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Abstract

Background: Delayed cerebral ischemia (DCI) is a primary contributor to death after subarachnoid hemorrhage (SAH), with
significant incidence. Therefore, early determination of the risk of DCI is an urgent need. Machine learning (ML) has received
much attention in clinical practice. Recently, some studies have attempted to apply ML models for early noninvasive prediction
of DCI. However, systematic evidence for its predictive accuracy is still lacking.

Objective: The aim of this study was to synthesize the prediction accuracy of ML models for DCI to provide evidence for the
development or updating of intelligent detection tools.

Methods: PubMed, Cochrane, Embase, and Web of Science databases were systematically searched up to May 18, 2023. The
risk of bias in the included studies was assessed using PROBAST (Prediction Model Risk of Bias Assessment Tool). During the
analysis, we discussed the performance of different models in the training and validation sets.

Results: We finally included 48 studies containing 16,294 patients with SAH and 71 ML models with logistic regression as the
main model type. In the training set, the pooled concordance index (C index), sensitivity, and specificity of all the models were
0.786 (95% CI 0.737-0.835), 0.77 (95% CI 0.69-0.84), and 0.83 (95% CI 0.75-0.89), respectively, while those of the logistic
regression models were 0.770 (95% CI 0.724-0.817), 0.75 (95% CI 0.67-0.82), and 0.71 (95% CI 0.63-0.78), respectively. In the
validation set, the pooled C index, sensitivity, and specificity of all the models were 0.767 (95% CI 0.741-0.793), 0.66 (95% CI
0.53-0.77), and 0.78 (95% CI 0.71-0.84), respectively, while those of the logistic regression models were 0.757 (95% CI
0.715-0.800), 0.59 (95% CI 0.57-0.80), and 0.80 (95% CI 0.71-0.87), respectively.

Conclusions: ML models appear to have relatively desirable power for early noninvasive prediction of DCI after SAH. However,
enhancing the prediction sensitivity of these models is challenging. Therefore, efficient, noninvasive, or minimally invasive
low-cost predictors should be further explored in future studies to improve the prediction accuracy of ML models.

Trial Registration: PROSPERO (CRD42023438399); https://tinyurl.com/yfuuudde

(J Med Internet Res 2025;27:e54121) doi: 10.2196/54121
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Introduction

Subarachnoid hemorrhage (SAH) is the third most common
type of stroke and is usually associated with the rupture of an
aneurysm [1]. The incidence of SAH is approximately 7.9 (95%
CI 6.9-9.0) per 100,000 person-years globally, 8.3 (95% CI
7.2-9.5) per 100,000 person-years in Europe, 10.4 (95% CI
5.9-18.6) per 100,000 person-years in Asia, and 8.5 (95% CI
7.1-10.2) per 100,000 person-years in North America [2].
Recently, a discernible decline has been observed in global SAH
incidence, which is potentially attributable to effective public
health initiatives and the promotion of healthy lifestyles,
especially effective management of certain modifiable risk
factors (eg, reduction in smoking prevalence, management of
hypertension) [3]. However, aneurysmal SAH continues to pose
significant challenges, as evidenced by an in-hospital mortality
rate of nearly 20% [4]. Of these, delayed cerebral ischemia
(DCI) is the leading cause of death, with a prevalence of
approximately 29% (95% CI 26%-32%) [5,6].

The early identification of DCI risk continues to pose significant
challenges in clinical practice, with a notable absence of
recognized and effective early predictive tools. Previous studies
have explored diverse methods for the early prediction of DCI,
such as transcranial Doppler (TCD) ultrasonography [7],
computed tomography perfusion parameters [8], and continuous
cranial electroencephalography monitoring [9]. Recent
advancements in computational technologies and the ongoing
improvement of statistical theory have facilitated the integration
of artificial intelligence into clinical practice, mainly for the
diagnosis of disease states, assessment of disease courses, and
prediction of prognosis [10]. In this context, some studies have
attempted to develop machine learning (ML) models for the
early prediction of DCI after SAH; however, its accuracy
remains debatable [11-14]. In addition, there is a lack of
systematic investigations on effective predictors for the early
prediction of DCI. Therefore, we conducted this meta-analysis
to systematically discuss the accuracy of ML models in DCI
prediction after SAH and to offer evidence for advancing the
application of artificial intelligence in this field.

Methods

Study Registration
This study follows the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) checklist [15]. This
study protocol was registered in the International Prospective
Register of Systematic Reviews on July 6, 2023
(CRD42023438399).

Eligibility Criteria
The inclusion criteria were as follows: (1) patients with SAH,
with the outcome event being DCI; (2) complete construction
of an ML model for DCI prediction; (3) primary studies even
without independent external validation or any kind of
independent validation set; (4) published studies that constructed
different ML models based on the same dataset; (5) cohort
studies, case-control studies, or cross-sectional studies; and (6)
studies published in English. The exclusion criteria were as

follows: (1) meta-analysis, guidelines, review, or expert
comments; (2) primary studies that analyzed risk
factors/independent predictors only, without complete
construction of an ML model; (3) absence of any outcome
indicators for estimating the prediction accuracy of ML models,
including the area under the receiver operating characteristic
curve, concordance index (C index), accuracy, sensitivity,
specificity, precision, confusion matrix, and F1-score; and (4)
studies with sample size <20.

Data Sources and Search Strategy
PubMed, Cochrane, Embase, and Web of Science databases
were systematically searched up to May 18, 2023, by using
Medical Subject Headings (MeSH) and free-text words, with
no restrictions on publication year or country. The search
strategy is described in Multimedia Appendix 1.

Study Selection and Data Retrieval
The retrieved studies were imported into EndNote, and
duplicates were excluded through software automarking and
manual marking. Then, the titles or abstracts of the remaining
studies were scanned, followed by full-text reviews to obtain
the final eligible studies. A standardized table was established
before data retrieval, and the extracted information included
title, first author, publication year and country, study type, DCI
cases, total cases, DCI cases in the training and validation sets,
cases in the training and validation sets, generation method of
the validation set, methods for tackling overfitting and missing
data, variable screening methods, model type, and predictors.
Literature screening was implemented independently by 2
researchers (HZ and PZ) and then cross-checked. Debatable
studies were discussed with a third researcher (PL) to make a
final decision.

Assessment of Study Quality
The risk of bias in the primary studies was appraised using
PROBAST (Prediction Model Risk of Bias Assessment Tool),
which contains many questions on participants, predictors,
outcomes, and statistical analyses, reflecting the overall risk of
bias and applicability [16]. These domains had 2, 3, 6, and 9
specific questions, with 3 responses (yes/probably yes,
no/probably no, and no information) for each question. A
domain was regarded as having a high risk of bias if it had at
least one no/probably no answer or a low risk of bias if all
answers were yes or probably yes. The overall risk was assessed
as low with all domains at low risk and high with at least one
domain at high risk. Two researchers (HZ and PZ) assessed the
risk of bias independently based on PROBAST and
cross-checked at the end. If there was a debatable result, a third
researcher (PL) was asked to assist in the assessment.

Outcome Indicators
Currently, the C index is an important outcome index for
assessing the prediction accuracy of ML models. However, in
case of severe imbalance in case number (grossly too few cases
for DCI), the C index can hardly explain the specific accuracy
of the model for both positive and negative events, and thus,
our primary outcome indicators also included sensitivity and
specificity at the optimal thresholds of the model.
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Statistical Analysis
In some primary studies, when 95% CIs and standard errors
were absent in the C index, we referred to Debray et al [17] to
assess its standard error. As ML models contained different
variables and inconsistent parameters, we gave priority to
random-effects models in the meta-analysis of C index. The C
index is currently an important end point metric for evaluating
ML performance, especially in binary classification and survival
analysis [18,19]. Many current binary classification ML studies
have used the C index as the main metric for assessing model
performance. In addition, ML obtains the probability of positive
events. We also need to understand the sensitivity and specificity
of ML prediction of positive events under the optimal risk
probability cutoff threshold. Therefore, we need to perform a
meta-analysis of the sensitivity and specificity based on the
diagnostic 2×2 table.

A bivariate mixed-effects model was applied for the
meta-analysis of sensitivity and specificity based on the
diagnostic fourfold table. Most primary studies did not report
the diagnostic fourfold table; therefore, the following 2 ways

were used to calculate the diagnostic fourfold table: (1) using
sensitivity, specificity, precision, and case number and (2) using
sensitivity and specificity extracted based on the optimal Youden
index as well as case number. In the meta-analysis of the C
index, sensitivity and specificity evaluation were performed in
Stata 15.0, and the program packages involved were metan and
midas. The meta-analysis of the incidence of DCI was performed
in R4.4.1 (R development Core Team). Because of the
meta-analysis of the incidence, we need to transform the
distribution of the incidence, and the R language packages
involved are metafor and meta.

Results

Study Selection
We searched 3486 studies (97 from Cochrane, 266 from
PubMed, 522 from Embase, and 2601 from Web of Science)
and eliminated 586 duplicates. After reading the title or abstract,
we excluded 2831 studies. Among the remaining 69 studies, 48
eligible primary studies [11-14,20-63] were finally included
after reviewing the full texts (Figure 1).
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) literature screening flowchart.

Study Characteristics
The 48 primary studies were published between 2013 and 2023,
including 15,346 patients with SAH, of which 3863 patients
had DCI. These primary studies were from 13 countries,
including the United States [11-13, 21,24, 28, 31, 33, 36, 37,
46, 47, 49-51, 55, 57], China [20, 22, 23, 25, 26, 30, 35, 39, 41,
44, 53, 59], and the Netherlands [40,48,58,62]. In addition to
one case-control study [11], the others were cohort studies. Ten
studies were multicentered [24-26,28,37,39,40,42,58,61], and

the remaining were one-centered. Besides, 21 studies [14, 21,
22, 27, 28, 30, 32, 33, 43, 45-47, 50, 52, 56-61, 63] lacked an
independent validation set, and 25 studies [12, 20, 21, 23, 25,
26, 31, 35-42, 45, 47-51, 53-55, 62] reported the methods to
avoid overfitting. Nineteen studies [12, 14, 20, 22, 24-26, 30,
31, 33, 34, 36-38, 48-51, 62] had missing data, which were
mainly resolved by deletion, mean value imputation, and missing
value imputation. In terms of variable screening, only 1 study
[50] used a single-factor screening method (Multimedia
Appendix 2).
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Risk of Bias
The 48 primary studies contained 71 ML models. In the
assessment of participants and predictors, a high risk of bias
was mainly derived from the ML models constructed in 1
case-control study. In the assessment of outcomes, only 1 model
in the case-control study was rated as unclear risk. As for the
statistical analyses, the models were mainly rated at high risk
since most models did not satisfy modeling sample size

estimation, that is, events per variable were >20 in the training
set (DCI cases were greater than 20 times that were ultimately
included in the model) and needed an independent validation
set with over 100 validated cases. In addition, the methods for
tackling overfitting and underfitting were not clearly described.
The methods for handling missing data during quality
assessment remained a concern, as PROBAST only recognized
the multiple imputation method as low risk of bias (Figure 2).

Figure 2. Risk of bias of the included machine learning models.

Meta-Analysis
Of the 48 studies included, 45 explicitly reported the numbers
of DCI and total SAH, and the prevalence of DCI, which was

pooled using a random-effects model, was 27.7% (95% CI
24.7%-30.7%) (Figure 3 [11-14,20-39,41-50,52-59,61-63]).
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Figure 3. Forest plot of delayed cerebral ischemia incidence in the training set. IV: independent variable.

Newly Developed ML Models

C Index
In the training set, C index was reported in 45 ML models, with
an overall C index of 0.786 (95% CI 0.737-0.835). The 31
independent validation cohorts manifested an overall C index

of 0.767 (95% CI 0.741-0.793). Among them, the logistic
regression–based predictive nomogram was the main model,
with an overall C index of 0.770 (95% CI 0.724-0.817) in the
training set and 0.757 (95% CI 0.715-0.800) in the validation
set (Table 1, Figure 4 [1,26,27,32,37,38,41,42,44,49,50,54],
Figure 5 [12,20,26,27,30,34-37,39-43,50,52]).
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Table 1. Meta-analysis of the concordance index of machine learning models for delayed cerebral ischemia prediction in the training and validation
sets.

Validation setTraining setMachine learning model

Concordance index (95% CI)nConcordance index (95% CI)n

0.756 (0.676-0.835)40.721 (0.660-0.783)4Artificial neural network

0.757 (0.715-0.800)110.770 (0.724-0.817)24Logistic regression

0.705 (0.610-0.799)20.829 (0.782-0.877)2Decision tree

——a0.830 (0.795-0.865)1Ensemble classifier

0.792 (0.683-0.901)10.992 (0.986-0.999)1K-nearest neighbor

0.817 (0.661-0.973)20.793 (0.692-0.893)1LASSO (least absolute shrinkage and selection operator)

0.784 (0.730-0.838)50.770 (0.646-0.894)5Random forest

0.684 (0.606-0.761)30.789 (0.619-0.959)5Support vector machine

0.826 (0.770-0.882)30.906 (0.860-0.952)2Extreme gradient boosting

0.767 (0.741-0.793)310.786 (0.737-0.835)45Overall

aNot available.

Figure 4. Forest plot of the concordance index of other machine learning models in the training set.
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Figure 5. Forest plot of the concordance index of the machine learning models in the validation set. LASSO: least absolute shrinkage and selection
operator; XGBoost: extreme gradient boosting.

Sensitivity and Specificity
In the training set, we extracted diagnostic 2×2 tables from 37
ML models, with overall sensitivity of 0.77 (95% CI 0.69-0.84)
and overall specificity of 0.83 (95% CI 0.75-0.89). The
diagnostic 2×2 tables were also extracted from 23 independent
validation cohorts, with overall sensitivity of 0.66 (95% CI
0.53-0.77) and overall specificity of 0.78 (95% CI 0.71-0.84).

Among them, the logistic regression–based predictive nomogram
had overall sensitivity of 0.75 (95% CI 0.67-0.82) and overall
specificity of 0.71 (95% CI 0.63-0.78) in the training set and
0.59 (95% CI 0.57-0.80) and 0.80 (95% CI 0.71-0.87),
respectively, in the validation set (Table 2, Figure 6
[12,20-22,24-32,36,40,43,46-49,53-55,63], Figure 7
[13,20,26,27,30,34-37,40,45]).
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Table 2. Meta-analysis of the sensitivity and specificity of the machine learning models for delayed cerebral ischemia prediction in the training and
validation sets.

Validation setTraining setMachine learning model

Specificity (95% CI)Sensitivity (95% CI)nSpecificity (95% CI)Sensitivity (95% CI)n

0.72-0.840.37-0.8220.72-0.910.55-0.642Artificial neural network

0.80 (0.71-0.87)0.59 (0.57-0.80)50.71 (0.63-0.78)0.75 (0.67-0.82)20Logistic regression

0.80-0.810.44-0.6720.82-0.880.62-0.782Decision tree

0.950.41110.661K-nearest neighbor

0.74-0.780.54-0.5520.890.481LASSO (least absolute shrinkage and selection
operator)

0.78 (0.63-0.88)0.81 (0.46-0.96)40.97 (0.66-1.00)0.93 (0.28-1.00)6Random forest

0.960.2610.73-1.000.63-0.953Support vector machine

0.55 (0.37-0.71)0.78 (0.27-0.97)40.60-0.610.93-0.982Extreme gradient boosting

0.78 (0.71-0.84)0.66 (0.53-0.77)230.83 (0.75-0.89)0.77 (0.69-0.84)37Overall

Figure 6. Forest plot of the sensitivity and specificity of the machine learning models in the training set.
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Figure 7. Forest plot of the sensitivity and specificity of the machine learning models in the validation set.

Validation of Previous Scales
The previous models mainly contained VASOGRADE and
Practical Risk Chart, with an overall C index of 0.661 (95% CI

0.627-0.696), sensitivity of 0.65 (95% CI 0.59-0.87), and
specificity of 0.64 (95% CI 0.52-0.74) (Figure 8
[14,41,56,62,63], Figure 9 [14,56,62,63]).
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Figure 8. Forest plot of the concordance index of previous scales in the training set.

Figure 9. Forest plot of the sensitivity and specificity of previous scales in the training and validation sets.
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Predictors
A total of 59 predictors were reported in the included ML
models, and the top 10 were age (53 models), gender (46
models), Hunt and Hess score (41 models), modified Fisher
scale (40 models), World Federation of Neurological Surgeons
(35 models), aneurysm location (32 models), hypertension (29
models), coiling or clipping (28 models), smoking/drinking
history (28 models), diabetes (23 models), and laboratory results
(21 models). All modeling predictors are shown in Multimedia
Appendix 3.

Discussion

Main Findings
Our study systematically explores the accuracy of ML for DCI
prediction after SAH, and the results showed that ML had a
relatively ideal C index for DCI prediction; however, the
sensitivity still needs improving. The logistic regression–based
nomogram was the main model. The predictors in the 71 models
were mainly age, gender, Hunt and Hess score, modified Fisher
scale, World Federation of Neurological Surgeons, aneurysm
location, hypertension, coiling or clipping, smoking/drinking
history, diabetes, and laboratory results.

Comparison With Previous Studies
Continuous investigations have been undertaken to find reliable
approaches for the early detection of DCI risk, mainly focusing
on imaging techniques. Kumar et al [7] conducted a systematic
review of 17 primary studies and reported the accuracy of TCD
for predicting vasospasm for the diagnosis of DCI, with an
overall 90% (95% CI 77%-96%) sensitivity and 71% (95% CI
51%-84%) specificity. Although their study demonstrated high
sensitivity and relatively good specificity, we found that they
included many retrospective studies, which may exaggerate the
results. Therefore, more randomized diagnostic trials are also
needed for validation. Han et al [8] provided evidence for the
early prediction of DCI by using computed tomography
perfusion parameters, with 97% sensitivity and 89% specificity.
A systematic review by Scherschinski et al [9] described the
prediction accuracy of continuous cranial
electroencephalography monitoring for DCI (sensitivity 11.1%,
95% CI 3.1%-26.1% and specificity 82.9%, 95% CI
66.4%-93.4%). In addition, a systematic review by Kumar et
al [64] described the prediction of DCI by cerebral angiography
(sensitivity 57%, 95% CI 40%-81%; specificity 68%, 95% CI
61%-76%). Of these imaging tools, Doppler ultrasound appears
to have high prediction accuracy, especially with high
sensitivity.

Furthermore, Santana et al [65] reported the accuracy of ML in
DCI prediction after SAH through a systematic review, which,
however, only included 6 primary studies. Their results
demonstrated that the overall sensitivity of logistic regression
was 0.71 (95% CI 0.57-0.84) and specificity was 0.63 (95% CI
0.42-0.85), and other ML models had a pooled sensitivity of
0.74 (95% CI 0.61-0.86) and specificity of 0.78 (95% CI
0.71-0.86). However, the training and validation set results did
not seem to be considered in their studies. In our systematic
review incorporating 48 primary studies, the overall C index in

the validation set was 0.767 (95% CI 0.741-0.793), with
sensitivity of 0.66 (95% CI 0.53-0.77) and specificity of 0.78
(95% CI 0.71-0.84). Meanwhile, logistic regression was the
main model, with low sensitivity in the validation set.

In clinical practice, the interpretability of the model and the
prediction accuracy for outcomes should be considered;
however, it is hard to choose between them [66]. Some models
with high interpretability, that is, logistic regression (converting
linear combinations of predictor variables into probability values
for positive events via logistic functions), decision trees
(generating rules by recursively splitting variables in the
dataset), and LASSO (least absolute shrinkage and selection
operator) regression (selecting variables and reducing model
complexity by L1 regularization), which adds a penalty term
proportional to the absolute value of coefficients of the features
for feature selection and model construction, often have too low
prediction accuracy for outcomes. Others with too little
explainability, that is, extreme gradient boosting (XGBoost;
combining multiple weak learners to form a strong learner with
efficient computational power and excellent prediction
performance), artificial neural network (an algorithm that
simulates the neuronal structure of the human brain and learns
complex patterns of data through multilayer nonlinear
transformations for various ML tasks such as classification,
regression, and clustering), and support vector machines (a
supervised learning method to maximize the spacing between
different classes by finding optimal hyperplanes for
classification and regression tasks) have very high prediction
accuracy, especially deep learning models [67]. Among ML
models constructed based on common clinical features, models
with better interpretability are preferred, which can explicitly
explain the relationship between common clinical features and
outcomes and thus provide real-time interventions. This may
also explain why logistic regression was most frequently used
in the included studies. However, in image-based artificial
intelligence, models with higher prediction efficiency are
preferred, mainly since medical images have many confounding
factors and types of imaging devices, as well as a high level of
device parameterization [10,68]. Our study shows that XGBoost
in the validation set had the best C index of 0.826 (95% CI
0.770-0.882), with sensitivity and specificity of 0.78 (95% CI
0.27-0.97) and 0.55 (95% CI 0.37-0.71), respectively. Although
XGBoost can rank the variables’ importance, its interpretability
remains a serious challenge. In addition, random forests seem
to exhibit desirable accuracy, with C index, sensitivity, and
specificity of 0.784 (95% CI 0.730-0.838), 0.81 (95% CI
0.46-0.96), and 0.78 (95% CI 0.63-0.88), respectively. The
c-indices of logistic regression, LASSO regression, and decision
tree based on models with better interpretability were 0.757
(0.715-0.800), 0.705 (0.610-0.799), and 0.817 (0.661-0.973),
respectively. This shows the differences in the prediction
accuracy of different models, where the less interpretable
XGBoost and random forest seem to have better accuracy,
especially random forest, which has desirable sensitivity and
specificity.

Our study shows that existing ML has a more favorable C index
for the prediction of DCI; however, the overall sensitivity seems
to be unfavorable. Although random forest has high sensitivity
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and specificity, the included models are limited, which may
limit the interpretation of results. In constructing ML models,
we need to consider data balance. For unbalanced modeling,
some results tend to show a high C index, which is due to
negative results. Our pooled incidence of DCI for the included
studies was 27.7% (95% CI 24.7%-30.7%), which may have
some implications for low sensitivity. In addition, some models
obtain the probability of DCI, and the probability thresholds
are often chosen based on the optimal Youden index. The effect
of sensitivity is often not considered when choosing the optimal
Youden index, which may also have some effect on low
sensitivity. Therefore, the balance of modeling data and the
reasonableness of positive probability thresholds need to be
considered in future studies.

When constructing clinical prediction models, the number of
included cases and the selection of predictors are often
neglected. Models derived from a restricted number of cases
exhibited low stability, and some included studies had a limited
sample size. In addition, efficient predictors are key to enhancing
model accuracy, and our summary of the current modeling
predictors provides important references for subsequent studies.
A systematic review by Jabbarli et al [69] explored the
biomarkers for the early prediction of DCI, which greatly
differed from the markers we summarized. Efficient predictors
should be further explored in subsequent studies.

Limitations of This Study
Our study has the following limitations. First, there may be
some differences in the definition of DCI among studies, which

may impose some limitations on the interpretation of our results
to some extent. Second, the included studies contain a diversity
of models. However, except for logistic regression, the other
types of models are limited in number. Third, there is a high
risk of bias in primary studies, mainly owing to the limited cases
for modeling and the avoidance of overfitting. Fourth, the
validation methods for the models in the primary studies are
mainly random sampling or k-fold cross-validation, with rare
external validation. Fifth, in a very small number of studies,
validation sets can be used to try out different hyperparameters
to improve the algorithm; test sets are essentially raw data. It
is not clear in the original studies we included whether the
models were optimized in this way. Therefore, we were not able
to discuss this in greater depth in our review. Sixth, even though
we conducted a systematic search and literature screening, no
studies were found on image-based ML for predicting DCI in
patients with SAH. Therefore, deeper exploration should be
conducted in future studies.

Conclusion
The ML constructed in the original studies that we included
was primarily based on the baseline characteristics of patients
at admission. Our meta-analysis shows that ML had a relatively
desirable predictive value. In subsequent studies, more efficient
predictors can be explored and better-performing prediction
tools can be developed based on the ML approach to enable
treating physicians to enhance daily TCD monitoring.
Prioritizing TCD monitoring in resource-limited settings lowers
the threshold for performing more invasive diagnostic
procedures such as catheter angiography.
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