
Original Paper

Major Adverse Kidney Events in Hospitalized Older Patients With
Acute Kidney Injury:Machine Learning–Based Model Development
and Validation Study

Xiao-Qin Luo1, MD; Ning-Ya Zhang2, MS; Ying-Hao Deng3, MD; Hong-Shen Wang4, MD; Yi-Xin Kang5, MD;

Shao-Bin Duan5, MD
1Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
2Information Center, The Second Xiangya Hospital of Central South University, Changsha, China
3Health Management Center, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Clinical Medicine Research Center for
Intelligent Management of Chronic Disease, The Second Xiangya Hospital of Central South University, Changsha, China
4Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
5Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University,
Changsha, China

Corresponding Author:
Shao-Bin Duan, MD
Department of Nephrology
Hunan Key Laboratory of Kidney Disease and Blood Purification
The Second Xiangya Hospital of Central South University
139 Renmin Road
Changsha, 410011
China
Phone: 86 73185295100
Email: duansb528@csu.edu.cn

Abstract

Background: Acute kidney injury (AKI) is a common complication in hospitalized older patients, associated with increased
morbidity, mortality, and health care costs. Major adverse kidney events within 30 days (MAKE30), a composite of death, new
renal replacement therapy, or persistent renal dysfunction, has been recommended as a patient-centered endpoint for clinical trials
involving AKI.

Objective: This study aimed to develop and validate a machine learning–based model to predict MAKE30 in hospitalized older
patients with AKI.

Methods: A total of 4266 older patients (aged ≥ 65 years) with AKI admitted to the Second Xiangya Hospital of Central South
University from January 1, 2015, to December 31, 2020, were included and randomly divided into a training set and an internal
test set in a ratio of 7:3. An additional cohort of 11,864 eligible patients from the Medical Information Mart for Intensive Care
Ⅳ database served as an external test set. The Boruta algorithm was used to select the most important predictor variables from
53 candidate variables. The eXtreme Gradient Boosting algorithm was applied to establish a prediction model for MAKE30.
Model discrimination was evaluated by the area under the receiver operating characteristic curve (AUROC). The SHapley Additive
exPlanations method was used to interpret model predictions.

Results: The overall incidence of MAKE30 in the 2 study cohorts was 28.3% (95% CI 26.9%-29.7%) and 26.7% (95% CI
25.9%-27.5%), respectively. The prediction model for MAKE30 exhibited adequate predictive performance, with an AUROC
of 0.868 (95% CI 0.852-0.881) in the training set and 0.823 (95% CI 0.798-0.846) in the internal test set. Its simplified version
achieved an AUROC of 0.744 (95% CI 0.735-0.754) in the external test set. The SHapley Additive exPlanations method showed
that the use of vasopressors, mechanical ventilation, blood urea nitrogen level, red blood cell distribution width-coefficient of
variation, and serum albumin level were closely associated with MAKE30.

Conclusions: An interpretable eXtreme Gradient Boosting model was developed and validated to predict MAKE30, which
provides opportunities for risk stratification, clinical decision-making, and the conduct of clinical trials involving AKI.

Trial Registration: Chinese Clinical Trial Registry ChiCTR2200061610; https://tinyurl.com/3smf9nuw
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Introduction

Acute kidney injury (AKI) is a clinical syndrome characterized
by a rapid decline in renal function [1]. The incidence of AKI
has been reported to be about 10%-15% in hospitalized patients
and over 50% in critically ill patients [2-4]. AKI is common in
older individuals, associated with increased morbidity, mortality,
and health care costs [5-7]. The prevalence of multiple
comorbidities as well as age-related changes in the kidneys,
systemic vasculature, and immune system render older patients
more susceptible to kidney damage and less likely to recover
[5,8]. Given the already high and increasing incidence of AKI
in the older, there is a tremendous need to develop clinical tools
for risk stratification of postAKI outcomes in this age group.

Major adverse kidney events within 30 days (MAKE30), a
composite of death, new renal replacement therapy (RRT), or
persistent renal dysfunction (PRD), has been recognized as a
key metric of post-AKI outcomes [9,10]. Patients with no renal
recovery during hospitalization show a higher risk of long-term
adverse outcomes than those who recovered [11,12].
Furthermore, the initiation of RRT after AKI onset is associated
with long-term renal dysfunction and death [13,14]. Previous
studies have confirmed MAKE30 as a common, feasible to
measure, and clinically meaningful endpoint in clinical trials
involving AKI [15-17]. The prediction of MAKE30 can be
critical for evaluating patient prognosis, guiding clinical
decision-making, and facilitating the conduct of clinical trials.

Clinical prediction models are mathematical tools that are
primarily intended to assist physicians in their clinical
decision-making [18]. Recently, the rapid development in
medical big data and advances in computer science have sparked
a growing interest in applying machine learning techniques to
develop clinical prediction models [19]. Compared with
traditional statistical methods, advanced machine learning
algorithms can better integrate large amounts of clinical data,
fit complex nonlinear relationships, and analyze high-order
interactions. The eXtreme Gradient Boosting (XGBoost)
algorithm, an efficient implementation of the gradient boosting
framework, represents one of the notable advances in machine
learning and is widely used in the medical field [20-23].
XGBoost excels in preventing overfitting during the training
process, enhancing predictive performance and robustness in
complex data scenarios.

Therefore, the objective of this study was to develop and validate
a clinical prediction model for MAKE30 in hospitalized older
patients with AKI using the machine learning XGBoost
algorithm.

Methods

Study Design
This study identified older patients (aged ≥ 65 years) with AKI
who were admitted to the Second Xiangya Hospital of Central
South University from January 1, 2015, to December 31, 2020.
AKI was defined according to the Kidney Disease: Improving
Global Outcomes criteria as an increase in serum creatinine
(SCr) by ≥26.5 μmol/L within 48 hours or to ≥1.5 times baseline
within 7 days [24]. Baseline SCr was defined as the lowest
creatinine in the past 7 days. AKI was determined every time
a SCr measurement occurred based on the changes in SCr over
the past 48 hours and 7 days. Patients were excluded if they
were diagnosed with end-stage renal disease, had a hospital stay
of less than 48 hours, had an initial SCr≥353.6 μmol/L at
admission, or required RRT before the diagnosis of AKI.

In addition, a cohort containing eligible patients from the
Medical Information Mart for Intensive Care Ⅳ (MIMIC-Ⅳ)
database was used for model external validation [25]. MIMIC-Ⅳ
is a relational database containing comprehensive information
for intensive care unit (ICU) admissions at the Beth Israel
Deaconess Medical Center (BIDMC) from 2008 to 2019.

Data Collection
Data on demographics, diagnoses, laboratory tests, interventions,
and medications were collected. A total of 53 candidate predictor
variables were identified that were considered clinically relevant
to MAKE30, were available in the electronic health records
(EHRs), and had a proportion of missing values less than 30%
(Multimedia Appendix 1). Comorbidities were determined based
on diagnoses encoded in the ICD-9 (International Classification
of Diseases, Ninth Edition) or ICD-10 (International Statistical
Classification of Diseases, Tenth Revision). The burden of
comorbidities was assessed by the Charlson comorbidity index
[26,27]. Laboratory tests were recorded as the measurements
within 48 hours of and closest to the diagnosis of AKI.
Medications were identified according to the Anatomic
Therapeutic Chemical classification system and included if
administered within 48 hours after the diagnosis of AKI [28].
The use of mechanical ventilation within 48 hours after the
diagnosis of AKI was also collected.

Outcome Measures
The primary outcome was MAKE30, defined as a composite
of death, new RRT, or PRD at hospital discharge or at 30 days
after the diagnosis of AKI, whichever occurred first [9,10]. PRD
was defined as a final inpatient SCr value ≥2 times baseline.
Secondary outcomes were length of hospital stay as well as
death within 30 days and 1 year after discharge. Survival data
were extracted from the Chinese Center for Disease Control
and Prevention cause-of-death reporting system.
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Statistical Analysis
Statistical analyses were performed using R software (version
4.1.2; R Foundation for Statistical Computing). Categorical data
are presented as numbers and percentages and were analyzed
with the chi-square test or Fisher exact test, as appropriate.
Continuous data are described with median (IQR) and were
compared using the Mann-Whitney U test. Survival data were
analyzed with the Kaplan-Meier method, and differences in
survival were evaluated by the log-rank test. The 2-sided α level
was set at .05. Missing data were analyzed by the missForest
method, which is a nonparametric missing value imputation for
mixed-type data [29]. The description of missing data can be
found in Multimedia Appendix 2.

Patients from the Second Xiangya Hospital were randomly
divided into a training set and an internal test set in a ratio of
7:3. The cohort of patients from the MIMIC-Ⅳ database was
used as an external test set.

Feature Selection
To build a parsimonious model, feature selection was performed
on the training set. First, we removed the predictor variables
with near-zero variance. Near-zero variance was defined as a
situation where a variable exhibits very little variation or almost
no variability across its values, characterized by over 95% of
its values being identical. Then the Boruta algorithm was used
to select the most important predictor variables [30]. Boruta is
an all-relevant feature selection wrapper algorithm, capable of
working with classification methods that output variable
importance measures; in this study, the Random Forest model
was used. There were 30 variables ultimately selected for
inclusion within the machine learning model (Multimedia
Appendix 1).

Model Development and Validation
A machine learning XGBoost model was established on the
training set to predict the development of MAKE30 [31].
XGBoost is an optimized implementation of the gradient
boosting framework, which sequentially adds weak models
(decision trees) to iteratively improve the overall prediction.
XGBoost improves upon traditional gradient boosting algorithms
by offering scalability, regularization techniques, optimized
tree construction, and customization options. A set of model
hyperparameters were optimized by running 5 random shuffles
of 5-fold cross-validation, including eta, max_depth,
min_child_weight, gamma, colsample_bytree, and subsample.
The descriptions and search ranges for the hyperparameters are
listed in Multimedia Appendix 3. The XGBoost model can be
accessed at [LuoXiaoqin123/MAKE30-in-elderly-AKI]
(GitHub).

The performance of the XGBoost model was evaluated on the
internal and external test sets. Model discrimination was
assessed by the area under the receiver operating characteristic
curve (AUROC), which is an assessment metric that remains
unaffected by incidence or threshold selection. Model calibration
was evaluated using the calibration plot aggregated by deciles
and the Brier score. The area under the precision-recall curve
(AUPRC) was calculated, considering that it is a useful metric
for class-imbalanced data in a problem setting where finding

the adverse outcome is crucial. A decision curve analysis was
performed to illustrate the clinical use of the model. In addition,
we determined the optimal cutoff by the receiver operating
characteristic (ROC) curve and the maximum Youden index
(sensitivity + specificity – 1) in the training set. The sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), positive likelihood ratio (PLR), and negative
likelihood ratio (NLR) at the optimal cutoff were calculated.

In the external validation set, there were 9 predictor variables
with a proportion of missing values exceeding 50% (Multimedia
Appendix 2). In this case, we simplified the model to include
21 variables, with model development performed as described
above using the same training set.

Model Interpretations
We used the SHapley Additive exPlanations (SHAP) method
to interpret model predictions [32]. SHAP is a game theoretic
approach that helps in explaining the output of any machine
learning model. It can provide consistent and locally accurate
attribution values, the SHAP values, for each feature within a
model. A positive SHAP value represents a higher risk of the
outcome, whereas a negative SHAP value represents a lower
risk of the outcome. The contribution of a feature to the
predicted risk of the outcome can be explained by the cumulative
effects of feature attribution in each observation.

Sensitivity Analyses
In order to mitigate the potential impact of age on our findings,
we further conducted sensitivity analyses to assess the model’s
robustness across patients stratified by age. We evaluated the
model’s performance in distinct age groups: <70 years, 70 to
80 years, and ≥80 years.

Ethical Considerations
The medical ethics committee of the Second Xiangya Hospital
of Central South University approved the study protocol
(2022-K031) and waived the requirement for informed consent.
This project has been registered in Chinese Clinical Trial
Registry (ChiCTR2200061610). The institutional review boards
of BIDMC and the Massachusetts Institute of Technology
approved the project and waived the requirement for informed
consent. The study followed the Declaration of Helsinki and
the Transparent Reporting of a multivariable prediction model
for Individual Prognosis or Diagnosis statement [33].

Results

Patient Characteristics
A total of 4266 patients from the Second Xiangya Hospital were
enrolled, including 2973 patients in the training set and 1293
patients in the internal test set (Figure 1). The overall incidence
of MAKE30 in this medical center was 28.3% (95% CI
26.9%-29.7%), including 12.3% (95% CI 11.4%-13.4%) with
death, 10.2% (95% CI 9.3%-11.1%) with new RRT, and 17.7%
(95% CI 16.6%-18.9%) with PRD. The external test set
contained 11,864 patients from the MIMIC-Ⅳ database, 26.7%
(95% CI 25.9%-27.5%) of whom developed MAKE30
(Multimedia Appendix 4). The incidence of death, new RRT,
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and PRD were 18.9% (95% CI 18.2%-19.6%), 4.9% (95% CI
4.5%-5.3%), and 12.8% (95% CI 12.2%-13.4%), respectively.

Table 1 shows the characteristics of patients from the Second
Xiangya Hospital stratified by MAKE30. Patients with
MAKE30 were older, had a higher burden of comorbidities,
and had greater disease severity than patients without MAKE30.
Compared with the nonMAKE30 group, the MAKE30 group
had shorter length of hospital stay as well as higher 30-day and

1-year mortality after discharge. Multimedia Appendix 5 shows
the Kaplan-Meier survival curves of death within 30 days and
1 year for patients alive at discharge stratified by PRD or RRT.
Patients with versus without new RRT or PRD had higher
30-day and 1-year mortality after discharge (log-rank P<.001).
Multimedia Appendix 6 provides the characteristics of patients
from the MIMIC-Ⅳ database stratified by MAKE30.
Multimedia Appendix 7 provides the characteristics of patients
in the training, internal test, and external test sets.

Figure 1. Flow diagram of patient selection from the Second Xiangya Hospital. AKI: acute kidney injury; MAKE30, major adverse kidney events
within 30 days; RRT: renal replacement therapy; SCr: serum creatinine.
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Table 1. Characteristics of patients from the Second Xiangya Hospital.

P valueMAKE30a (n=1207)No MAKE30a (n=3059)Variables

<.00174 (68-80)72 (68-77)Age (years), median (IQR)

.64776 (64.3)1992 (65.1)Sex, male, n (%)

<.001765 (63.4)1284 (42.0)Intensive care, n (%)

Comorbidities, n (%)

<.001237 (19.6)127 (4.2)Sepsis

.61676 (56.0)1685 (55.1)Hypertension

.01170 (14.1)346 (11.3)Myocardial infarction

<.001502 (41.6)932 (30.5)Congestive heart failure

.14202 (16.7)455 (14.9)Peripheral vascular disease

<.001347 (28.7)611 (20.0)Cerebrovascular disease

<.00141 (3.4)45 (1.5)Dementia

<.001259 (21.5)515 (16.8)Chronic pulmonary disease

.6527 (2.2)60 (2.0)Rheumatic disease

.0159 (4.9)99 (3.2)Peptic ulcer disease

.001308 (25.5)630 (20.6)Liver disease

.005349 (28.9)756 (24.7)Diabetes

.913 (0.2)10 (0.3)Hemiplegia or paraplegia

.03210 (17.4)449 (14.7)Renal disease

.001296 (24.5)913 (29.8)Malignancy

.920 (0.0)2 (0.1)HIV/AIDS

<.0013 (2-4)2 (1-4)Charlson Comorbidity Index

Laboratory tests

<.0013.2 (2.7-3.8)3.4 (2.9-3.9)Red blood cells (×10^9/L), median (IQR)

<.00196 (80-114)103 (86-118)Hemoglobin (g/L), median (IQR)

<.00115.0 (13.9-16.9)14.0 (13.1-15.5)RDW-CVb (%), median (IQR)

<.00111.4 (7.5-16.3)9.8 (7.1-13.6)White blood cells (×10^9/L), median (IQR)

<.00187.6 (80.8-91.9)83.8 (75.6-89.3)Neutrophil percentage (%), median (IQR)

<.0017.0 (4.1-11.9)9.2 (5.6-15.1)Lymphocyte percentage (%), median (IQR)

<.001147 (90-223)175 (124-236)Platelets (×10^9/L), median (IQR)

<.00156.5 (50.5-61.9)58.4 (52.9-63.7)Serum total protein (g/L), median (IQR)

<.00130.0 (26.0-33.7)32.3 (29.1-35.6)Serum albumin (g/L), median (IQR)

<.00113.0 (8.0-23.4)11.6 (7.9-18.4)Serum total bilirubin (μmol/L), median (IQR)

<.0016.7 (3.9-14.1)5.2 (3.3-8.6)Serum direct bilirubin (μmol/L), median (IQR)

<.00126.1 (13.4-68.2)19.0 (11.5-34.6)Alanine aminotransferase (U/L), median (IQR)

<.00142.3 (22.8-129.7)26.5 (18.1-48.1)Aspartate aminotransferase (U/L), median (IQR)

<.001159.0 (109.4-240.2)131.9 (97.7-186.7)Serum creatinine (μmol/L), median (IQR)

<.00115.76 (10.79-22.96)10.36 (7.16-15.36)Blood urea nitrogen (mmol/L), median (IQR)

<.001385.2 (264.7-516.6)331.3 (239.9-443.3)Blood uric acid (μmol/L), median (IQR)

<.0014.3 (3.8-4.9)4.2 (3.8-4.6)Potassium (mmol/L), median (IQR)

<.001141.0 (136.3-146.7)139.5 (136.4-142.6)Sodium (mmol/L), median (IQR)

.69103.1 (98.5-107.9)103.2 (99.0-106.9)Chloride (mmol/L), median (IQR)
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P valueMAKE30a (n=1207)No MAKE30a (n=3059)Variables

<.0012.03 (1.90-2.17)2.07 (1.96-2.20)Calcium (mmol/L), median (IQR)

<.001564 (46.7)442 (14.4)Mechanical ventilation, n (%)

Medications, n (%)

<.001660 (54.7)521 (17.0)Vasopressors

<.001849 (70.3)1699 (55.5)Diuretics

.03149 (12.3)457 (14.9)ACEIc/ARBd

<.001310 (25.7)1221 (39.9)NSAIDse

.10881 (73.0)2308 (75.4)Proton pump inhibitors

.7620 (1.7)45 (1.5)Chemotherapeutic drugs

.1030 (2.5)108 (3.5)Antiepileptic drugs

>.997 (0.6)16 (0.5)Antituberculosis drugs

<.001203 (16.8)223 (7.3)Nephrotoxic antibiotics

.00135 (2.9)41 (1.3)Antiviral drugs

<.001232 (19.2)186 (6.1)Antifungal drugs

.1750 (4.1)159 (5.2)Iodinated contrast media

Outcomes

<.0017 (2-14)8 (4-14)Length of hospital stay (days), median (IQR)

<.001137 (21.5)201 (6.8)Death within 30 days after dischargef,g, n (%)

<.001247 (38.8)637 (21.7)Death within 1 year after dischargef,g, n (%)

aMAKE30: Major adverse kidney events within 30 days.
bRDW-CV: red blood cell distribution width-coefficient of variation.
cACEI: angiotensin converting enzyme inhibitor.
dARB: angiotensin Ⅱ receptor blocker.
eNSAID: non-steroidal anti-inflammatory drug.
fThere were 165 patients with missing postdischarge survival data.
gA total of 526 patients who died at hospital discharge or 30 days, whichever occurred first, were excluded.

Model Performance
Figure 2 shows the ROC curves of the model in the training set
and internal test set. The model exhibited good discrimination
on both datasets, with the AUROC being 0.868 (95% CI
0.852-0.881) and 0.823 (95% CI 0.798-0.846), respectively.
Figure 3 shows the calibration plots of the model in the training
set and internal test set. The Brier scores on the 2 datasets were
0.127 and 0.145, respectively. Notably, despite the lower Brier
score on the training set, the calibration plot exhibits pronounced
deviations from the diagonal, especially at higher probability
thresholds. In contrast, the calibration plot for the internal test
set appears to demonstrate more consistent alignment with the
ideal diagonal line across various probability ranges. Figure 4
shows the precision-recall curves of the model in the training
set and internal test set. The model achieved an AUPRC of
0.778 and 0.639 on the 2 datasets, respectively. Figure 5 shows

the decision curves of the model in the training set and internal
test set. When the threshold probability was between 0.06 and
0.97, the model improved clinical decision-making in the
training set. Similarly, within a narrower threshold probability
range of 0.09 to 0.76, the model improved clinical
decision-making in the internal test set. At the optimal cutoff
of 0.350, the model achieved a sensitivity of 67.5%, a specificity
of 82.5%, a PPV of 59.5%, and a NPV of 86.9% in the internal
test set (Table 2).

Multimedia Appendix 8 presents the performance of the
simplified model in the training set, the internal test set, and the
external test set. It includes ROC curves, calibration plots,
precision-recall curves, decision curves, and model performance
at the optimal cutoff. The simplified model achieved an AUROC
of 0.851 (95% CI 0.834-0.866) on the training set, 0.818 (95%
CI 0.792-0.843) on the internal test set, and 0.744 (95% CI
0.735-0.754) on the external test set.
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Figure 2. Receiver operating characteristic curves of the model in the training set (A) and internal test set (B). AUC: area under the curve.

Figure 3. Calibration plots of the model in the training set (A) and internal test set (B).
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Figure 4. Precision-recall curves of the model in the training set (A) and internal test set (B). AUC: area under the curve.

Figure 5. Decision curves of the model in the training set (A) and internal test set (B).
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Table 2. Model performance at the optimal cutoff in the training and internal test sets.

Internal test setTraining setPerformance metrics

0.3500.350Cutoff valuea

67.571.9Sensitivity (%)

82.586.6Specificity (%)

59.568.3PPVb (%)

86.988.5NPVc (%)

3.865.37PLRd

0.390.32NLRe

aThe optimal cutoff was determined by the receiver operating characteristic curve and the maximum Youden index (sensitivity + specificity – 1) in the
training set.
bPPV: positive predictive value.
cNPV: negative predictive value.
dPLR, positive likelihood ratio.
eNLR, negative likelihood ratio.

Model Interpretations
Figure 6 shows the SHAP summary plots of the model. The use
of vasopressors, requirement for mechanical ventilation,
increased blood urea nitrogen level, increased red blood cell
distribution width coefficient of variation, decreased serum

albumin level, elevated aspartate aminotransferase level, use of
antifungal drugs, and increased SCr level were identified as
important predictor variables associated with an increased risk
of MAKE30. Multimedia Appendix 9 provides the SHAP
dependence plots of the model that visualize how changes in
each variable can affect model output.

Figure 6. SHapley Additive exPlanations summary plot of the model. RDW-CV: red blood cell distribution width-coefficient of variation.

Sensitivity Analyses
Multimedia Appendix 10 shows the ROC curves of the model
and the simplified model in distinct age groups. In the internal

test set, the model achieved AUROCs of 0.827 (95% CI
0.786-0.862), 0.835 (95% CI 0.794-0.869), and 0.770 (95% CI
0.708-0.837) in patients aged <70 years, 70 to 80 years, and
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≥80 years, respectively. When assessing the simplified model
across distinct age groups in the external test set, its performance
exhibited overall stability.

Discussion

Principal Findings
This study showed that MAKE30 is common in hospitalized
older patients with AKI. The main deliverable of this study is
the development and validation of a machine learning–based
model to predict MAKE30, representing a pioneering effort to
address the critical need in this vulnerable population. The
XGBoost model (or its simplified version) achieved adequate
predictive performance in both internal and external validation.
The model could be a useful tool for prognostic assessment,
clinical decisionmaking, and the conduct of clinical trials
involving AKI.

A National Institute of Diabetes and Digestive and Kidney
Diseases Workshop recommended a composite of death,
provision of dialysis, or sustained loss of kidney function at a
discrete time point as a meaningful endpoint for trials [9]. This
endpoint was later expanded to be MAKE30, which occurred
at hospital discharge truncated at 30 days [34,35]. MAKE30
has been shown to be common, easily measurable, and a
promising endpoint for patients with AKI. Our study further
confirmed that MAKE30 is a prevalent endpoint among
hospitalized older patients with AKI, with its nonfatal
components being associated with long-term outcomes.

The prediction of MAKE30 is essential for risk stratification
and clinical management of hospitalized older patients with
AKI. While several prediction models for MAKE30 have been
developed, none specifically focus on this population. A recent
study developed a logistic regression model specifically for
predicting MAKE30 among critically ill adults [36]. Our
previous studies established machine learning–based models to
predict MAKE30 in hospitalized children with AKI [37] and
older patients in critical care [38]. To the best of our knowledge,
this study is the first to use machine learning algorithm to predict
MAKE30 in hospitalized older patients with AKI. This
demographic often experiences impaired recovery of kidney
function, resulting in significantly increased morbidity and
mortality. By developing a prediction model tailored to this
population, we aimed to enhance clinical outcomes and facilitate
more effective interventions. The model can be seamlessly
integrated into electronic medical record systems, assisting
health care providers in risk stratification and informed clinical
decision-making. In addition, in clinical trials involving AKI,
the model can identify high-risk groups that are more likely to
benefit from the intervention.

Compared with the existing studies, this study has several
strengths. First, by using state-of-the-art XGBoost machine
learning algorithm, our model represented a significant
advancement over previous studies that primarily relied on
clinical rationale and simpler statistical methods. XGBoost is
particularly effective due to its ability to process large amounts
of data and identify intricate patterns within complex datasets.
Its gradient boosting framework enhances predictive accuracy

by combining the strengths of multiple weak learners, leading
to more robust and reliable outcomes. Furthermore, XGBoost’s
flexibility allows for easy tuning of hyperparameters, enabling
us to optimize the model for our specific dataset and improve
its performance in predicting MAKE30 in hospitalized older
patients with AKI.

Second, this study used a larger sample size and conducted
external validation to evaluate the model’s performance.
Notably, the results of the external validation showed that the
simplified version of the model exhibited a gap of approximately
10% in AUROC between the training set and the external test
set. However, the performance of the simplified model on the
internal test set was comparable to that of the full model,
suggesting that the observed gap may be attributed to the use
of a different test set with distinct characteristics. Compared
with the training set, the external test set comprised critically
ill patients from various ethnic backgrounds and with distinct
patient characteristics and data quality. These findings
underscore the necessity for comprehensive testing across
diverse datasets to ensure the model’s reliability and
applicability in real-world settings. Another noteworthy
observation is that, although the Brier scores for both the training
and test data suggested acceptable calibration, a deeper
examination through visual inspection uncovered disparities.
Factors contributing to the observed discrepancies may include
overfitting during training, differences in underlying data
distributions, model complexity, or nuances in evaluation
methodology. Further investigation into the factors contributing
to the observed discrepancies is warranted.

Finally, this study delved into the interpretability of the model.
A major challenge in the clinical implementation of machine
learning is how to uncover its “black box” nature. Usually, data
come in and decisions go out, but the process between input
and output is opaque. The advantage of our study is the use of
SHAP method to explain the critical aspects of the data and
fully understand the model. The SHAP method identified
important predictor variables associated with the development
of MAKE30, which could allow early intervention of modifiable
factors to mitigate the risk of MAKE30. Another notable finding
is the nonlinear relationship between the predictor variables and
the risk of MEKE30, as shown in the SHAP dependence plots.
This relationship is often ignored by traditional regression
analysis, which requires a linearity between the independent
variables and the outcome.

Limitations
Our study has several limitations. First, the MIMIC-Ⅳ database
only contained data from critically ill patients admitted to the
ICU. Model performance awaits further validation in larger
samples of patients at different medical centers. Second, it
remains unclear whether the model will perform well in
individual prognostication and whether its clinical application
will improve patient prognosis. Thus, clinical impact studies
are needed to confirm the effectiveness of the model. Third, the
unavailability of preadmission SCr data could lead to the
omission of patients who could have been diagnosed with AKI,
that is, community-acquired AKI. Fourth, the urine output
criteria were not used to define AKI because hourly urine output
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data were unavailable for most patients. Finally, the missForest
method, as a single imputation method, might affect the SHAP
results by not considering sufficient variation for the imputation
of missing data.

Conclusions
MAKE30 is common in hospitalized older patients with AKI.
An interpretable machine learning XGBoost model was

developed and validated to predict MAKE30. The model
exhibited adequate predictive performance, which provides
opportunities for risk stratification, clinical decision-making,
and the conduct of clinical trials involving AKI. Future studies
are needed to support the robustness and clinical effectiveness
of the model.
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MIMIC-Ⅳ:  Medical Information Mart for Intensive Care Ⅳ
NLR: negative likelihood ratio
NPV: negative predictive value
PLR: positive likelihood ratio
PPV: positive predictive value
PRD: persistent renal dysfunction
ROC: receiver operating characteristic
RRT: renal replacement therapy
SCr: serum creatinine
SHAP: SHapley Additive exPlanations
XGBoost: eXtreme Gradient Boosting
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