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Abstract

Background: Google Trends (GT) data have shown promising results as a complementary tool to classical surveillance
approaches. However, GT data are not necessarily provided by a representative sample of patients and may be skewed toward
demographic and clinical groups that are more likely to use the internet to search for their health.

Objective: In this study, we aimed to assess whether GT-based models perform differently in distinct population subgroups.
To assess that, we analyzed a case study on asthma hospitalizations.

Methods: We analyzed all hospitalizations with a main diagnosis of asthma occurring in 3 different countries (Portugal, Spain,
and Brazil) for a period of approximately 5 years (January 1, 2012-December 17, 2016). Data on web-based searches on common
cold for the same countries and time period were retrieved from GT. We estimated the correlation between GT data and the
weekly occurrence of asthma hospitalizations (considering separate asthma admissions data according to patients’ age, sex,
ethnicity, and presence of comorbidities). In addition, we built autoregressive models to forecast the weekly number of asthma
hospitalizations (for the different aforementioned subgroups) for a period of 1 year (June 2015-June 2016) based on admissions
and GT data from the 3 previous years.

Results: Overall, correlation coefficients between GT on the pseudo-influenza syndrome topic and asthma hospitalizations
ranged between 0.33 (in Portugal for admissions with at least one Charlson comorbidity group) and 0.86 (for admissions in women
and in White people in Brazil). In the 3 assessed countries, forecasted hospitalizations for 2015-2016 correlated more strongly
with observed admissions of older versus younger individuals (Portugal: Spearman ρ=0.70 vs ρ=0.56; Spain: ρ=0.88 vs ρ=0.76;
Brazil: ρ=0.83 vs ρ=0.82). In Portugal and Spain, forecasted hospitalizations had a stronger correlation with admissions occurring
for women than men (Portugal: ρ=0.75 vs ρ=0.52; Spain: ρ=0.83 vs ρ=0.51). In Brazil, stronger correlations were observed for
admissions of White than of Black or Brown individuals (ρ=0.92 vs ρ=0.87). In Portugal, stronger correlations were observed
for admissions of individuals without any comorbidity compared with admissions of individuals with comorbidities (ρ=0.68 vs
ρ=0.66).
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Conclusions: We observed that the models based on GT data may perform differently in demographic and clinical subgroups
of participants, possibly reflecting differences in the composition of internet users’ health-seeking behaviors.

(J Med Internet Res 2025;27:e51804) doi: 10.2196/51804
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Introduction

The assessment of internet users’ behavior can be a valuable
source of information regarding their specific interests,
preferences, and perceptions pertaining to diverse health topics.
Such an assessment not only enables the identification and
exploration of emerging trends in health-related interests but
also facilitates an understanding of the factors influencing health
information seeking, dissemination, and consumption in the
digital age [1,2]. In this context, there are different
methodological approaches that can be used, including the
assessment of the relative volume of searches on specific health
topics and keywords (i.e, assessing what internet users seek)
[3-7] or the assessment of content available online, including
social media posts by internet users [8-10]. These approaches
are part of a recent field of studies termed “infodemiology,”
which is defined as “the science of distribution and determinants
of information in an electronic medium, specifically the Internet,
or in a population, with the ultimate aim to inform public health
and public policy” [1,11].

Infodemiology studies have been conducted to accomplish
different goals [7,12,13]. For instance, Google Trends (GT)
data, which measure the relative volume of searches on a
specific topic or term, have shown promising results as a
complementary tool to classical surveillance methods [6], in
forecasting influenza spread and hospitalizations [14-16], for
modelling COVID-19 spread [17,18], and for forecasting asthma
admissions [19]. However, GT data are not necessarily provided
by a representative sample of individuals within a certain
country or region [20] but can rather preferentially reflect
demographic or clinical groups that are more likely to use the
internet for health-related inquiries. For instance, the online
behavior of younger, more educated, or technologically literate
individuals may be overrepresented in GT data. Moreover,
health-related search behaviors can be influenced by a host of
factors, including the severity and type of health conditions, the
availability and quality of health information online, and
individual health literacy levels. Therefore, it is possible to
hypothesize that GT data should not be seen as a
“one-size-fits-all” tool for health research since we do not know
the clinical and demographic composition of the individuals
searching for a specific health term or topic. As such, it is
probable that there may be relevant differences from what is
observed in the general population, with relevant implications
for the performance and interpretability of GT-based models.

Therefore, in this study, we aimed to assess whether GT-based
models can have a different performance when considering
different population subgroups (according to their clinical and
demographic characteristics). To achieve that goal, we assessed

a case study of asthma hospitalizations. Specifically, we (1)
assessed the correlation between GT data for the common cold
and the number of hospitalizations for asthma considering
admissions of subgroups of patients (according to their age, sex,
ethnicity, and presence of comorbidities) and (2) compared the
performance of models predicting asthma hospitalizations based
on GT for these specific participant segments (according to their
age, sex, ethnicity, and presence of comorbidities).

Methods

Study Design
This study adhered to the methodological framework proposed
by Mavragani and Ochoa [21]. In a previous study by our team,
we had (1) established a correlation between GT data related
to common cold–related search terms and asthma
hospitalizations and (2) evaluated whether GT data on the
common cold, combined with data on admissions, could help
forecast asthma hospitalizations. In this study, we applied the
same methodology (correlations and forecast models) and used
the same GT data but specifically considered those hospital
admissions occurring in patients of each sex, age group (18-64
years old versus ≥65 years old), ethnicity (White versus Black
or Brown [“pardo”]), and the presence or absence of at least
one Charlson comorbidity [22]. We assessed a period of
approximately 5 years (2012-2016), assessing data from
Portugal, Spain, and Brazil.

Data Sources and Variables

GT Data
GT is a tool that offers insight into the popularity of search
terms by providing their relative search volume data on a scale
of 0 to 100 (where 100 represents the peak interest at a specific
time and location). It allows users to compare the popularity of
different keywords, topics, or queries across regions and time
periods. The data are indexed to show the proportion of searches
for a specific term relative to all searches on Google at that
specific time and location [6,12,23].

We obtained GT data on January 13, 2020, as already described
by Sousa-Pinto et al [19]. In brief, we retrieved country-level
GT on rhinovirus-related search terms for 5 years (between
2012 and 2016) in Portugal, Spain, and Brazil: 5 years is the
maximum amount of time for which GT displays data on a
weekly level. These countries and timeframe were chosen (1)
to allow comparability with a previous study [19] and (2) due
to the accessibility of nationwide data regarding the frequency
of weekly hospitalizations presented by age and sex. No specific
categories or subcategories of GT data were selected. We
accessed GT data exclusively through its web interface, with a
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single data extraction performed for each country included in
the study.

For each country, we applied 2 different GT queries. The first
query focused on the pseudo-influenza syndrome topic, which
was subsequently renamed as the common cold topic (of note,
“topics” encompass groups of search terms associated with a
specific concept regardless of language [12,19,21,24]). The
second query consisted of a combination of search terms related
to the common cold, carefully selected through discussions with
native speakers of each language:

• Portugal: constipação + resfriado
• Spain: resfriado + resfrío + catarro + constipado + refredat

+ constipate + arrefriado + hotzeri
• Brazil: resfriado

We did not include quotation marks for the search terms as each
term represented a single word. Misspellings or nonaccentuated
forms were also excluded from the search term combinations,
as we identified identical relative search volumes observed
whenever misspelt words were or were not included in search
term combinations.

Asthma Hospitalization Data Sources
We analyzed hospitalization data from January 1, 2012, to
December 17, 2016 (we excluded the last 2 weeks of 2016 due
to unavailable information on discharges in Portugal and
Brazil—as many patients admitted toward the end of 2016 were
discharged in 2017). In the 3 countries under investigation, we
examined all hospitalizations in which asthma was identified
as the primary diagnosis. Specifically, we used the International
Classification of Diseases, Ninth Revision, Clinical Modification
(ICD-9-CM), code 493.x or International Classification of
Diseases, Tenth Revision (ICD-10-CM) [25], code J45.x to
identify these cases. The hospitalization data were obtained
from the following sources: (1) the Hospital Morbidity database,
provided by the Portuguese Central Administration of the
Healthcare System, for Portugal [26]; (2) the Hospital Morbidity
Survey databases (Encuesta de morbilidad hospitalaria, Instituto
Nacional de Estadistica) for Spain [27]; and (3) Departamento
de Informática do Sistema Único de Saúde (DATASUS) data
from the Single Health System (Sistema Único de Saúde) for
Brazil [28].

For each country, separate analyses were performed by
participants’ sex and age group (we considered only the age
groups 18-64 years and ≥65 years to ensure a sufficient weekly
number of hospital admissions for each analysis). Based on data
availability for Portugal [20], analyses were also separately
performed for episodes with at least one comorbidity from the
Charlson comorbidity group and without any comorbidity from
the Charlson comorbidity group. Likewise, based on data
availability for Brazil, analyses were also separately performed
by participants’ ethnicity (White versus Black or Brown).
Information on ethnicity was not available for Portugal and
Spain, and information on the presence of comorbidities was
not available for Spain and Brazil.

Statistical Analysis
Data analysis encompassed 2 different steps: (1) assessing the
correlations between GT data and asthma hospitalizations in
each country after applying time series analysis methods and
(2) building models forecasting asthma hospitalizations for a
period of 1 year based on GT and hospitalization data from the
previous 4 years. To evaluate the predictive capability of the
models, we compared the forecasted asthma admissions with
the observed hospitalization data. For both GT and the frequency
of hospitalizations, we worked with data displayed on a weekly
basis (as it allowed detection of short-term variations while
mitigating the impact of large random fluctuations that can
occur when data are examined on a daily basis).

First, we performed a cross-correlation analysis to examine the
correlation between GT data and asthma hospitalizations
(cross-correlation can be understood as a statistical method used
to analyze the relationship [correlate] between 2 continuous
variables that can be measured or sampled at different points
in time) [29]. Given that (1) for GT data, a relevant secular trend
was expected (reflecting an increase in Google searches over
time) and (2) GT and hospitalization data are expressed on
different scales (GT results are expressed as relative search
values [ie, percentages in relation to the maximum observed
value of the whole period], whereas hospitalizations are
expressed as absolute values), we removed the secular trend
component for both GT and hospitalization data then assessed
the correlation between search volumes and asthma
hospitalizations. We analyzed Spearman correlations between
GT and hospitalization data registered in the same week, as well
as cross-correlation coefficients for a lag of 1 and 2 weeks to
determine if search volumes demonstrated a stronger correlation
with asthma hospitalizations occurring afterward rather than
those happening concurrently. Correlation coefficients were
presented alongside 95% CIs, which were computed using
bootstrap methods for Spearman correlation coefficients.

Second, we built seasonal autoregressive integrated moving
average (ARIMA) models to forecast variations in asthma
hospitalizations over a period of 1 year [19,30]. Seasonal
ARIMA models are used to forecast time series data that exhibit
repeating patterns over fixed intervals (in this case, yearly
cycles). These models take into account both the nonseasonal
patterns and the seasonal variations in the data to make accurate
predictions for future time points [31]. For each analysis,
seasonal ARIMA models parameters (p, d, q)(P', D, Q)s were
defined, where p denotes the order of autoregression, d denotes
the degree of difference, q denotes the order of the moving
average part, P' denotes the seasonal order of autoregression,
D denotes the degree of difference following seasonal
integration, Q denotes the seasonal moving average, and s
denotes the length of the seasonal period. We chose d and D so
that the 2012-2016 time series appeared stationary (ie, with
constant variance and no extreme fluctuations or overall
increasing or decreasing behavior), including by testing a
measure of seasonal strength [32]; we chose s=52 weeks (since
there are roughly 52 weeks in a year); we chose p and P' based
on spikes in partial autocorrelation function plots; and we chose
q and Q based on spikes in autocorrelation function plots.
Identification of these parameters using autocorrelation and
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partial autocorrelation plots allowed us to define candidate
models. Final seasonal ARIMA models were then selected based
on the results of the Ljung-Box test (which was applied to assess
whether residuals look like white noise) and on the minimization
of the Akaike information criteria and Bayesian information
criteria (see Table S1 in Multimedia Appendix 1 for the
parameters defined for each model). In this study, we used
asthma hospitalization data alongside GT data to forecast future
asthma hospitalizations. The data set was split into a training
set and a testing set. Specifically, the training set comprised
asthma hospitalizations and GT data collected from July 1, 2012,
to June 20, 2015. We then used this trained model to forecast
asthma hospitalizations for the testing set, which included
hospitalizations between the weeks of June 21, 2015, and June
19, 2016. This split allowed for the evaluation of model
performance on previously unseen data.

To evaluate the predictive performance of the models, several
measures were used: (1) the Spearman correlation coefficients
between the predicted variation in hospitalizations and the actual
number of asthma hospitalizations (ie, without time series
decomposition), (2) the average weekly difference between the
numbers of predicted and observed hospitalizations, and (3) the
number of weeks whose number of observed asthma
hospitalizations fell outside the 95% CI for predicted admissions.

All analyses were performed using R software, version 4.3.0
(R Foundation for Statistical Computing) [33], using the forecast
and urca packages.

Ethical Considerations

Ethics Approval
The data used in this study were provided by the Central
Administration of the Health System (Administração Central
do Sistema de Saúde [ACSS]) in accordance with their
institutional data-sharing policies. These data consist of the
Morbidity Hospital Database (Bases de Dados de Morbilidade
Hospitalar), which includes anonymized and de-identified data.
Per the ACSS’s internal guidelines, data anonymization and
de-identification are conducted before any access is granted to
external researchers. As a result, specific ethical approval was
not required, as the use of anonymized data aligns with both
Portuguese data protection regulations and the institutional
policy governing secondary data analysis. [34-36],

Privacy and Confidentiality
The ACSS guarantees that the provided data sets are fully
anonymized, making it impossible to identify individual patients.
In addition, strict data use agreements are in place, which ensure
that external entities, such as the authors of this study, commit
to (1) using the data exclusively for research within the scope
of their project, ensuring secure and fair data processing; (2)
requesting explicit authorization from ACSS for any other use
beyond the agreed scope; (3) not sharing the data with third
parties; (4) citing ACSS as the source of the data in any resulting
publications; (5) providing ACSS with copies of all publications
that use the data; and (6) taking full responsibility for any
analysis or conclusions drawn from the provided data sets.

Compensation
No compensation was provided, as the study did not involve
direct patient recruitment or interaction.

Additionally, any identification of specific hospitals or the
disclosure of medical device pricing data requires explicit
approval from the respective institutions. This confidentiality
further strengthens the protection of sensitive information while
allowing for the comprehensive analysis of anonymized data.

Results

Between 2012 and 2016, GT data for pseudo-influenza syndrome
presented similar patterns across the 3 countries for which GT
data were plotted, with peaks in the winter and valleys in the
summer of the respective hemispheres (Figure 1). This pattern
was also observed for asthma hospitalizations in each subgroup
of patients in each country.

In the assessed countries and for each subgroup of admissions,
correlations between GT on the pseudo-influenza syndrome
topic (after removing the trend component) and asthma
hospitalizations ranged between 0.33 (in Portugal for admissions
with at least one Charlson comorbidity group) and 0.86 (for
admissions of women and White individuals in Brazil; Table
1). Similar values were observed when analyzing the correlations
between GT and terms for the common cold. In the 3 countries,
stronger correlation coefficients were observed for admissions
occurring for women. In Portugal and Spain, stronger
correlations were found for admissions of younger individuals,
while in Brazil, the inverse phenomenon occurred. In Brazil,
no differences were observed between correlations for
admissions of patients of White or Black/Brown ethnicity. In
Portugal, stronger correlations were observed for admissions
of patients without comorbidities than for those with at least
one comorbidity.

In most cases, GT on the pseudo-influenza syndrome topic
correlated more strongly with asthma hospitalizations occurring
in the subsequent week than with those occurring in the same
week (Table 1).

In the 3 assessed countries (Table 2; Figure 2), forecasted
hospitalizations for 2015-2016 obtained through seasonal
ARIMA models correlated more strongly with observed
admissions of older adults versus younger individuals (Portugal:
correlation coefficient [ρ]= 0.70 vs ρ= 0.56; Spain: ρ=0.88 vs
ρ=0.76; Brazil: ρ=0.83 vs ρ=0.82). In Portugal and Spain,
forecasted hospitalizations displayed a much stronger correlation
with admissions occurring for women than for men (Portugal:
ρ=0.75 vs ρ=0.52; Spain: ρ=0.83 vs ρ=0.51). Consistent results
were observed when performing a sensitivity analysis by age
group (Table S2 in Multimedia Appendix 1). In Brazil, stronger
correlations were observed for admissions of White individuals
than of Black or Brown individuals (ρ=0.92 vs ρ=0.87). In
Portugal, stronger correlations were observed for admissions
of individuals without any comorbidity compared with
admissions of individuals with comorbidities (ρ=0.68 vs
ρ=0.66). The numbers of weeks with observed hospitalizations
outside the confidence interval for predicted values ranged
between 1 and 7 for Portugal, 2 and 12 for Spain, and 0 and 1
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for Brazil (according to subgroups of admissions in each country).

Figure 1. Google Trends (GT) data on pseudo-influenza syndrome and asthma hospitalizations (2012-2016) for (A.1) men in Portugal, (B.1) men in
Spain, (C.1) men in Brazil, (A.2) women in Portugal, (B.2) women in Spain, (C.2) women in Brazil, (A.3) older adults in Portugal, (B.3) older adults
in Spain, (C.3) older adults in Brazil, (A.4) younger adults in Portugal, (B.4) younger adults in Spain, (C.4) younger adults in Brazil, (C.5) White people
in Brazil, (C.6) Black or Brown people in Brazil, (A.7) people with comorbidities in Portugal, and (A.8) people without comorbidities in Portugal. The
trend component of the time series has been plotted after removing the seasonal effects and random error components.
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Table 1. Correlation and cross-correlation coefficients between common cold Google Trends data (ie, Google Trends data on the pseudo-influenza
syndrome topic and on common cold search terms) and asthma hospitalizations (according to age, sex, ethnicity, and presence of comorbidities) for the
period 2012-2016.

Results after removal of the trend component, cross-correlation coefficients
(95% CI)

Results based on observed
data, correlation coefficients
(95% CI)

Categories

Week lag –2Week lag –1Week lag –0

Pseudo-influenza syndrome topic

Portugal

Sex

0.36 (–0.16 to 0.16)0.37 (–0.17 to 0.17)0.36 (–0.17 to 0.17)0.41 (0.30 to 0.52)Male

0.47 (–0.19 to 0.19)0.51 (–0.20 to 0.20)0.44 (–0.19 to 0.19)0.47 (0.36 to 0.58)Female

Age group (years)

0.49 (–0.21 to 0.21)0.47 (–0.22 to 0.22)0.37 (–0.22 to 0.22)0.38 (0.25 to 0.50)>65

0.34 (–0.16 to 0.16)0.42 (–0.16 to 0.16)0.41 (–0.15 to 0.15)0.43 (0.31 to 0.54)18-64

Comorbidities

0.38 (–0.18 to 0.18)0.38 (–0.18 to 0.18)0.32 (–0.18 to 0.18)0.33 (0.19 to 0.46)With comorbidities

0.36 (–0.17 to 0.17)0.37 (–0.16 to 0.16)0.36 (–0.17 to 0.17)0.51 (0.40 to 0.61)Without comorbidities

Spain

Sex

0.57 (–0.35 to 0.35)0.61 (–0.35 to 0.35)0.65 (–0.34 to 0.34)0.63 (0.53 to 0.72)Male

0.86 (–0.40 to 0.40)0.86 (–0.40 to 0.40)0.83 (–0.39 to 0.39)0.79 (0.72 to 0.84)Female

Age group (years)

0.82 (–0.40 to 0.40)0.80 (–0.40 to 0.40)0.73 (–0.41 to 0.41)0.69 (0.60 to 0.76)>65

0.83 (–0.34 to 0.34)0.86 (–0.34 to 0.34)0.83 (–0.34 to 0.34)0.81 (0.75 to 0.86)18-64

Brazil

Sex

0.68 (–0.37 to 0.37)0.75 (–0.37 to 0.37)0.82 (–0.37 to 0.37)0.85 (0.80 to 0.88)Male

0.72 (–0.33 to 0.33)0.78 (–0.33 to 0.33)0.83 (–0.34 to 0.34)0.86 (0.82 to 0.89)Female

Age group (years)

0.69 (–0.30 to 0.230)0.70 (–0.29 to 0.29)0.68 (–0.29 to 0.29)0.74 (0.67 to 0.78)>65

0.59 (–0.27 to 0.27)0.63 (–0.27 to 0.27)0.65 (–0.27 to 0.27)0.70 (0.63 to 0.75)18-64

Ethnicity

0.73 (–0.35 to 0.35)0.79 (–0.35 to 0.35)0.84 (–0.35 to 0.35)0.86 (0.82 to 0.89)White

0.69 (–0.32 to 0.32)0.75 (–0.32 to 0.32)0.81 (–0.32 to 0.32)0.85 (0.80 to 0.88)Black or Brown

Common cold search terms

Portugal

Sex

0.34 (–0.16 to 0.16)0.30 (–0.16 to 0.16)0.31 (–0.16 to 0.16)0.35 (0.23 to 0.48)Male

0.52 (–0.19 to 0.19)0.46 (–0.18 to 0.18)0.46 (–0.19 to 0.19)0.45 (0.33 to 0.56)Female

Age group (years)

0.49 (–0.20 to 0.20)0.45 (–0.20 to 0.20)0.41 (–0.20 to 0.20)0.37 (0.24 to 0.50)>65

0.42 (–0.16 to 0.16)0.38 (–0.15 to 0.15)0.41 (–0.15 to 0.15)0.42 (0.30 to 0.53)18-64

Comorbidities

0.42 (–0.15 to 0.15)0.35 (–0.16 to 0.16)0.34 (–0.16 to 0.16)0.33 (0.19 to 0.45)With comorbidities

J Med Internet Res 2025 | vol. 27 | e51804 | p. 6https://www.jmir.org/2025/1/e51804
(page number not for citation purposes)

Portela et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Results after removal of the trend component, cross-correlation coefficients
(95% CI)

Results based on observed
data, correlation coefficients
(95% CI)

Categories

Week lag –2Week lag –1Week lag –0

0.51 (–0.20 to 0.20)0.49 (–0.21 to 0.21)0.48 (–0.21 to 0.21)0.48 (0.36 to 0.58)Without comorbidities

Spain

Sex

0.57 (–0.34 to 0.34)0.60 (–0.34 to 0.34)0.64 (–0.34 to 0.34)0.63 (0.53 to 0.71)Male

0.85 (–0.39 to 0.39)0.86 (–0.39 to 0.39)0.83 (–0.39 to 0.39)0.78 (0.71 to 0.83)Female

Age group (years)

0.81 (–0.40 to 0.40)0.80 (–0.40 to 0.40)0.73 (–0.40 to 0.40)0.69 (0.60 to 0.76)>65

0.83 (–0.36 to 0.36)0.85 (–0.36 to 0.36)0.83 (–0.33 to 0.33)0.81 (0.74 to 0.86)18-64

Brazil

Sex

0.66 (–0.34 to 0.34)0.75 (–0.34 to 0.34)0.81 (–0.34 to 0.34)0.84 (0.81 to 0.87)Male

0.70 (–0.31 to 0.31)0.78 (–0.32 to 0.32)0.82 (–0.32 to 0.32)0.86 (0.82 to 0.89)Female

Age group (years)

0.70 (–0.29 to 0.29)0.69 (–0.29 to 0.29)0.69 (–0.29 to 0.2)0.74 (0.69 to 0.79)>65

0.60 (–0.25 to 0.25)0.65 (–0.25 to 0.25)0.65 (–0.25 to 0.25)0.70 (0.63 to 0.76)18-64

Ethnicity

0.71 (–0.34 to 0.34)0.78 (–0.33 to 0.33)0.84 (–0.33 to 0.33)0.86 (0.83 to 0.89)White

0.68 (–0.31 to 0.31)0.75 (–0.31 to 0.31)0.80 (–0.31 to 0.31)0.84 (0.80 to 0.87)Black or Brown
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Table 2. Results of 1-year (June 2015 to June 2016) forecasts for the number of asthma hospitalizations (according to age, sex, ethnicity, and presence
of comorbidities) based on autoregressive integrated moving average models including common cold–related Google Trends data and asthma
hospitalizations from the previous 3 years.

Weeks with observed
hospitalizations out-
side the predicted
95% CIs, n (%)

Average difference in the abso-
lute numbers of predicted and
observed weekly hospitaliza-
tions, average

Results for number of predicted and
observed hospitalizations, correla-
tion (95% CI)

Categories

Pseudo-influenza syndrome topic

Portugal

Sex

1 (1.9)6.50.52 (0.26-0.71)Male

5 (9.6)26.30.75 (0.57-0.85)Female

Age group (years)

6 (11.5)14.90.70 (0.51-0.83)>65

7 (13.5)27.80.56 (0.38-0.70)18-64

Comorbidities

1 (1.9)21.90.66 (0.45-0.80)With comorbidities

1 (1.9)9.50.68 (0.52-0.81)Without comorbidities

Spain

Sex

2 (3.9)49.10.51 (0.22-0.72)Male

12 (23.1)111.20.83 (0.65-0.92)Female

Age group (years)

12 (23.1)101.90.88 (0.74-0.95)>65

7 (13.5)30.10.76 (0.59-0.88)18-64

Sensitivity analyses by age group (years)

3 (5.7)71.30.85 (0.73-0.91)>65

0 (0)10.80.89 (0.78-0.94)45-64

18 (1.8)11.80.85 (0.72-0.92)18-44

Brazil

Sex

0 (0)75.10.91 (0.83-0.94)Male

0 (0)71.80.89 (0.81-0.93)Female

Age group (years)

1 (1.9)32.80.83 (0.71-0.90)>65

1 (1.9)44.60.82 (0.69-0.89)18-64

Sensitivity analyses by age group (years)

3 (5.7)20.70.87 (0.78-0.92)>65

2 (3.8)19.30.78 (0.63-0.88)45-64

0 (0)22.10.74 (0.57-0.85)18-44

Ethnicity

0 (0)40.80.92 (0.84-0.95)White

0 (0)71.10.87 (0.75-0.93)Black or Brown
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Figure 2. Predicted number (estimated based on previous hospitalizations and Google Trends data) and observed number of asthma hospitalizations
(June 2015 to June 2016) for (A) men in Portugal, (B) men in Spain, (C) men in Brazil, (D) women in Portugal, (E) women in Spain, (F) women in
Brazil, (G) older adults in Portugal, (H) older adults in Spain, (I) older adults in Brazil, (J) younger adults in Portugal, (K) younger adults in Spain, (L)
younger adults in Brazil, (M) White people in Brazil, (N) Black or Brown people in Brazil, (O) people with comorbidities in Portugal, and (P) people
without comorbidities in Portugal.

Discussion

Principal Findings
In this study, we assessed the correlations of GT data and the
performance of GT-based models in different subgroups of

patients (as defined by clinical and demographic characteristics:
age, sex, ethnicity, and presence of comorbidities) using the
case study of asthma. Overall, our results point out that
GT-based models may not necessarily have the same
performance in all subgroups of patients, highlighting that GT
data may vary across different segments of users. In fact, we
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observed stronger correlations between GT data and asthma
hospitalization data or between forecasted and observed
hospitalizations when assessing admissions of women or patients
without comorbidities. Less consistent results were observed,
in particular in Brazil, according to age group.

Overall, studies using GT data for surveillance purposes have
obtained mixed results. On the one hand, GT has been shown
to have an effective potential to monitor the spread of infectious
diseases, track public interest in health-related topics, and
identify emerging trends in public health [37,38]. However,
there have also been instances where GT has shown
inconsistencies or failed to provide accurate predictions,
emphasizing the need to carefully interpret the data [23]. In
part, these failures may be related to differences in the
composition of internet users compared with that of patients
with a particular disease. Although we cannot necessarily
generalize the results observed in the use case of asthma
hospitalizations to other conditions or countries, this paper is
relevant from a methodological point of view, as it demonstrates,
through a case study, how the association between GT and
disease data is not always the same for all groups of individuals,
pointing to the need to study these associations according to the
characteristics of the patients.

This study is also relevant for asthma care, as this was the
condition we particularly assessed. Regarding our findings of
the performance of GT-based models in the distinct subgroups
of asthma hospitalizations, we observed relevant gender-related
differences. In fact, women have higher asthma prevalence,
severity, and health care utilization than men [39,40]. The better
correlations and model performance observed in female
admissions may be related to the higher prevalence of asthma
in this population. On the other hand, women often exhibit more
proactive health information–seeking behaviors, with a particular
emphasis on their own health and well-being as well as that of
their families—which may partly explain the higher internet
use by women than men [41]. In addition, in some cultures,
women may have primary caregiving responsibilities for family
members’ health, including managing asthma [42]. This can
also contribute to increasing interest and information-seeking
behavior and enhance engagement with online platforms,
possibly explaining the higher correlations and better
performance of models in admissions of women.

Younger adults, especially those who are generally healthy,
may exhibit different health-seeking behaviors than older adults
or individuals with chronic illnesses [43]. Younger adults may
tend to be more proactive in seeking health care information
online and to be more likely to use search engines [44], in part
given their historically higher access and rates of internet use
[44] (which can be attributed to factors such as greater digital
literacy, increased reliance on technology for information and
communication, and higher rates of smartphone ownership
[44,45]). However, that access has also been proliferating very
quickly among older adults, who may possibly be more
concerned about their health [46]. These changing patterns may
partly explain the heterogeneity of our results obtained on age
groups, with higher correlations found for younger adults in
contrast with better performance of forecasting models in
admissions of older adults. Such a pattern was also observed

when performing separate analyses for age groups of 15 to
44-year-olds and 45 to 64-year-olds in Spain and Brazil. All
things considered, our findings may offer insights into digital
divides, hinting at disparities in internet access, digital literacy,
and health information–seeking behaviors across demographic
groups. The use of GT-based tools for complementing
surveillance systems may have important implications in terms
of health equity, considering the discrepancies in internet access
across clinical and demographic subgroups.

Information on the presence of comorbidities or ethnicity of
patients was only available for one country each (Portugal and
Brazil, respectively). The presence of comorbidities has been
associated with worse health outcomes for asthma admissions
[47]. In addition, we observed a less pronounced seasonal pattern
in Portuguese hospitalizations of individuals with comorbidities
than in those without, potentially explaining the worse
performance of GT-based models in forecasting those
admissions. Small differences were observed regarding ethnicity,
with a slightly better performance of models for Whites in
Brazil, possibly reflecting different regional demographics,
internet use patterns, or health care–seeking patterns.

Strengths and Limitations
Several limitations should be discussed. First, the differences
observed in the performance of GT across different subgroups
are not necessarily generalizable to other countries and
conditions (eg, we cannot state that GT-based models always
display better performance when considering data from female
participants). Second, data availability on hospitalizations was
limited to 3 countries and, regarding the presence of
comorbidities or ethnicity, we only had that information for
Portugal and for Brazil, respectively. In addition, the small
frequency of weekly admissions precluded the comparison of
the performance of the models’ unspecific sets of Charlson
comorbidity groups. Third, GT provides data on search term
popularity and relative interest (ie, GT presents searches as a
relative volume instead of as an absolute number of searches),
which makes comparisons between queries difficult and reveals
less information about the absolute search interest in each aspect
being assessed. In addition, it does not provide detailed
information about the context or intent behind the searches, thus
making it prone to bias due to possible media coverage [48]. In
the particular context of this study, we were not able to quantify
the number of searches on the “common cold” resulting from
individuals experiencing cold symptoms versus reflecting other
intentions (eg, search for news on the common cold). This lack
of specificity can make it challenging to establish a causal link
between search behaviors and the studied outcomes. However,
this is an inherent limitation of GT, and our goal was not so
much to establish an association between searches on “common
cold” and asthma hospitalizations but rather to assess how that
association varies considering different subgroups. Finally,
during the assessed period, there was an increase in the use of
the internet. However, we applied time series analysis methods,
removing the estimated trend components for both GT and
hospitalization data.

This study also had several strengths. In particular, this study
has an important novelty component—to the best of our
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knowledge, this is the first time that the performance of
GT-based models has been investigated across diverse
demographic and clinical subgroups, with relevant potential
implications for considering digital divides and health
equity–related aspects in interpreting results of GT-based tools.
In addition, we assessed 3 different countries (1 in Europe and
1 in South America) using nationwide data for a period of 5
years. We applied 2 different strategies to retrieve common
cold–related GT data—GT data on the pseudo-influenza
syndrome topic and search terms regarding the common
cold—which obtained comparable results. We examined asthma
as a case study since (1) asthma, in comparison with other
diseases (such as COVID-19), is less subject to a high or
variable media coverage, thus not particularly biased for GT
data [30,48]; (2) the relationship between asthma admissions
and GT data on the common cold has been already established
[19]; and (3) the influence of patients’ characteristics on asthma
outcomes has been assessed [20]. Although this study relied on
a case study on asthma admissions, there is potential application
of this methodology to other diseases and segments of the
population to better understand the context in which GT-based
models can be better applied.

Conclusions
In this study, we observed better performance of models
forecasting asthma hospitalizations in women, White individuals
(Brazil), and patients without comorbidities (Portugal),
suggesting that the models based on GT may perform differently
in subgroups of participants, which may indicate variations in
the patterns of health-related information seeking among
different segments of internet users. Although GT data have
increasingly been assessed as a potential complementary tool
to more classical surveillance approaches, determining the best
practices for using GT data and understanding its limitations
requires exploring in which segments of users it performs better.
Although this study assessed the use case of asthma in 3
countries and shows differences in different segments of the
population, future studies should explore how GT-related models
may differentially perform in accordance with other variables,
such as sociodemographic variables (like age, gender, education,
income, urban/rural context, underserved populations), as well
as to test differences observed in other diseases, countries, and
clinical data sources. This study contributes to advancing our
understanding of the complexities inherent in the infodemiology
field and hints at the need to consider population subgroups and
health contexts for the applicability of GT-based surveillance
systems.
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