautious classification
techniques could further improve screening performance, with
minimal impact on coverage; and (6) while the non-MDW ML
systems achieved acceptable performance on the non-MDW
validation test, the lack of MDW led to a large decrease in PPV.
Noteworthy, 5 datasets were obtained from different Italian
hospitals, in different periods, and different clinical wards
(namely, ED and ICU), and exhibited widely varying
characteristics in terms of covariate, label, and missingness
distributions. In particular, the datasets exhibited a large
variation in terms of sepsis prevalence in the corresponding
populations, also due to differences between ED and ICU
settings (wherein the latter have typically larger incidence than
the former) or population characteristics (as an example, the
OGSA-ICU cohort was obtained from a hospital specialized in
orthopedics, a setting that typically has much lower sepsis’
incidence than general hospitals [59]).

Comparison to Prior Work
In this study, we also compared the developed models against
different state-of-the-art approaches, including commonly used
clinical thresholds [37,44] and scores [45], as well as ML models
[31,32]. Our models reported better performance than all the
previous state-of-the-art approaches. In this sense, we believe
that the most relevant innovations from the methodological
point of view, enabling these results, were the inclusion of
MDW in the panel of parameters, which resulted in being the
most predictive characteristic for sepsis, and the use of
controllable AI methodologies, which enabled us to obtain
models that were more robust to various forms of distribution
shifts. In this regard, to date, the lack of external validation is
one of the most important criticisms of ML studies [40,60].
Indeed, although it is a fundamental step to strengthen model
derivation and ensure generalizability, most published articles
do not perform it, with potentially negative consequences in

terms of robustness, generalizability, and real-world
applicability. This issue has been markedly noted also in the
context of sepsis screening and prediction, where one of the
most commonly adopted proprietary decision support models
for sepsis prediction (ie, EPIC) has been shown to be severely
impacted by shifts and variabilities associated with varying
settings [28-31]. Thus, along with the methodological novelties
of our study, one of the main strengths of our study is the
external validation on 5 different datasets. On the basis of the
results of the external validation, we can conclude that the
developed models are able to generalize better than the
state-of-the-art, at least in the Italian settings, as they maintain
the performance independently from covariate shifts (due to
either different patient populations or locations, ED or ICU
settings, or different measuring instruments), label shifts (sepsis2
or sepsis3 diagnostic criteria and different incidence of sepsis)
as well as missingness shifts scenarios: this latter characteristic,
specifically, is of particular interest since, despite its potential
impact on model generalization, it has scarcely been investigated
in medical ML studies [26]. In this study, we developed
ML-based systems that could also be applied in settings where
MDW was not available, with the aim of increasing the
applicability of the developed ML models as well as of assessing
the importance of the MDW parameter (which was the most
relevant feature according to all the developed ML models).
While, indeed, the obtained results show that acceptable results
could be obtained even in the presence of significant missingness
shift, the lack of MDW led to a relevant drop in performance,
thus highlighting the need for collecting complete data in
practical scenarios. By contrast, our models were shown to
robustly generalize to different incidence rates, not only due to
different clinical settings (ED vs ICU) but also to diagnostic
criteria (sepsis-2 vs sepsis-3), allowing us to prove not only
their effectiveness and robustness but also that varying incidence
rates may have lower influence on performance compared to
other variation sources (eg, lack of MDW, as described earlier,
or selection criteria, as in the AR-ED cohort).

Strengths and Limitations
Strengths of this study are the external validation, the large
sample size, and the use of several ML methods as well as
several indicators to assess the model’s performance. This study
comes from the collaboration and cooperation among different
professionals, including clinicians, engineers, biologists, and
informatics. Each has made its expertise available with the
common aim to develop a tool that could be usable in clinical
practice.

Limitations of the study must also be mentioned. First, the use
of sepsis-2 criteria for sepsis identification in the database used
for derivation. However, the use of sepsis-3 criteria in the ED
is costly in terms of resources and time-consuming and may be
difficult to apply outside the ICU because full assessment of
organ dysfunction is needed. Furthermore, the developed models
have been shown to generalize well also in settings where
sepsis-3 criteria were used for sepsis identification, showing
good performance despite this label shift factor. Thus, despite
this potential limitation, we believe that the aid of CBC
laboratory biomarkers, easily obtainable and at a low cost, may
help improve the specificity of both clinical criteria and initial
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screening and support differential diagnosis in case of negative
results. Second, we were not able to stratify patients according
to the infectious focus (eg, lung, abdomen, central nervous
system, soft tissue, blood, and urinary tract) or clinical severity
(sepsis vs septic shock) due to the absence of serum lactate
levels in our datasets. Both the type of infection and clinical
severity may be potential modifiers of model performance and
should be investigated in future work. More generally, lactate
levels are important information for sepsis, especially in ICU
settings. At the same time, lactates generally lack several
characteristics of an ideal biomarker for sepsis screening, being
more apt as a marker of severity in patients with high pretest
probability of sepsis. The objective of the developed ML models
was to provide clinicians with quick but accurate sepsis
screening tests, especially in cases where sepsis is not yet
suspected (patients accessing the ED): because lactates are not
frequently requested during initial management, requiring them
as features for our models would severely decrease their use (as
an example, none of the 3 ED cohorts considered in our study
encompassed lactates). Nonetheless, we believe that future
studies should consider the combination of lactate levels and
MDW (as well as other CBC parameters), which could
potentially lead to even better performance. In addition, it should
be highlighted that MDW can be obtained only using a particular
hematological analyzer, while other available instrumentations
do not allow for the calculation of this interesting index. This
aspect is particularly relevant in light of the results of the
non-MDW validation test, which highlighted the diagnostic
power of the MDW parameter. Indeed, we noted that its lack
was associated with a relevant drop in performance (especially
as regards the PPV), thus showing the potential advantage to
use the mentioned hematological analyzer to collect CBC
biomarkers (including MDW). Finally, in this study we only
validated our models on retrospective data; further research
should evaluate the potential application of a clinical algorithm
incorporating the results of our models in prospective studies
and for clinical timely decision in screening patients for sepsis.

Conclusions and Future Directions
In clinical practice, because of their characteristics in
performance and robustness, the ML models we developed and
presented in this study may represent a reliable tool for
supporting physicians in sepsis screening on patients of both
sexes admitted to the ED and ICU. Parameters included in the
models can be determined rapidly and cost-effectively.
Furthermore, the excellent NPV of the models allows us to rule
out sepsis with high accuracy, while they are also characterized
by a good sensitivity and specificity. Noteworthy, such models

significantly improved the specificity and PPV of MDW and
CRP alone, as well as of the other considered state-of-the-art
ML models, thus confirming our hypothesis that integrating
several CBC parameters through the use of ML could
significantly improve the performance of traditional biomarkers.
Therefore, we conjecture that the developed models could be
especially useful as a first-level test to detect sepsis.
Accordingly, an increased value (of the confidence score
produced by the model) may represent an alert for clinicians
that they should perform further investigations to confirm the
sepsis suspicion. Indeed, in the case of nonobvious infectious
foci, an increased value may help physicians decide to evaluate
further biomarkers, such as procalcitonin [61], both fundamental
for the appropriate management of patients with sepsis,
specifically for diagnosis and guiding treatment, respectively.
To this latter aim, the ability to further isolate a group of
predictions with higher PPV and good sensitivity, by using the
cautious classification models and the interpretable decision
rules, is especially interesting. Indeed, from the clinical point
of view, it would enable the administration of aggressive
therapies in a small sample of patients, but associated with
extremely high confidence (90%), thus minimizing the risk of
overtreatment and potentially leading to a significant
improvement in the outcome. In our opinion, this is a valuable
hypothesis to be validated in properly designed prospective
trials. At the same time, the cases in which these models abstain
could be useful to alert the clinicians of a possible control loss
[33] and, hence, reduce the risk of automation bias or de-skilling
[62]. In this sense, we conjecture that the developed interpretable
decision rules could be particularly fruitful as a rapid and
easy-to-use tool to support clinicians in promptly delivering
appropriate treatment to the selected patients. Indeed, a recent
line of research in the ML literature has noted how the black-box
nature of modern ML models, and the consequent adoption of
explainable AI techniques (such as model surrogates or feature
attribution methods), could potentially increase automation bias
(or also other cognitive biases related to the use of automation
technology) [63], hence advocating for the use of simple and
interpretable models in high-stake domains [64] where humans
adopt AI tools in a human-AI teaming scenario [65]. In this
sense, the developed decision rule model could address this
need while still providing satisfying screening performance.
Furthermore, from the clinical point of view, the decision rule
model seems to confirm the important role of MDW and
neutrophils in sepsis development [66] and provides a first
combined screening model based on these 2 parameters that
should be further investigated and validated in future studies.
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