
Original Paper

Using Large Language Models to Detect and Understand Drug
Discontinuation Events in Web-Based Forums: Development and
Validation Study

William Trevena1, PhD; Xiang Zhong1, PhD; Michelle Alvarado1, PhD; Alexander Semenov1, PhD; Alp Oktay2, BSc;

Devin Devlin3, BSc; Aarya Yogesh Gohil1, MSc; Sai Harsha Chittimouju1, MSc
1Department of Industrial and Systems Engineering, The University of Florida, GAINESVILLE, FL, United States
2Department of Industrial and Systems Engineering, The University of San Diego, San Diego, CA, United States
3Microsoft, Seattle, WA, United States

Corresponding Author:
Xiang Zhong, PhD
Department of Industrial and Systems Engineering
The University of Florida
PO BOX 115002
GAINESVILLE, FL, 32611-5002
United States
Phone: 1 3523922477
Email: xiang.zhong@ise.ufl.edu

Abstract

Background: The implementation of large language models (LLMs), such as BART (Bidirectional and Auto-Regressive
Transformers) and GPT-4, has revolutionized the extraction of insights from unstructured text. These advancements have expanded
into health care, allowing analysis of social media for public health insights. However, the detection of drug discontinuation
events (DDEs) remains underexplored. Identifying DDEs is crucial for understanding medication adherence and patient outcomes.

Objective: The aim of this study is to provide a flexible framework for investigating various clinical research questions in
data-sparse environments. We provide an example of the utility of this framework by identifying DDEs and their root causes in
an open-source web-based forum, MedHelp, and by releasing the first open-source DDE datasets to aid further research in this
domain.

Methods: We used several LLMs, including GPT-4 Turbo, GPT-4o, DeBERTa (Decoding-Enhanced Bidirectional Encoder
Representations from Transformer with Disentangled Attention), and BART, among others, to detect and determine the root
causes of DDEs in user comments posted on MedHelp. Our study design included the use of zero-shot classification, which allows
these models to make predictions without task-specific training. We split user comments into sentences and applied different
classification strategies to assess the performance of these models in identifying DDEs and their root causes.

Results: Among the selected models, GPT-4o performed the best at determining the root causes of DDEs, predicting only 12.9%
of root causes incorrectly (hamming loss). Among the open-source models tested, BART demonstrated the best performance in
detecting DDEs, achieving an F1-score of 0.86, a false positive rate of 2.8%, and a false negative rate of 6.5%, all without any
fine-tuning. The dataset included 10.7% (107/1000) DDEs, emphasizing the models’ robustness in an imbalanced data context.

Conclusions: This study demonstrated the effectiveness of open- and closed-source LLMs, such as GPT-4o and BART, for
detecting DDEs and their root causes from publicly accessible data through zero-shot classification. The robust and scalable
framework we propose can aid researchers in addressing data-sparse clinical research questions. The launch of open-access DDE
datasets has the potential to stimulate further research and novel discoveries in this field.
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Introduction

The development of the transformer model [1] has significantly
advanced natural language processing (NLP), a key area of
artificial intelligence (AI). These models, commonly referred
to as large language models (LLMs), often contain billions or
trillions of parameters and have greatly improved our ability to
extract meaningful insights from unstructured data [2], achieving
state-of-the-art results in various NLP tasks since the
introduction of bidirectional encoder representations from
transformers [3]. LLMs have excelled in tasks, such as
translation, answering of questions, summarization, sentiment
analysis, language generation, and named entity recognition.
They are used in diverse fields, including analyzing corporate
filings for investment decisions [4], assessing online reviews
[5], and performing sentiment analysis of tweets [6].

Recently, advanced LLMs such as DeBERTa
(Decoding-Enhanced Bidirectional Encoder Representations
from Transformers with Disentangled Attention) [7] and
OpenAI’s GPT-4 [8] have demonstrated substantial performance
improvements. These enhancements include improvements in
model architecture, such as DeBERTa’s disentangled attention
mechanism and GPT-4’s increased model size and training data,
which enhance their prediction accuracy and their capacity to
handle complex language understanding tasks. These
advancements have opened new possibilities for health care
applications of NLP, such as analyzing social media and online
forums to assess trust and confidence toward vaccine use [9],
adverse drug reactions [10,11], and depression [12], among
others [13-16]. However, many potential applications of NLP
in health care remain underexplored.

One critical issue is early drug discontinuation and nonadherence
to prescribed medication, which negatively affects patient
outcomes and increases health care costs [17]. The reasons
behind early medication discontinuation are not well understood
[18,19], and detecting drug discontinuation events (DDEs) from
clinical narratives and social media data is underexplored.

Some studies have explored medication discontinuation using
data from social media and NLP techniques. Golder et al [20]
conducted a mixed methods study analyzing patient-reported
reasons for switching or discontinuing statin therapy using social
media data from WebMD. Their work focused specifically on
statins and relied on manual annotation for classifying DDEs
and their root causes. Similarly, van Buchem et al [21]
developed and validated the AI patient-reported experience
measure (AI-PREM) by analyzing patient experiences using
NLP. Their study primarily used sentiment analysis to gauge
patient experiences but did not focus on detecting specific events
such as DDEs.

Another study by Tsai et al [22] used NLP and network analysis
to examine patients withdrawing from life-sustaining treatments
using electronic health records from 119 patients in Taiwan.
Their approach involved generating document-term matrices
and analyzing word frequencies to identify patterns. However,
they did not use pretrained LLMs, and their study was limited
to a small dataset.

While these studies and others [23-26] contribute valuable
insights into patient experiences and reasons for medication
discontinuation, they have limitations such as focusing on
specific medications, relying on manual annotation, or not
leveraging advanced LLMs for broader applicability. To the
best of our knowledge, no prior studies have systematically
analyzed the root causes of medication discontinuation using
state-of-the-art LLMs such as OpenAI’s GPT-4o, especially in
a zero-shot classification setting applied to large-scale,
unstructured patient-generated data from web-based forums.

Historically in many NLP applications, the models needed to
be fine-tuned or adjusted for each specific task. However,
state-of-the-art LLMs are capable of zero-shot classification,
which are especially valuable in settings where data are scarce,
as they do not require modifications or fine-tuning on
task-specific data. This feature is particularly beneficial in the
medical field, where access to data is often limited due to patient
confidentiality concerns. Motivated by challenges associated
with limited data availability in health care research, the primary
aim of this study is to develop a versatile framework for
addressing clinical research questions in data-sparse settings
by leveraging pretrained LLMs and zero-shot classification of
unstructured data from web-based health forums. The specific
objectives of this paper are as follows:

1. To present a methodical approach to detecting DDEs posted
on web-based health forums

2. To identify the root causes of DDEs posted on web-based
health forums

3. To evaluate the effectiveness of different classification
strategies and models in identifying DDEs and their root
causes

4. To introduce and validate the first open-source DDE
detection dataset and the first open-source DDE root cause
classification dataset to support ongoing and future research

In addition, our work is novel in 4 additional aspects. First,
studies in the extant work mainly used electronic health records
(EHRs) as the data source [17]. Due to the poor documentation
of drug discontinuation events (DDEs) in EHRs [17], it is crucial
to understand the causes of discontinuation from the patient’s
perspective to improve medication adherence. Traditional EHR
data often lack direct patient input, as they are usually filtered
through health care providers. Moreover, privacy concerns
surrounding patient health data often restrict accessibility to
large open-source datasets for health research. Meanwhile,
web-based forums such as MedHelp offer unmediated patient
perspectives, provide insights not captured in EHRs, and involve
a large and diverse population. Identifying the root causes of
DDEs from the patient’s viewpoint on the basis of a
representative sample can enhance our understanding of patient
behavior and the challenges they face.

Second, to the best of our knowledge, this is the first work that
compares state-of-the-art text-to-text models with the previous
generation of models that receive text as an input and respond
with text as an output, such as GPT-4o. Many open-source
pretrained large language models (LLMs) fine-tuned for
zero-shot classification are available through platforms like
Hugging Face [27]. These models can predict whether a given
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text supports an arbitrary hypothesis without needing additional
training for each new task. This means that if a human reader
can infer the truth of a hypothesis from the text, the model can
make a prediction to do the same [28]. Typically, these models
output a probability between 0 and 1, indicating how likely it
is that the hypothesis is true based on the given text. To be able
to apply these approaches to the problem, we designed a novel
framework that leverages these models to identify DDE and the
associated root causes.

Third, we demonstrated the effectiveness of LLMs in addressing
clinical research questions without extensive training data. This
approach overcomes the limitations of previous methods [17]
by using transfer learning to tackle data scarcity. Our study
shows that LLMs such as bidirectional and auto-regressive
transformers (BART) and GPT-4o, with their generalization
capabilities, are versatile for new tasks. This novel methodology
could revolutionize the way clinical research questions are
approached, opening a new paradigm in health informatics
research.

Fourth, this paper introduces 2 open-source datasets, the first
of their kind: one focused on DDE detection and another on
root cause classification of DDEs. By creating and publishing
these datasets, we aimed to motivate and facilitate future
research efforts toward investigating drug discontinuation. For
example, researchers could use these datasets to investigate why
patients discontinue specific medications early. By extracting
and analyzing comments that describe DDEs, they can identify
the root causes and guide future research to address side effects
or other factors associated with drug discontinuation.

Overall, this research provides valuable insights into patient
behavior and decision-making regarding medication use,
highlighting the real-world challenges faced by the patients.
These insights can inform health care providers, policy makers,
and pharmaceutical companies, helping them to better
understand and address barriers to medication adherence.

Methods

Overview
The effectiveness of research outcomes in NLP relies heavily
on the methods and materials used. This section outlines the
strategies and resources used in this study, focusing on LLMs.
In particular, this study introduces an innovative approach by
redefining DDE detection as a natural language inference task.
This approach enables LLMs to leverage their existing training
to deduce relationships between text elements, achieving the
desired outcomes without the need for additional training data
or model fine-tuning.

We sourced data from MedHelp [29], a publicly accessible
web-based health community where users discuss health
experiences and share advice. This section details the
methodology used for detecting DDEs from comments posted
on MedHelp and analyzes the root causes of these DDEs using
LLMs.

Data Scraping and Preprocessing
Our dataset was compiled by scraping 759,872 questions and
answers from 131 of the 193 communities on MedHelp. Each
question or answer has a unique URL, with information
corresponding to each being recorded as a separate row in our
dataset.

The dataset was then trimmed down by excluding questions
and answers that lacked relevant study keywords. These
keywords were derived from the International Drug Dictionary
dataset [30], reducing our dataset to 183,565 questions and
answers.

Data Labeling

Overview
To create the first open-source DDE datasets and to assess the
accuracy of LLMs at detecting DDEs and identifying their root
causes, we used graduate students to label the data obtained
from MedHelp. For DDE detection, 1000 comments were
labeled, resulting in 893 (89.3%) non-DDE comments and 107
(10.7%) DDE comments. Of the 89 (8.9%) comments that the
labelers did not unanimously agree upon, the majority vote was
taken as the “ground truth.” Here, the “ground truth” refers to
the correct classification for each comment, based on the
consensus of the labelers.

For DDE root cause analysis, 1000 (100%) comments suspected
of containing DDEs were categorized based on predefined
criteria. Multiple root causes can apply to a single DDE and a
single comment can express multiple DDEs, allowing multiple
root causes to be assigned to one comment. When the labelers
disagreed, they discussed the comments to reach a consensus.

Classifying Comments as DDE or Non-DDE
Labelers were asked to categorize each comment into either of
the following categories:

• 0—non-DDE (the comment does not contain a DDE)
• 1—DDE (the comment contains a DDE)

The comments were classified as DDE if a specific person’s
discontinuation of a recurring medication or treatment could be
inferred from it. Medication changes were considered as DDEs
while one-time treatments were not. Apart from this, labelers
were asked to indicate their level of confidence in their labels
by selecting one of the three confidence levels: (1) very
confident (2890/3000, 96.33%); (2) somewhat confident
(102/3000, 3.4%); and (3) not confident (8/3000, 0.27%). The
percentage in parentheses alongside each confidence level
indicates the rate at which the confidence level was selected by
the labelers.

Classifying the Root Causes of DDEs
After identifying comments containing DDEs, the next step
involved categorizing the root causes of these discontinuations.
Labelers were provided with detailed guidelines and definitions
for each category to ensure consistency and accuracy (Textbox
1).

Labelers were instructed to apply these categories to each
comment identified as containing a DDE. They could assign
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multiple categories to a single comment if it mentioned >1
reason for discontinuation. The comprehensive guidelines,
including examples and the decision tree shown in Figure 1,
helped labelers accurately and consistently classify the root

causes of DDEs. The aim was to capture the complex and
multifaceted reasons behind medication discontinuation,
providing valuable insights for further analysis.

Textbox 1. Categories for root causes.

• Treatment success: discontinuation due to successful treatment completion or sufficient improvement in health

• Treatment inefficacy: perceived ineffectiveness of the treatment or loss of belief in its efficacy

• Adverse reactions: discontinuation due to adverse side effects, allergic reactions, or negative interactions with other medications

• Accessibility issues: issues related to financial constraints, changes in prescriber decisions, or market availability

• Personal choices: discontinuation based on personal decisions, cultural or religious reasons, or general nonadherence without medical advice

• Alternative medical reasons: other medical reasons not explicitly covered by the other categories

• Indeterminate: unclear or unspecified reasons for discontinuation

• Nondiscontinuation: comments that do not indicate any form of drug discontinuation
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Figure 1. Decision tree for labeling the root causes of drug discontinuation events.

Models
In this study, we used the following models from Hugging Face
(Hugging Face, Inc)—all of which are LLMs fine-tuned for
zero-shot classification—to detect DDEs in comments posted
on web-based forums: nli-deberta-base [31]; bart-large-mnli
[32]; roberta-large-mnli [33]; distilbert-base-uncased-mnli [34];
nli-distilroberta-base [35].

In addition, we used OpenAI’s GPT-3.5 Turbo and GPT-4
models [36]. These LLMs have been trained on a wide range

of internet text and can generate humanlike text, making them
useful for our research. GPT-3.5 Turbo is smaller and less costly
than GPT-4 because of its fewer parameters [37]. As illustrated
in Figure 2, these models can be used to analyze a premise from
a web-based forum post (eg, a post from MedHelp) alongside
a hypothesis (eg, “person stopped taking medication”) and
output a probability, such as 0.8, for whether the premise entails
the hypothesis. This approach allows us to identify potential
discontinuation events in a zero-shot manner without requiring
additional training data.
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Figure 2. Illustration of how large language models fine-tuned to perform natural language inference can be used to perform zero-shot classification.
MNLI: Multi-Genre Natural Language Inference; RoBERTa: Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining
Approach.

Data Classification Procedure Used to Detect DDEs
Detecting DDEs can be framed as a binary classification task,
where the goal is to determine whether a text sequence contains
a DDE or not. For example, the statement “patient stopped
Lipitor because of cost” would be classified as containing a
DDE. Each model, including GPT-3.5 Turbo and GPT-4,
performed zero-shot classification as described in the
classification strategies later. For models from the Hugging
Face library, comments from MedHelp were treated as premises
with the hypothesis being the following: “Person stopped taking
medication.” Note that the results presented in this paper and
the performance of the proposed framework are sensitive to the
hypothesis used, and using a different hypothesis could result
in different results.

For GPT-3.5 Turbo and GPT-4, the models were prompted to
generate a response to a query using the comment as context.
The model’s output was processed to derive a probability of
entailment, which was used for classification. The evaluation
setting for the GPT models varied with the classification strategy
used and was influenced by the model version. It is important
to note that the DDE detection experiments were performed
before the release of GPT-4 Turbo and the release of the “set
seed” and structured JavaScript Object Notation response
features by OpenAI. As a result, carefully structured prompts
were needed to obtain parseable responses from the GPT models
for the task of DDE detection. These prompts and the complete
code used in this work are available on GitHub [38]. The
subsequent sections detail the procedures used to classify
comments into the 2 categories, with practical examples of these
classification strategies shown as figures.

Step 1: Split Each Comment Into Sentences and
Tokenize
The models used for DDE detection, including GPT-3.5 Turbo
and GPT-4, have a maximum token input length. This means
each model can only process text that, when tokenized, is within
its maximum token limit. Given that questions and answers on

MedHelp can exceed these limits, we split longer comments
into smaller chunks for classification. A comment was classified
as discussing a DDE if any of its segments were classified as
such. To handle the prevalence of typos and missing
punctuation, we used the spaCy Python library’s Sentencizer
method [39] to segment each question and answer into
sentences. Despite some inaccuracies due to informal language,
typos, or incorrect punctuation, we referred to the output of the
Sentencizer as the consecutive “sentences” forming each
question or answer from MedHelp.

Step 2: Apply a Classification Strategy
Each comment was processed using 3 distinct classification
strategies: classification strategy 1 (CS1, see Figure 3 and
Textbox 2), classification strategy 2 (CS2; see Figures 4 and 5
and Textbox 3), and classification strategy 3 (CS3; see Figure
5 and Textbox 4).

In CS1 (Figure 3; Textbox 2), each sentence from the text is
treated as a premise and passed into the model individually.
The maximum probability (ie, model output) returned for any
premise is identified. If this maximum probability is above a
user-defined cutoff level, the original post is classified as
containing a DDE. In the example shown in Figure 3, the post
is classified as containing a DDE because the maximum model
output exceeds the user-defined cutoff level (95%).

In CS2 (Figures 4 and 5; Textbox 3), consecutive sentences are
concatenated and passed into the model as single premises. The
maximum model output for any premise is compared to a
user-defined cutoff value. In the example shown in Figure 4,
the post is classified as containing a DDE because the maximum
probability (99.4%) is higher than the cutoff level (95%).

In Figure 5, an example shows a scenario where the total number
of tokens in the original post exceeds the maximum input length
that the model can accept. Here, sequential sentences are
grouped to ensure no group exceeds the model’s maximum
token limit (Textbox 4).
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Figure 3. An example illustrating classification strategy 1. DDE: drug discontinuation event; Max: maximum; MNLI: Multi-Genre Natural Language
Inference; RoBERTa: Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach.

Textbox 2. CS1—classification strategy 1: individual sentences.

1. Each sentence in a comment was classified individually, generating a “model output” for each sentence ranging from 0 (non-DDE) to 1 (DDE).

2. The “model prediction” was set as the maximum of all the “model outputs” for the sentences.

3. If the “model prediction” exceeded a user-defined cutoff value, the comment was classified as a DDE. Otherwise, it was categorized as a non-DDE.

Figure 4. An example illustrating classification strategy 2 when using a model with a large maximum token input length. DDE: drug discontinuation
event; Max: maximum; MNLI: Multi-Genre Natural Language Inference; RoBERTa: Robustly Optimized Bidirectional Encoder Representations from
Transformers Pretraining Approach.

Figure 5. An example illustrating classification strategy 2 when using a model with a small maximum token input length. DDE: drug discontinuation
event; Max: maximum; MNLI: Multi-Genre Natural Language Inference; RoBERTa: Robustly Optimized Bidirectional Encoder Representations from
Transformers Pretraining Approach.

Textbox 3. CS2—classification strategy 2: groups of sentences.

1. Groups of sentences were created by concatenating as many consecutive sentences together as possible while staying within the maximum token
input length of the model.

2. Each group of sentences was classified as a single block of text, generating a “model output” for each group of sentences ranging from 0 (non-DDE)
to 1 (DDE).

3. The “model prediction” was set as the maximum of all the “model outputs” for the different groups of sentences.

4. If the “model prediction” exceeded a user-defined cutoff value, the comment was classified as a DDE. Otherwise, it was classified as a non-DDE.

Textbox 4. CS3—classification strategy 3: entire text (ChatGPT only).

The entire text is passed into the ChatGPT model at once, and the model is prompted to provide a binary “1” (DDE) or “0” (non-DDE) classification
for each comment.
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Step 3: Compare the “Model Prediction” to a
User-Defined “Cutoff” Value
To derive a binary classification for a comment from the set of
model outputs for each sentence (CS1) or block of sentences
(CS2), we compared the maximum of all the model outputs to
a cutoff value. If the maximum model output for any sentence
or block of sentences is greater than the cutoff value, the
comment is classified as a DDE. Otherwise, it is classified as
a non-DDE. Cutoff values were tested from 0.05 to 0.95 in
increments of 0.05. Adjusting the cutoff impacts the trade-off
between sensitivity and specificity, reflected in the resulting
false positive rate (FPR) and false negative rate (FNR) of each
classifier. This approach helps identify an optimal cutoff that
balances false positives and false negatives. This structured
approach ensures a comprehensive analysis and maximizes the
accuracy of DDE detection in unstructured web-based forum
data.

Data Classification Procedure Used to Detect the Root
Causes of DDEs
Once DDEs were identified, we proceeded to classify the root
causes of these discontinuations. The root cause classification
was treated as a multilabel classification task, allowing each
comment to be associated with multiple reasons for
discontinuation.

Applying CS1, CS2, and CS3 to DDE Root Cause
Classification
The same classification strategies (ie, CS1, CS2, and CS3) used
to detect DDEs were applied to identify the root causes of DDEs.

CS1: Individual Sentences

Each sentence in a DDE-identified comment was classified
individually to determine the root causes. Each sentence was
analyzed to see if it fit any of the predefined root cause
categories in the Classifying the Root Causes of DDEs section.

If any sentence indicated a root cause, it was considered a
relevant cause for the entire comment. The final set of root
causes for the comment was derived from the union of causes
identified in individual sentences.

CS2: Groups of Sentences

Groups of sentences were classified together to determine the
root causes. This method ensured that contextual information
was preserved, which is crucial for accurately identifying root
causes that may span multiple sentences. Each group of
sentences was evaluated against the predefined categories of
root causes, and the maximum model output for each group
determined the presence of specific root causes.

CS3: Entire Comment

The entire text of each DDE-identified comment was passed
into the ChatGPT model to classify the root causes. The model
was prompted to first summarize the reasons for discontinuation
and then was asked to generate a list of applicable root causes
from the predefined categories. This approach leveraged the
model’s ability to understand the context of the entire comment,
providing a comprehensive assessment of the root causes.

Comparing Model Predictions to Cutoff Values
For both CS1 and CS2, the maximum model output for each
root cause category was compared to a user-defined cutoff value.
If the model output exceeded the cutoff, the root cause was
assigned to the comment.

The complete set of prompts and hypotheses used for both DDE
detection and root cause analysis can be found on our GitHub
repository [38]. These details are omitted here for brevity, but
they are available on the web and in Multimedia Appendix 1
to ensure transparency and facilitate replication of our methods.
Researchers and practitioners can access these resources to
better understand the specific inputs used in our classification
models and apply similar techniques to their own datasets.

Ethical Considerations
This study involves the analysis of user-generated content on
MedHelp, a publicly accessible health forum where individuals
share personal medical experiences and seek health advice.
Given the sensitive nature of the health information discussed,
we are committed to protecting user privacy and ensuring ethical
handling of all data. While the content on MedHelp is publicly
available, users have not explicitly consented to participate in
this research. We acknowledged the need to respect users’
implied expectations of privacy, especially given the
health-focused context of the discussions. No attempt was made
to contact individual users nor were they asked to participate
directly in this study. The scraped data have been processed in
a way that prevents the association of responses or health
conditions with specific users. This study complies with all
relevant ethical guidelines for internet-based research, and we
did not find it necessary to seek an ethics review board
assessment based on the guidelines set by the University of
Florida institutional review board.

Results

Overview
This section presents the results of our experiments on detecting
DDEs and identifying their root causes. We evaluated the
performance of various LLMs, using different classification
strategies. The evaluation included precision-recall (PR) curves,
receiver operating characteristic (ROC) curves, and detailed
performance metrics for each classifier and strategy
combination.

DDE Detection Task
The effectiveness of the classifiers in detecting DDEs was
evaluated using PR and ROC curves. Figures 6 and 7 show the
PR and ROC curves for each classifier under each classification
strategy, respectively. These figures also include the area under
the curve (AUC) for each combination of classifier and strategy.
Of all the models and classification strategies, bidirectional and
auto-regressive transformers (BART) under CS1 achieved the
highest ROC AUC of 0.977 and the highest PR AUC of 0.904.
On the other hand, GPT-3.5 Turbo under CS2 had the lowest
ROC AUC of 0.611 and the lowest PR AUC of 0.215.

Under CS3, GPT-4 achieved an F1-score of only 0.56, an FPR
of 12.9%, an FNR of 18.7%, and an accuracy of 86.5%. GPT-3.5
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Turbo performed even more poorly under CS3, achieving an
F1-score of only 0.27, an FPR of 5.6%, an FNR of 76.6%, and
an accuracy of 86.8%, illustrating the imbalance in the dataset.
In comparison, the best-performing classifier at the task of DDE

detection was BART under CS1, achieving an F1-score of 0.86,
an accuracy of 96.8%, an FPR of 2.8%, and an FNR of 6.5%.
A summary of these performance metrics can be found in Tables
S1-S9 in Multimedia Appendix 1.

Figure 6. The precision-recall curve of each classifier on the task of detecting drug discontinuation events. BART: Bidirectional and Auto-Regressive
Transformers; DeBERTa: Decoding-Enhanced Bidirectional Encoder Representations from Transformers with Disentangled Attention; RoBERTa:
Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach.

Figure 7. The receiver operating characteristic curve of each classifier on the task of detecting drug discontinuation events. BART: Bidirectional and
Auto-Regressive Transformers; DeBERTa: Decoding-Enhanced Bidirectional Encoder Representations from Transformers with Disentangled Attention;
RoBERTa: Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach.

DDE Root Cause Classification Task
To assess the performance of the classifiers in identifying the
root causes of DDEs, we used multiple evaluation metrics,
including micro-average ROC AUC, macro-average ROC AUC,
weighted-average ROC AUC, micro-average PR AUC,
macro-average PR AUC, weighted-average. PR AUC,
micro-average F1, macro-average F1, weighted-average F1,
hamming loss, Jaccard score, and subset accuracy. The results
across all DDE root causes are summarized in Tables 1 and 2.

Tables 3 and 4 show the performance of GPT-4 Turbo and
GPT-4o at predicting each individual DDE root cause. Overall,
GPT-4o performed the best across the board achieving the
highest averaged F1-scores, the lowest hamming loss, and the

highest Jaccard score and subset accuracy of all the classifiers.
On the other hand, BART and DeBERTa performed very poorly
across the board on the task of DDE root cause detection as
shown in Tables 1 and 2.

An overview of the frequency of each DDE root cause in our
labeled dataset of 1000 comments is provided in Table 5.

The most common DDE root causes in our dataset were personal
choices with 670 (67%) occurrences and adverse reactions with
627 (62.7%) occurrences, and the least common was treatment
success with 96 (9.6%) occurrences. In addition, only 10%
(100/1000) of the comments were labeled as non-DDE by
labelers, suggesting the accuracy performance is consistent with
the experiments performed regarding DDE detection in a smaller
labeled dataset.
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Table 1. Evaluation metrics for DDEa root cause classification (part 1).

Weighted-average
PR AUC

Macro-average
PR AUC

Micro-average

PRd AUC
Weighted-average
ROC AUC

Macro-average
ROC AUC

Micro-average

ROCb AUCcStrategyClassifier

0.4723260.3003140.3382430.5024510.5079890.568669CS1fDeBERTae

0.4720030.3009470.3123810.5007920.5082990.528049CS2gDeBERTa

0.4745430.3019870.3687730.5070810.5105270.604359CS1BARTh

0.4808450.3066750.3448690.5188260.5186570.581217CS2BART

aDDE: drug discontinuation event.
bROC: receiver operating characteristic.
cAUC: area under the curve.
dPR: precision-recall.
eDeBERTa: Decoding-Enhanced Bidirectional Encoder Representations from Transformer with Disentangled Attention.
fCS1: classification strategy 1.
gCS2: classification strategy 2.
hBART: Bidirectional and Auto-Regressive Transformers.

Table 2. Evaluation metrics for DDEa root cause classification (part 2).

Subset accuracyJaccard scoreHamming lossWeighted-average
F1

Macro-average
F1

Micro-average
F1

StrategyClassifier

0.0149050.2186920.365940.3592740.2459750.337991CS1cDeBERTab

0.0050950.1196090.3660950.2449920.1848990.222708CS2dDeBERTa

0.0299050.2923730.3635480.4414980.2844610.425243CS1BARTe

0.0154760.2974450.4695710.5167830.3499290.445648CS2BART

0.3440.6345670.1530.7119240.6160370.729443CS3fGPT-4 Turbo

0.3560.68230.1288750.7868990.7390960.783084CS3GPT-4o

aDDE: drug discontinuation event.
bDEBRTa: Decoding-Enhanced Bidirectional Encoder Representations from Transformer with Disentangled Attention.
cCS1: classification strategy 1.
dCS2: classification strategy 2.
eBART: Bidirectional and Auto-Regressive Transformers.
fCS3: classification strategy 3.
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Table 3. Detailed performance metrics by DDEa root cause for GPT-4 Turbo.

TNReFNRdTPRcFPRbAccuracyRecallPrecisionF1-scoreClass

0.96790.39580.60420.03210.9330.60420.66670.6339Treatment success

0.89470.31600.68400.10530.8420.68400.68400.6840Treatment inefficacy

0.69440.13240.86760.30560.8030.86760.82670.8467Adverse reactions

0.99210.48740.51260.00790.9350.51260.89710.6524Accessibility issues

0.68480.20750.79250.31520.7570.79250.83620.8138Personal choices

0.84540.51670.48330.15460.6940.48330.69180.5690Alternative medical reasons

0.99220.96120.03880.00780.8940.03880.36360.0702Indeterminate

0.93220.21000.79000.06780.9180.79000.56430.6583Non-DDE

aDDE: drug discontinuation event.
bFPR: false positive rate.
cTPR: true positive rate.
dFNR: false negative rate.
eTNR: true negative rate.

Table 4. Detailed performance metrics by DDEa root cause for GPT-4o.

TNReFNRdTPRcFPRbAccuracyRecallPrecisionF1-scoreClass

0.97120.22920.77080.0280.9520.77080.740.7551Treatment success

0.93470.2080.7920.06530.8990.7920.80160.7968Treatment inefficacy

0.85520.14040.85960.14480.8580.85960.90890.8836Adverse reactions

0.97960.21850.78150.02040.9560.78150.83780.8087Accessibility issues

0.72120.17310.82690.27880.7920.82690.85760.8419Personal choices

0.71990.33730.66270.28010.6960.66270.62950.6457Alternative medical reasons

0.90640.57280.42720.09370.8570.42720.34380.3810Indeterminate

0.97440.18000.82000.02560.9590.82000.78100.8000Non-DDE

aDDE: drug discontinuation event.
bFPR: false positive rate.
cTPR: true positive rate.
dFNR: false negative rate.
eTNR: true negative rate.

Table 5. Frequency of labels in the dataset.

Comments (n=1000), n (%)Label

670 (67)Personal choices

627 (62.7)Adverse reactions

418 (41.8)Alternative medical reasons

250 (25)Treatment inefficacy

119 (11.9)Accessibility issues

103 (10.3)Indeterminate

100 (10)Nondiscontinuation

96 (9.6)Treatment success
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Discussion

DDE Detection

Overview
The results from the PR and ROC curves highlight significant
differences in the performance of the models at detecting DDEs
using the 3 different classification strategies: CS1, CS2, and
CS3. These metrics are essential for understanding the trade-offs
between sensitivity and specificity in identifying DDEs, which
is vital in clinical settings where missing a DDE can have serious
implications.

The PR curves (Figure 6) demonstrate the effectiveness of each
classifier in handling the imbalanced nature of the dataset.
BART under CS1 achieved the highest PR AUC, indicating its
superior ability to maintain high precision without sacrificing
recall. This performance suggests that BART is particularly
adept at identifying DDEs in a dataset where DDEs are relatively
rare, representing only 107 (10.7%) of the 1000 comments we
labeled. In contrast, GPT-3.5 Turbo under CS2 had the lowest
F1-score of only 0.22, showing significant challenges in
balancing precision and recall. These results highlight the
limitations of some models when applied with the classification
strategies we developed and to our imbalanced data set.
However, these results highly depend on the prompts used with
the models, and better results may be achieved by using different
prompts in conjunction with the proposed classification
strategies. Further research into this area is needed to better
understand this phenomenon.

Similarly, the ROC curves (Figure 7) illustrate the classifiers’
ability to distinguish between DDE and non-DDE cases across
various thresholds. The area under the ROC curve provides a
measure of the overall discriminative power of the models.
BART’s high area under the ROC curve under CS1 indicates
its robustness in differentiating between the 2 classes, even at
different decision thresholds. This robustness is crucial in
clinical applications where both high sensitivity and specificity
are required to minimize false negatives and false positives.

Classification Strategies

CS1: Individual Sentences

This strategy was particularly effective for both DeBERTa and
BART in detecting DDEs, maintaining a higher balance between
precision and recall as evidenced by their PR AUC scores. By
analyzing sentences individually, this approach mitigates the
dilution of relevant information, which is particularly beneficial
in contexts where critical information might be embedded within
longer text.

CS2: Groups of Sentences

While this strategy provided context by combining multiple
sentences, it often resulted in a higher FNR due to the dilution
of relevant information with surrounding text. This observation
aligns with our hypothesis that feeding multiple sentences to a
model simultaneously can lead to relevant DDE mentions being
overshadowed by unrelated information. However, an intriguing
exception was observed for GPT-4, which performed slightly
better under CS2 than CS1 at higher cutoff values. This suggests

that GPT-4 might better leverage the entire context of comments
to make more informed classifications, indicating its potential
to handle more complex and detailed contexts.

CS3: Entire Comment (GPT 3.5 Turbo and GPT-4 Models
Only)

Interestingly, the performance of GPT-4 under CS3 was
comparable to its performance under CS2 with a cutoff of 0.75,
contradicting our initial hypothesis that the GPT models would
perform better under the binary classification task considered
in CS3. This implies that the architecture and training
methodology of GPT-4 may not align with the approach
implemented in CS3 or that our prompt design in CS3 was not
optimally formulated. Further investigation is needed to
understand this phenomenon better.

Key Takeaways

Superior Performance of BART

BART’s superior performance, particularly under CS1,
highlights its robustness and reliability in detecting DDEs from
unstructured patient-generated content. This finding suggests
that BART can be effectively used in clinical research to identify
relevant data from imbalanced datasets without the need for
extensive fine-tuning, which is crucial for real-world
applications where data imbalance is common.

Because of BART’s exceptional performance in DDE detection,
we used BART under the classification strategy and cutoff that
it achieved the best performance with to curate the dataset we
labeled and used for our DDE root cause analysis. BART
achieved the highest F1-score of 0.86 under CS1 with a cutoff
of 0.9.

Class Imbalance

The significant class imbalance, with only 107 out of 1000
(10.7%) comments labeled as DDEs, emphasizes the need for
careful evaluation of classifier performance beyond overall
accuracy. Metrics such as PR AUC provide a more
comprehensive understanding of model performance, ensuring
that high accuracy does not mask poor performance in detecting
less frequent but critical events.

Real-World Applications

High FPRs and FNRs in DDE detection can lead to missed
DDEs or unnecessary interventions, respectively. Therefore,
achieving a balance in FPR and FNR, as demonstrated by BART
under CS1 with a cutoff of 0.9, is essential for practical
applications. This balance ensures that models can effectively
support health care providers in making informed decisions
based on patient-generated data.

DDE Root Cause Analysis
Our multilabel classification approach enabled the identification
of multiple reasons for drug discontinuation within a single
comment, offering a comprehensive understanding of patient
behavior and decision-making. This robust methodology allowed
us to leverage the strengths of LLMs to tackle complex clinical
research questions related to DDEs.
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Performance Highlights

DeBERTa and BART Struggled at Detecting DDE Root
Causes
Both models struggled significantly at identifying the root causes
of DDEs, as indicated by their much lower F1-scores and higher
hamming loss in Table 2 in comparison to GPT-4 Turbo and
GPT-4o. Another interesting observation was that 10%
(100/1000) of the comments in the dataset were non-DDEs,
meaning that BART under CS1 with a cutoff of 0.9 inaccurately
classified them as DDEs. We noticed that BART tended to label
non-DDE comments as DDEs if they contained phrases such
as “I am not on any medication.” This is an important takeaway
as it shows that even the models that performed the best at
detecting DDEs still have tendencies to make mistakes in certain
scenarios.

GPT-4 Turbo and GPT-4o Performed Exceptionally
Well at Detecting DDE Root Causes
These models outperformed DeBERTa and BART across most
metrics. GPT-4o, in particular, achieved the highest F1-scores,
lowest hamming loss, and highest Jaccard scores, indicating its
superior ability to accurately and reliably classify the root causes
of DDEs. The advanced capabilities of GPT-4 Turbo and
GPT-4o in processing complex textual inputs holistically
contributed to their outstanding performance.

Classification Strategies

CS1 (Individual Sentences) and CS2 (Groups of Sentences)

Although these strategies were effective for both DeBERTa and
BART at detecting DDEs, the models struggled at detecting the
root causes of DDEs under these strategies, as indicated by their
extremely poor performance results shown in Tables 1 and 2.

CS3: Entire Comment (GPT-4 Turbo and GPT-4o Models
Only)

GPT-4 Turbo and GPT-4o performed exceptionally well under
CS3, likely due to their advanced capabilities in understanding
and processing complex textual inputs holistically. This strategy
allowed the models to capture the full context of the comments,
leading to more accurate and reliable DDE root cause
identification.

Key Takeaways

Superior Performance of GPT-4 Turbo and GPT-4o

The outstanding performance of GPT-4 Turbo and GPT-4o
models highlights the importance of using advanced language
models for complex classification tasks in health care. Their
ability to accurately identify the root causes of DDEs can
provide valuable insights for health care providers, enabling
them to address patient concerns more effectively and improve
medication adherence.

Challenges With Indeterminate Class

One notable challenge was the performance of GPT-4 Turbo in
detecting DDEs belonging to the indeterminate class. For
instance, a comment such as “My dad was diagnosed with
bipolar disorder and stopped taking his meds after being in a
rehabilitation center twice” did not clearly state the reason for

discontinuation. Instead of classifying this as indeterminate,
GPT-4 Turbo attempted to infer specific reasons such as
personal choices or adverse reactions. This tendency to infer
explicit conditions from ambiguous statements indicates a
potential overfitting issue, where the model predicts more
common classes instead of recognizing the ambiguity inherent
in the input.

Class Imbalance

The significant class imbalance presented a challenge for all
classifiers. Classes with higher frequencies, such as personal
choices and adverse reactions, exhibited better performance.
In contrast, less frequent classes such as indeterminate showed
lower performance, highlighting the need for more balanced
training datasets or advanced techniques to handle class
imbalance effectively.

Clinical Implications
The superior performance of GPT-4 Turbo and GPT-4o in both
DDE detection and root cause analysis underscores their
potential application in clinical settings. These models can help
health care providers identify common reasons for drug
discontinuation, enabling the development of targeted
interventions to improve medication adherence and patient
outcomes. By leveraging these advanced NLP models, clinicians
and researchers can gain deeper insights into patient behavior
and decision-making processes, facilitating more effective and
personalized health care strategies.

This research emphasizes the importance of capturing the
patient’s perspective directly from web-based health forums,
which offers a richer and more authentic understanding of
patient behavior and the real-world challenges they face
compared to traditional electronic health record data. By
identifying the root causes of DDEs from the patient’s
standpoint, health care providers, policy makers, and
pharmaceutical companies can develop more targeted
interventions to enhance medication adherence and patient
outcomes.

Future Research Directions
To further enhance the applicability and reliability of these
models in real-world settings, future research should focus on
the opportunities outlined in the subsequent sections.

Real-World Applications
This research provides a foundation for clinical applications,
such as improving patient adherence, by identifying common
reasons for drug discontinuation. Health care providers can use
these insights to develop targeted interventions and support
systems to address the specific challenges faced by patients,
ultimately enhancing treatment outcomes. Furthermore, applying
these findings in real-world settings, such as clinical decision
support systems, where accurate and reliable classification of
text can significantly impact patient outcomes and health care
processes, represents a substantial opportunity. Developing
scalable and cost-effective solutions for deploying these models
in practice will be crucial.

J Med Internet Res 2025 | vol. 27 | e54601 | p. 13https://www.jmir.org/2025/1/e54601
(page number not for citation purposes)

Trevena et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Prompt Optimization
Future research should explore various prompt optimization
techniques to enhance model performance. This includes
experimenting with chain-of-thought prompting, which has
been shown to improve the performance of LLMs on complex
reasoning tasks. In addition, investigating the impact of prompt
specificity and structure on DDE root cause classification
performance can provide valuable insights into optimal prompt
design. For instance, future research could examine how the
performance of GPT-4 Turbo and GPT-4o changes when
examples of positive instances for low-frequency classes are
included in the prompt. One concern with this approach is the
potential for “prompt dependency,” where providing specific
examples might restrict the model’s ability to generalize and
accurately classify comments that differ in nature from those
presented in the prompt.

Exploring Other State-of-the-Art LLMs
Research should be expanded to include state-of-the-art language
models from developers other than OpenAI, such as models
from Anthropic, Google, and Cohere. Models such as Claude
by Anthropic and Gemini by Google have shown promising
results in various NLP tasks and could be valuable for this study.
In addition, models from research institutions, such as Command
R by Cohere, should also be considered for comprehensive
performance comparisons. By comparing the performance of
these models on DDE root cause classification, we can identify
the best tools for specific multilabel classification tasks and
potentially reduce dependency on any single provider. This
comparative analysis will help in understanding the strengths
and limitations of each model in handling complex health
care–related data, ultimately leading to more robust and versatile
NLP applications.

Cost Minimization Strategies
Developing strategies to minimize the costs associated with
using advanced NLP models is essential. This includes exploring
open-source alternatives, such as LLaMA, optimizing model
use to reduce application programming interface calls, and
implementing efficient data processing pipelines. Research
directions toward cost minimization could potentially align with
advanced prompting techniques, such as classifying multiple
comments with a single prompt and application programming
interface call. However, preliminary research suggests that
longer prompts lead to degraded performance of LLMs, even
when the number of tasks in a single prompt does not increase.

Limitations
In summary, this research provides valuable insights into the
ability of LLMs to detect DDEs from textual comments.
However, the results should be interpreted with some caution
due to the small sample size of DDE-labeled comments and the
case imbalance inherent in our dataset. It is also worth
mentioning that, as our study was restricted to English language
comments from MedHelp, the generalizability of our results to
other languages and platforms is not guaranteed. Furthermore,
because the models used in this work generate stochastic
outputs, the reproducibility of these results may be limited.

Despite these limitations, our study provides a foundation for
further exploration into the use of LLMs in health informatics,
specifically in identifying DDEs. Future studies should focus
on improving the performance of transformer models by
investigating other strategies, exploring ensemble methods,
refining the classification prompt for the ChatGPT models, or
incorporating different forms of data augmentation.

We anticipate that such innovative methods will stimulate and
support further research into drug discontinuation, aiding health
care researchers in identifying factors associated with the
discontinuation of specific medications and treatments. These
advancements are crucial in spotlighting new research directions
with the potential to ameliorate treatment protocols and mitigate
issues associated with medication discontinuation and
nonadherence.

The ultimate aim is to enhance the capability of these models
in real-world applications where accurate, timely detection of
DDEs is of paramount importance. Improved detection can
contribute to patient safety, optimize drug therapies, and
facilitate better health outcomes.

Conclusions
This study has provided a thorough evaluation of advanced
LLMs for detecting DDEs and identifying their root causes
using data from MedHelp. The research demonstrates the
effectiveness of state-of-the-art LLM models, particularly GPT-4
and GPT-4o, in handling complex multilabel classification tasks
without the need for extensive task-specific training.

In conclusion, this research contributes significantly to the field
of NLP and health care informatics by showcasing the potential
of advanced classifiers to derive actionable insights from
patient-generated content. The findings underscore the
transformative impact these technologies can have on
understanding and improving medication adherence, ultimately
leading to better health care outcomes.
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