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Abstract

Background: Patients undergoing liver transplantation (LT) are at risk of perioperative neurocognitive dysfunction (PND),
which significantly affects the patients’ prognosis.

Objective: This study used machine learning (ML) algorithms with an aim to extract critical predictors and develop an ML
model to predict PND among LT recipients.

Methods: In this retrospective study, data from 958 patients who underwent LT between January 2015 and January 2020 were
extracted from the Third Affiliated Hospital of Sun Yat-sen University. Six ML algorithms were used to predict post-LT PND,
and model performance was evaluated using area under the receiver operating curve (AUC), accuracy, sensitivity, specificity,
and F1-scores. The best-performing model was additionally validated using a temporal external dataset including 309 LT cases
from February 2020 to August 2022, and an independent external dataset extracted from the Medical Information Mart for
Intensive Care Ⅳ (MIMIC-Ⅳ) database including 325 patients.

Results: In the development cohort, 201 out of 751 (33.5%) patients were diagnosed with PND. The logistic regression model
achieved the highest AUC (0.799) in the internal validation set, with comparable AUC in the temporal external (0.826) and
MIMIC-Ⅳ validation sets (0.72). The top 3 features contributing to post-LT PND diagnosis were the preoperative overt hepatic
encephalopathy, platelet level, and postoperative sequential organ failure assessment score, as revealed by the Shapley additive
explanations method.

Conclusions: A real-time logistic regression model-based online predictor of post-LT PND was developed, providing a highly
interoperable tool for use across medical institutions to support early risk stratification and decision making for the LT recipients.
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Introduction

Perioperative neurocognitive disorder (PND), encompassing
various postsurgical cognitive impairments identified especially
in the postoperative period, was first proposed in 2018 [1].
These cognitive changes are consistent with the clinical
diagnostic criteria for neurocognitive disorders outlined in the
DSM-5 (Diagnostic and Statistical Manual of Mental Disorders
[Fifth Edition]) [1-3]. In addition to postoperative delirium
(POD) [4,5], other components of PND include emergence
delirium, delayed neurocognitive recovery, and postoperative
neurocognitive dysfunction [2,6]. POD or PND incidence is
2%-3% after general surgery [5,7] and 50%-70% in high-risk
patients [8]. In addition, PND not only contributes to increased
mortality rates but also extends hospitalization in patients
undergoing liver transplantation (LT) [7,9], escalating health
care costs and resource use. Preventative strategies and timely
interventions for post-LT PND are crucial for enhancing patient
outcomes and easing health care burdens [10].

Existing studies identify risk factors for post-LT PND, such as
excessive alcohol consumption, Child-Turcotte-Pugh scores,
and model for end-stage liver disease (MELD) scores [11,12].
Potential biomarkers for cognitive impairment prediction have
also been proposed, including calcium binding protein β and
neuron-specific enolase [13], yet their practical application is
hindered by complex clinical scenarios and expense.

Machine learning (ML), a branch of artificial intelligence, offers
a solution by distilling extensive clinical data into actionable

insights, identifying relative risk factors for PND [14,15].
However, there is a dearth of ML-based models predicting
post-LT–related complications [16-22] and postoperative
delirium during specific surgeries [4,23]. There are currently
no appropriate models for predicting PND in LT recipients,
with most current clinical prediction models often failing to
maintain accuracy when applied to external datasets, resulting
in significant limitations to their generalizability.

This study aimed to extract critical predictors and develop an
efficient ML algorithm to predict PND in LT recipients using
routinely collected clinical data and to validate its performance
using the Medical Information Mart for Intensive Care Ⅳ
(MIMIC-Ⅳ) database.

Material and Methods

Study Design and Patients
This retrospective, single-center study was conducted at our
institution following the Transparent Reporting of a
multivariable prediction model for Individual Prognosis or
Diagnosis guidelines. We enrolled 1267 patients who underwent
LT between January 2015 and August 2022. Records were
extracted using the perioperative specialist database platform
(PSDP) and electronic patient record (EPR) systems. The
inclusion and exclusion criteria are shown in Textbox 1.

All included recipients were formalized and registered in the
China Organ Transplant Response System.

Textbox 1. Inclusion and exclusion criteria for the study.

Inclusion criteria

• Age >18 years.

• Allogeneic liver transplantation.

Exclusion criteria

• Simultaneous liver and kidney transplantation.

• Preoperative overt hepatic encephalopathy.

• Emergency reoperation.

• Persistent postoperative coma and inability to screen for cognitive function.

• Post–liver transplantation cerebral infarction or hemorrhage.

• Incomplete medical records.

Data Collection
The development and temporal validation cohort datasets were
created by extracting original records from the Docare System
(Medical system), Hospital Information System, and Laboratory
Information System, and integrating them into the PSDP
platform and EPR systems. To increase ML model accuracy
and applicability, we included the following variables: (1)
demographic characteristics; (2) liver donor characteristics; (3)
preoperative comorbidities, complications, preoperative
treatment, and LT etiology; (4) preoperative laboratory test
results; (5) intraoperative surgery characteristics and

medications; (6) postoperative MELD scores, sequential organ
failure assessment (SOFA) scores, and laboratory test results;
and (7) complications and prognosis in LT recipients. All of
the original data were made anonymous throughout the study.

Definitions of Outcomes
The primary outcome was postoperative PND occurrence from
surgery until discharge from the hospital. A summary of
perioperative neurocognitive impairments is shown in Table S1
in Multimedia Appendix 1. The initial diagnosis criteria was
the retrieval of any of the following terms from the medical
records: “Delirium”, “Confusion”, “Confusional arousals”,
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“Clouding of consciousness”, “Soma”, “Drowsiness”, “Changes
in mental status”, “Hallucinations”, “Disorientation”,
“Dyscalculia”, “Haziness of spirit-mind”, “Irritability”,
“Agitation”, “Inattentiveness”, “Reactive confusion”,
“Somatization disorder”, “Irritability”, and “Somatoform
disorders”, or equivalent terms in Chinese [4,24,25]. Next, each
patient was evaluated based on the DSM-5 criteria by a
designated neurologist without prior access to the patient’s
records [3,26].

Variable Selection
A comprehensive set of 137 variables was extracted for the
initial analysis (Table S2 in Multimedia Appendix 1). Table S3
in Multimedia Appendix 1 provides a concise explanation of
the main complications and relevant term definitions.
Postoperative SOFA scores were calculated by intensive care
unit (ICU) physicians immediately after surgery according to
European Society of Intensive Care Medicine criteria [27] and
submitted for statistical analysis.

To account for multicollinearity and confounding variables
affecting the overall model fitting performance, variables that
were statistically significant (P<.05) in the univariate test were
subjected to stability selection (Table S4 in Multimedia
Appendix 1) [28]. After 100 iterations of least absolute
shrinkage and selection operator (LASSO) regression, the top
10 features with the highest selection frequencies were chosen
to train the ML models. For each LASSO regression, 90% of
the training set samples were randomly selected as subsamples.

Machine Learning Models
The following 6 ML models were developed, and their
performances were further evaluated: logistic regression (LR),
multilayer perceptron classifier (MLP), extreme gradient
boosting with classification trees (XGB), light gradient boosting
machine (LGB), support vector machine (SVM), and random
forest classifier (RF). All models were constructed using the
XGB, LGB, and Scikit-learn packages.

The primary cohort dataset was randomly divided into 80%
development and 20% internal validation sets. The bootstrap
method was implemented 1000 times on the internal validation
set to determine a 95% CI for the discrimination assessment
metrics for each model: the area under the receiver operating
curve (AUC), accuracy, sensitivity, specificity, and F1-scores.
Considering that ML models have multiple hyperparameters
that are essential for model performance, a 5-fold
cross-validation grid search method was used to optimize the
parameters and AUCs (Table S5 in Multimedia Appendix 1).
The Shapley additive explanations (SHAP) method was used
to assess predictive feature importance and explain the ML
algorithms’ predictions [29].

Model Performance Comparison and MIMIC-Ⅳ
Dataset
Because the SOFA and MELD scores have been reported as
potential predictors of various post-LT complications [16,30],
our study also compared the ML model’s performance against
SOFA and MELD scores.

An external validation set extracted from the MIMIC-Ⅳ (version
2.2) [31] database was used to evaluate the ML model’s
performance, which was authorized by the review committee
of Massachusetts Institute of Technology (agreement 1.5.0).
Patients who underwent LT surgery and were diagnosed with
PND according to the International Classification of Diseases
(9th and 10th revisions) were enrolled. Data extraction and
cleaning were performed using PostgreSQL (version 15.3) and
Navicate Premium (version 16) with a Structured Query
Language (Figure S1 in Multimedia Appendix 1).

Statistical Analysis
Data cleaning used Python (version 3.9.13) packages Pandas
(version 1.4.4) and Numpy (version 1.23.5). Data analysis used
the Python Scipy package (version 3.7), and SHAP (0.41.0)
was used to visualize and analyze feature importance.

Data distribution was evaluated using the Kolmogorov Smirnov
test. Normally distributed continuous variables are presented
as mean (SD) and were compared by independent sample t tests.
Non-normally distributed continuous data are presented as
median (IQR) and were compared using the nonparametric
equivalent (Mann Whitney test). Categorical variables are
expressed as frequencies and percentages and were tested using
the chi-square test or Fisher exact test. Long-term survival rates
were estimated using the Kaplan Meier method. Group
comparisons were conducted using the Gehan-Breslow
Wilcoxon test and log-rank tests.

All tests were 2-tailed, with statistical significance set at 0.05.
Before ML model training, continuous variables were
normalized, dichotomous variables were coded as binary
variables, and multicategory variables were coded as uniform
numbers.

Variables with missing values exceeding 20% were excluded,
and missing values below 20% were imputed with the median
(for numeric variables) or mode (for categorical variables). The
overall data distribution after imputation exhibited an acceptable
level of variability.

Visualized Online Calculator
An online calculator with a visual interface was developed to
facilitate the easy input of clinical variables and to generate
clear and meaningful output indicating the absolute risk in
percentages.

Ethical Considerations
The study protocol was approved by the Ethics Committee of
the Third Affiliated Hospital of Sun Yat-sen University on July
27, 2022 (No. (2019)02-609-04) and was conducted in
accordance with the Declaration of Helsinki. The requirement
for informed patient consent was waived due to the study’s
retrospective nature, and all data were anonymized before
analysis.

Results

Patient Demographic Characteristics
The flowchart for patient recruitment is shown in Figure 1. Of
the 958 patients who underwent LT, 751 patients were enrolled
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randomly into the development set (n=600) and internal
validation set (n=151). Notably, PND occurred in 201 patients,
accounting for 33.5% of the development cohort. Table 1 and
Table S6 in Multimedia Appendix 1 summarizes the

development set’s demographic characteristics, donor features,
and perioperative variables of patients with or without post-LT
PND.

Figure 1. Diagram of experimental procedure and flowchart, (A) brief diagram of the experimental procedure and (B) flowchart for patient enrollment,
development and selection of machine learning model. LGB: light gradient boosting machine; LR: logistic regression; MIMIC-Ⅳ: the Medical Information
Mart for Intensive Care Ⅳ; ML: machine learning; MLP: multilayer perceptron classifier; RF: random forest classifier; SVM: support vector machine;
XGB: extreme gradient boosting with classification trees.
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Table 1. Demographic characteristics and donor characteristics variables of patients with stratification by perioperative neurocognitive disorder.

P valuePNDa (n=201)NonPNDa (n=399)Total (n=600)Characteristics

Demographic characteristics

.4348.53 (10.7)49.24 (10.16)49 (10.34)Age (years), mean (SD)

.06Sex

32 (16%)42 (10.63%)74 (12.33%)Female, n (%)

168 (84%)353 (89.37%)521 (86.83%)Male, n (%)

.17169 (170-163)170 (172-165)170 (172-165)Height (cm), median (IQR)

.2664 (70-58)64 (72-58.88)64 (71-58)Weight (kg), median (IQR)

.7922.86 (24.74-20.44)22.78 (24.90-20.45)22.84 (24.85-20.43)BMI, median (IQR)

.76Blood group, n (%)

77 (38.5)156 (39.49)233 (38.83)A

50 (25)106 (26.84)156 (26)B

57 (28.5)110 (27.85)167 (27.83)O

16 (8)23 (5.82)39 (6.5)AB

Donor characteristics

.6440 (48-29.5)40 (50-28)40 (49-28)Donor age (years), median
(IQR)

.3522.59 (24.52-20.38)22.49 (24.22-20.76)22.49 (24.22-20.7)Donor BMI, median (IQR)

.03Donor Type

93 (50.54)228 (62.3)321 (53.5)DBDb, n (%)

89 (48.37)136 (37.16)225 (37.5)DCDc, n (%)

2 (1.09)2 (0.55)4 (0.67)DBCDd, n (%)

.27Steatosis of donor liver

125 (65.79)265 (71.05)390 (65)Steatosis grade 0, n (%)

53 (27.89)94 (25.2)147 (24.5)Steatosis grade 1, n (%)

12 (6.32)14 (3.75)26 (4.33)Steatosis grade 2, n (%)

aPND: perioperative neurocognitive dysfunction.
bDBD: donation after brain death.
cDCD: donation after circulatory death.
dDBCD: donation after brain death followed by circulatory death.

Perioperative Characteristics
Among the preoperative characteristics, American Society of
Anesthesiologists classification and preoperative comorbidities
such as acute respiratory distress syndrome, and laboratory
results including hemoglobin, white blood cell (WBC) count,
liver function, coagulation function, and serum calcium were
significantly different between patients with and without
postoperative PND (P<.01, Table S6 in Multimedia Appendix
1). Specifically, individuals diagnosed with post-LT PND
exhibited a notably elevated prevalence of preoperative cover
hepatic encephalopathy (CHE; 45.27% vs 8.77%, P<.001) and
hypercalcemia (7.57% vs 1.36%, P<.001). Furthermore, patients
with post-LT PND had higher Child Pugh and MELD scores
(P<.001), longer preoperative ICU stays, increased continuous
blood purification, increased plasma exchange, longer

mechanical ventilation, and higher tracheal intubation (all
P<.001, Table S6 in Multimedia Appendix 1).

Regarding intraoperative characteristics, patients with post-LT
PND had longer anesthesia durations; increased sodium
bicarbonate levels, red blood cell counts, plasma levels, and
levels of cryoprecipitate transfusion; increased estimated blood
loss (EBL); and reduced urine output (all P<.001, Table S6 in
Multimedia Appendix 1). Differences in intraoperative
medications between the 2 groups were not significant, except
for recombinant activated factor VII (P<.001). Interestingly,
our results showed no association between day or night surgery
and the incidence of PND (P=.44, Table S6 in Multimedia
Appendix 1).

For the postoperative characteristics, patients with post-LT PND
showed significantly higher levels of aspartate aminotransferase
(AST), total bilirubin, blood urea nitrogen, prothrombin time
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(PT), international normalized ratio, hypersensitive C-reactive
protein (hsCRP), procalcitonin, and serum calcium, as well as
lower levels of hemoglobin, hematocrit, WBC, platelet (PLT),
gamma-glutamyltransferase, albumin, and serum osmolality
(all P<.05, Table S6 in Multimedia Appendix 1).

Feature Selection
The frequency of LASSO algorithm selection for each variable
is shown in detail in Figure S2 in Multimedia Appendix 1. The
top 10 features chosen as predictors for ML model development
were preoperative CHE, PLT, PT, estimated glomerular filtration

rate (eGFR), Ca2+, MELD score, intraoperative EBL,
postoperative SOFA score, hsCRP, and AST.

Model Performance and Horizontal Comparison
The performance of the 6 ML models is shown in Figure 2. The
LR model achieved the highest AUC (0.799, 95% CI
0.709-0.877) with acceptable accuracy (0.722, 95% CI
0.642-0.795), sensitivity (0.714, 95% CI 0.575-0.833), and
specificity (0.73, 95% CI 0.639-0.811) compared with the other
5 models.

The SOFA (AUC=0.459, 95% CI 0.365-0.555), preoperative
MELD (AUC=0.672, 95% CI 0.581-0.768), and postoperative
MELD scores (AUC=0.679, 95% CI 0.587-0.772) had
significantly lower AUCs than the LR model in the internal
validation set (Figure 3A).

Figure 2. Performance metrics for six ML models. (A) ROC curves of six ML models. (B) Details of the model performance metrics.
Accuracy=(TP+TN)/(TP+TN+FP+FN); AUC, the area under the receiver-operating curve; F1=2*Precision*Recall/ (Precision + Recall); FN: false
negative; FP: false positive; LGB: light gradient boosting machine; LR: logistic regression; MLP: multilayer perceptron classifier; RF: random forest
classifier; Sensitivity=TP/ (TP + FN); Specificity (Recall)=TN/ (TN + FP); SVM: support vector machine; TN: true negative; TP: true positive; XGB:
extreme gradient boosting with classification trees.
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Figure 3. SHAP analysis of the LR model and model performance in horizontal comparison and external validation. (A) Horizontal comparison of
predicting performance between the LR model and MELD/SOFA scores in the internal validation set. (B-C) The SHAP summary plot demonstrated
the general importance of each feature in LR model. The color bar on the right indicates the relative value of a feature in each case, with red color
representing higher value and blue color representing lower value. (D-E) ROC curves and model performance in the external validation. AST: aspartate
aminotransferase; AUC: the area under the receiver-operating curve; CHE: cover hepatic encephalopathy; EBL: estimated blood loss; eGFR: estimated
glomerular filtration rate; hsCRP: hypersensitive C-reactive protein; LR: logistic regression; MELD scores: model for end-stage liver disease score;
MIMIC-IV: Medical Information Mart for Intensive Care Ⅳ; PLT: platelet; PT: prothrombin time; SHAP: Shapley additive explanations; SOFA scores:
sequential organ failure assessment score.
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Feature Importance
The SHAP summary plot (Figures 3B and 3C) illustrates the
correlation between the feature value magnitudes in the LR
model. Both SHAP plots revealed that the presence of CHE,
lower preoperative PLT, higher postoperative SOFA score,
higher postoperative hsCRP, and higher preoperative PT were
associated with a higher SHAP value output in the LR model,
indicating a heightened likelihood of post-LT PND and forming
the top 5 effective variables.

Three correctly classified examples (eg, patients 48, 80, and
122) are presented in Figure S3 in Multimedia Appendix 1,
showing the SHAP decision and force plots.

Temporal External Validation and MIMIC-Ⅳ Dataset
Validation
A comparison of the main demographic characteristics and key
predictive variables between the development and validation
sets is shown in Table S7 in Multimedia Appendix 1, and the
incidence rates of post-LT PND in the temporal and MIMIC-Ⅳ
external validation were 27.1%, and 20.3%, respectively. The
LR model exhibited a comparable performance in the temporal
external validation set (AUC=0.826, 95% CI 0.765-0.887)
(Figure 3D). Surprisingly, the LR model also provided
acceptable predictions for the MIMIC-Ⅳ dataset (Figure 3D,

AUC=0.72, 95% CI 0.606-0.829). Figure 3E summarizes the
main performance metrics of the LR model.

Effect of Perioperative Neurocognitive Dysfunction on
Patients’ Outcomes and Prognosis
Compared with patients without post-LT PND, patients with
PND were more likely to experience perioperative complications
(Table S8 in Multimedia Appendix 1), including higher
incidences of sepsis (51.63% vs 21.55%, P<.001), pneumonia
(75.56% vs 65.46%, P<.05), acute kidney injury (69.5% vs
39.75%, P<.001), and hemodialysis (51.35% vs 12.81%,
P<.001). Furthermore, patients with post-LT PND had higher
hospitalization costs (CNY 377,801.69 [US $51,566.83], SD
177,855.53 [US $24,275.82] vs CNY 277,018.95 [US
$37,810.82], SD 92,779.91 [US $12,663.70]; P<.001), prolonged
postoperative stays (25 {18} vs 21 {11} days, P<.001), longer
postoperative ICU stay (113 {114} vs 65 {48.5} hours, P<.001),
and a markedly higher in-hospital mortality rate (12.44% vs
2.51%, P<.001).

Further survival analysis (Figure 4) was conducted to assess
patient prognosis. The PND group exhibited significantly lower
survival rates at 30 days (87.1% vs 97.84%, P<.001), 3 months
(83.99% vs 96.46%, P<.001), 6 months (82.78% vs 95.38%,
P<.001), and 12 months (78.85% vs 88.44%, P<.001), and
overall survival (P=.03).

Figure 4. Post–liver transplantation survival associated with perioperative neurocognitive dysfunction. Patients with post–liver transplantation
perioperative neurocognitive dysfunction showed a significantly lower survival rate. LT: liver transplantation; PND: perioperative neurocognitive
dysfunction.

Clinical Availability of the Logistic Regression Model
Given the accessibility of the 10 predictive features, we
constructed a visually oriented online calculator to facilitate
clinical decision making. The perioperative information of 2
typical patients was entered into the online calculator: patient

48 had a positive final predicted probability of PND occurrence
(probability: 96%), and patient 122 had a negative final
predicted probability of PND occurrence (probability: 17%;
Figure 5). The online calculator is freely accessible at the
hospital website.
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Figure 5. Online calculator for the clinical interface of the post–liver transplantation perioperative neurocognitive dysfunction risk prediction logistic
regression model. (A) Patient No. 48 post–liver transplantation perioperative neurocognitive dysfunction will occur (probability of perioperative
neurocognitive dysfunction: 94%); (B) Patient No. 122 post–liver transplantation perioperative neurocognitive dysfunction will not occur (probability
of perioperative neurocognitive dysfunction: 17%).

Discussion

Principal Findings
Our retrospective study assessed 6 different ML algorithms to
predict post-LT PND, using 10 readily available clinical
parameters. We found that post-LT PND incidence was 33.5%.
The 10 predictive features significantly associated with PND

included preoperative CHE, PLT, PT, eGFR, Ca2+, MELD score,
intraoperative EBL and postoperative SOFA score, hsCRP, and
AST. The LR model demonstrated superior performance, with
high AUC, accuracy, sensitivity, and specificity, surpassing
traditional SOFA and MELD scores in predicting post-LT PND
and performed acceptably in the rigorous temporal and
MIMIC-Ⅳ external validations.

This study aids clinicians in detecting postoperative cognitive
changes in LT recipients. Patients with PND typically faced
more perioperative complications, higher hospitalization costs,
and prolonged hospital and ICU stays, consistent with previous
studies [4,23]. Hepatic encephalopathy has been reported as an
independent risk factor for postoperative neurocognitive
disorders [32]. To ensure cognitive assessment accuracy, we
excluded patients with overt hepatic encephalopathy according
to the spectrum of neurocognitive impairment in cirrhosis
criteria [33]. CHE emerged as a significant predictor in our
model analysis. Both oxidative stress and neuroinflammation
have been implicated in POD pathophysiology [10,34]. A recent
systematic review also links increased perioperative CRP levels
to a high delirium risk [35], supporting our inclusion of hsCRP

as a predictor. Calcium ions (Ca2+) are important cell signaling
molecules, and previous studies reported a positive correlation

between Ca2+ concentration and neuronal apoptosis extent in
vitro [36], consistent with our results. Furthermore, the model
identified PLT as an unconventional indicator of PND,
showcasing ML’s ability to highlight nontraditional risk factors.

This discovery is partly supported by Eyer et al [37] suggesting
a relationship between lower PLT and delirium tremens.

Our study used preoperative, intraoperative, and postoperative
data (SOFA scores, hsCRP, and AST levels) to develop the LR
model. Earlier studies have revealed that multiple postoperative
factors were also risk factors for PND [11,12]. The postoperative
variables included in this study were predominantly assessed
upon initial admission to the ICU. Stability selection analysis
revealed a positive correlation between elevated postoperative
SOFA scores, hsCRP levels, and AST levels, and an increased
likelihood of post-LT PND. This highlights the predictive value
of these commonly observed postoperative variables for PND.

Our results suggest that LR outperforms other ML models in
predicting post-LT PND, which is not surprising. A recent
systematic review showed no performance superiority of other
ML models over LR in predicting clinical complications [38].
Wiredu et al [35] also found that compared to ML algorithms,
LR had the highest AUC when predicting sex-specific hip
fractures. Song et al [4] developed an LR model to predict POD
in older adult patients, achieving the highest AUC compared
with other models. Given the evident linear relationships among
the top 10 features, the LR may be more appropriate for
capturing distribution patterns. In contrast to other algorithms,
LR performs well on nonoversized and high-dimensional
datasets, exhibits computational efficiency, and imposes lower
dataset requirements.

As demonstrated by the example of prediction cases (Figure 5),
we successfully developed a predictive model for post-LT PND,
with its primary advantage in its reliable predictive performance,
validated using 2 external datasets. The importance of early
detection and prevention of PND in patients undergoing cardiac
surgery or transplantation is clearly emphasized in current
international guidelines [39]. However, the implementation of
preventive measures is often challenged by limited resources
[40], especially in cases where the shortage of liver donors
persists. On accurate identification by the LR model, patients
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at high risk for post-LT POD could be referred to enhanced LT
perioperative management strategies, such as individualized
pharmacological or nonpharmacological comprehensive
multicomponent interventions, according to the 10 commonly
accessible predictive parameters filtered by the ML algorithm.

Limitations
However, this study had several limitations. First, it was a
single-center retrospective study, meaning the Confusion
Assessment Method (CAM) or the associated CAM-ICU and
3D-CAM were inappropriate for our database. Instead, patients
with PND were identified from medical records according to
the DSM-5 criteria [3,6,26]. Second, as a real-world study,
researchers can only infer precise risk factors based on the data
available, and inhomogeneous confounding among the datasets

could affect the study conclusions [41]. While our online
decision tool has the potential to aid surgeons and
anesthesiologists in clinical decision making, the causes and
underlying mechanisms of PND remain subjects of intense
debate, necessitating further research.

Conclusions
This study successfully develops a real-time and easily
accessible parameter requiring LR-based PND prediction
algorithm for post-LT settings. The LR model outperformed
the other five models owing to its enhanced model performance
and interpretability. The optimal use of our freely accessible
online predictor would enable timely and convenient risk
stratification, enhanced perioperative management strategies,
and comprehensive multicomponent interventions.
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LR: logistic regression
LT: liver transplantation
MELD: model for end-stage liver disease
MIMIC-Ⅳ:  Medical Information Mart for Intensive Care Ⅳ
ML: machine learning
MLP: multilayer perceptron classifier
PLT: platelet
PND: perioperative neurocognitive disorder
POD: postoperative delirium
PSDP: perioperative specialist database platform
PT: prothrombin time
RF: random forest classifier
SHAP: Shapley additive explanations
SOFA: sequential organ failure assessment
SVM: support vector machine
WBC: white blood cell
XGB: extreme gradient boosting with classification trees
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