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Abstract

Background: Assessing the complex and multifaceted symptoms of patients with acute psychiatric disorders proves to be
significantly challenging for clinicians. Moreover, the staff in acute psychiatric wards face high work intensity and risk of burnout,
yet research on the introduction of digital technologies in this field remains limited. The combination of continuous and objective
wearable sensor data acquired from patients with deep learning techniques holds the potential to overcome the limitations of
traditional psychiatric assessments and support clinical decision-making.

Objective: This study aimed to develop and validate wearable-based deep learning models to comprehensively predict patient
symptoms across various acute psychiatric wards in South Korea.

Methods: Participants diagnosed with schizophrenia and mood disorders were recruited from 4 wards across 3 hospitals and
prospectively observed using wrist-worn wearable devices during their admission period. Trained raters conducted periodic
clinical assessments using the Brief Psychiatric Rating Scale, Hamilton Anxiety Rating Scale, Montgomery-Asberg Depression
Rating Scale, and Young Mania Rating Scale. Wearable devices collected patients’ heart rate, accelerometer, and location data.
Deep learning models were developed to predict psychiatric symptoms using 2 distinct approaches: single symptoms individually
(Single) and multiple symptoms simultaneously via multitask learning (Multi). These models further addressed 2 problems:
within-subject relative changes (Deterioration) and between-subject absolute severity (Score). Four configurations were consequently
developed for each scale: Single-Deterioration, Single-Score, Multi-Deterioration, and Multi-Score. Data of participants recruited
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before May 1, 2024, underwent cross-validation, and the resulting fine-tuned models were then externally validated using data
from the remaining participants.

Results: Of the 244 enrolled participants, 191 (78.3%; 3954 person-days) were included in the final analysis after applying the
exclusion criteria. The demographic and clinical characteristics of participants, as well as the distribution of sensor data, showed
considerable variations across wards and hospitals. Data of 139 participants were used for cross-validation, while data of 52
participants were used for external validation. The Single-Deterioration and Multi-Deterioration models achieved similar overall
accuracy values of 0.75 in cross-validation and 0.73 in external validation. The Single-Score and Multi-Score models attained
overall R² values of 0.78 and 0.83 in cross-validation and 0.66 and 0.74 in external validation, respectively, with the Multi-Score
model demonstrating superior performance.

Conclusions: Deep learning models based on wearable sensor data effectively classified symptom deterioration and predicted
symptom severity in participants in acute psychiatric wards. Despite lower computational costs, Multi models demonstrated
equivalent or superior performance to Single models, suggesting that multitask learning is a promising approach for comprehensive
symptom prediction. However, significant variations were observed across wards, which present a key challenge for developing
clinical decision support systems in acute psychiatric wards. Future studies may benefit from recurring local validation or federated
learning to address generalizability issues.

(J Med Internet Res 2024;26:e65994) doi: 10.2196/65994
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Introduction

Assessing psychiatric symptoms of patients with acute
psychiatric disorders remains challenging [1-3]. Patients with
psychosis, mania, and severe depression who require
hospitalization often struggle to accurately report their
symptoms. Poor insight, a short attention span, impaired
cognition, paranoia, and severe avolition can result in
underreporting, minimization, and impairment of the
verbalization process [3,4]. Additionally, the inherent
subjectivity in assessing psychopathology presents reliability
concerns and requires experienced professionals [5,6]. Even
well-staffed and equipped wards cannot provide continuous
patient observation by trained medical personnel.

Recent advancements in wearable sensor technology and
artificial intelligence (AI) have enabled the collection and
analysis of vast amounts of data [7-9]. These data encompass
characteristics related to human behavior, cognition, and mood
associated with mental disorders [10] and are often referred to
as digital phenotyping [11-13]. The continuous and objective
measurement capabilities of sensor data can overcome the
limitations of traditional psychiatric assessments [14-16].
Numerous studies have reported that sensor data from wearables
and mobile phones can significantly predict health outcomes,
such as disease risk and mortality, by unobtrusively monitoring
sleep [17-20], circadian rhythms [21-23], and physical activity
[24,25].

Using sensor data in acute psychiatric wards is expected to
produce significant advantages. Acute psychiatric wards must
always be prepared for the risks of aggression and self-harm,
resulting in high staffing demands [26,27]. Health care workers
in these settings are repeatedly exposed to such patient
behaviors, introducing a significant risk of burnout [28,29].
Additionally, human rights standards and the legislation required
for the care of psychiatric inpatients are progressing globally

[30]. Consequently, digital technology adoption remains a
pressing issue in addressing these challenges in psychiatric
wards [31]. Furthermore, psychiatric wards provide a highly
controlled environment, enabling accurate and continuous
collection of wearable sensor data and detailed clinical
information. This creates suitable conditions for digital
phenotyping research [32].

Despite these expected advantages, only a few studies have
presented AI models to support medical personnel in the context
of acute psychiatric wards. To the best of our knowledge, the
task of symptom prediction has not yet been addressed.
Psychiatric wards exhibit a wide range of architectural, staffing,
and organizational variations [33-35], likely contributing to
limited research in these contexts. Furthermore, psychiatric
inpatients have diverse diagnoses and a wide symptom range
[36,37]. Predicting comprehensive symptoms across
multi-institutional pandiagnostic groups is necessary to provide
a robust foundation for AI-assisted clinical decision support
systems (AI-CDSSs) [38].

Therefore, we aimed to develop and validate a comprehensive
symptom prediction model for patients in acute psychiatric
wards using sensor data obtained using wearable devices and
deep learning–based prediction models. This prospective,
longitudinal, observational study was conducted across multiple
institutions, representing various regions and hospital types.
We constructed and evaluated models for predicting single
symptoms individually and multiple symptoms simultaneously,
as well as for predicting relative changes within subjects and
absolute severity between subjects. Moreover, we explored the
future directions and challenges of AI-CDSSs in psychiatric
ward settings.
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Methods

Overview
The study was presented according to the Guidelines for
Developing and Reporting Machine Learning Predictive Models
in Biomedical Research [39], as well as the TRIPOD+AI
guideline (version February 7, 2024) [40].

Ethical Considerations
This study was conducted in accordance with the Declaration
of Helsinki [41]. The study protocol was reviewed and approved
by the Institutional Review Board of the Seoul National
University Hospital (2210-073-1368). All participants provided
informed consent. Participants received compensation of KRW
100,000 (approximately US $70) for each week of participation.
Research data were stored on servers within each hospital,
separate from personally identifiable information except for
study identification numbers. Access to and analysis of the data
were restricted to preapproved researchers only. No identifiable
images or personal information of participants are included in
this manuscript or any supplementary materials.

Participants
The Sensor Application for Early Response in Closed Wards
(SAFER) project aims to build a generalizable wearable-based
AI-CDSS for acute psychiatric wards. This project is ongoing
until 2024, and interim data were used in this study.

Four wards from 3 hospitals representing diverse regions and
hospital types participated in the SAFER study: Seoul National
University Hospital, a tertiary general hospital in the capital
city with a single participating ward; Yongin Mental Hospital,
a suburban psychiatric hospital with 2 wards, one for each sex;
and Dongguk University Ilsan Hospital, a general hospital in a
newly developed city with one participating ward.

Inpatients aged 13 years or older, diagnosed with a mood
disorder (major depressive or bipolar disorder) or schizophrenia
spectrum disorder, were recruited from each ward. For
vulnerable participants, including minors and individuals whose
symptoms might impair their ability to understand and consent,
additional consent was obtained from their legal guardians.
Exclusion criteria included dementia, intellectual disability,
organic brain disorders, and any physical condition causing
difficulty in data collection (eg, wrists too thin owing to low
body weight of participants with anorexia nervosa). However,
other coexisting diagnoses were included to ensure a
pandiagnostic study population. As one of the analysis targets
was a comparison with previous scores of the same individual,
the analysis included only participants who had undergone at
least 2 assessments, including the baseline assessment.

Measurements
Each participant was provided with a wrist-worn device called
URBAN HR (Partron Co, Ltd). Participants were instructed to
wear the device continuously, except when showering or leaving
the ward, although they could remove it freely if desired. The
wearable devices collected data on heart rate, 3-axis acceleration
(which measures acceleration along 3 perpendicular axes in
space), and location. Using in-device algorithms, these metrics

were used to calculate calories burned, steps walked, distance
moved, and sleep index. Among these, the sleep index is used
to analyze participants’ sleep and is calculated based on heart
rate and acceleration data using algorithms provided by the
manufacturer. This sleep index quantifies the cumulative daily
sleep duration, converting it into a score ranging from 30 (2.25
h or less) to 100 (7.5 h or more). The generated data were
transmitted in real time to the server at each hospital via
Bluetooth gateways installed in each patient’s room and
common areas.

The participants were assessed weekly for symptoms by raters
using clinician-rated scales. Additional assessments were
conducted following injection, seclusion, and restraint
interventions: the Brief Psychiatric Rating Scale (BPRS) was
used to evaluate psychotic and general psychiatric symptoms,
the Hamilton Anxiety Scale (HAM-A) was used to assess
anxiety, the Montgomery-Asberg Depression Rating Scale
(MADRS) was used to evaluate depressive symptoms, and the
Young Mania Rating Scale (YMRS) was used to measure manic
symptoms. The raters were registered nurses with a minimum
of 51 months and an average of 11 years of clinical experience.
All raters completed 40 hours of specialized training for the
study, and their ratings were periodically reviewed at research
conferences with psychiatrists.

Feature Engineering
A 1-hour sliding window was used to synthesize time-series
values from various sensors. The 3-axis accelerations were
converted to a total acceleration, which is the magnitude of the
summed acceleration. The first value, last value, mean, median,
maximum, minimum, SD, and number of unique values within
the 1-hour sliding window were calculated for total acceleration
and heart rate. Calories burned, sleep index, number of steps
walked, and distance traveled were calculated as cumulative
values over this window. Regarding location data, the variance
of the coordinate values and most frequent semantic location
(room, hallway, other, and no signal) were computed over the
sliding window.

Location entropy quantifies the diversity and unpredictability
of a participant’s location patterns, which have demonstrated
predictive value for mental health correlates [42-44]. We
computed entropy values over 24-hour and 8-hour periods,
delineated by midnight, 8 AM, and 4 PM. This approach was
chosen as meaningful location entropy assessment requires
longer periods than the 1-hour sliding window.

Missing values in the sensor data were imputed using the
softImpute method [45]. The participant was excluded if missing
values exceeded 50% of their total timespan. Sensor data from
the 4 weeks preceding each symptom assessment were used in
the model. In cases where available data preceding the
assessment were less than 4 weeks, zero-padding was applied
to extend the data to the required length [46]. The size of the
input layer was 672 hours with 31 features (672 × 31) including
2 nonsensor features (age and sex). t-distributed Stochastic
Neighbor Embedding (t-SNE) was used to visualize the
distribution of these 31 features by ward.
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Prediction Model and Performance Evaluation
A model designed to predict symptoms encompassing the BPRS,
HAM-A, MADRS, and YMRS was constructed using a deep

learning architecture that incorporates 1D convolutional layers
and gated recurrent units (Figure 1). All models shared an
identical structure, except for the terminal fully connected layer
and output layer.

Figure 1. The architecture of deep learning models for predicting comprehensive symptoms in inpatients with acute psychiatric disorders. Original
sequence data were adjusted to match the required length by removing data older than 4 weeks; shorter data were zero-padded to form the input layer.
1D-Conv, GRU, and fully connected layers were used sequentially. The model’s performance was compared based on various output layer configurations.
1D-Conv: 1D convolutional; GRU: gated recurrent unit.

These models were differentiated based on the configuration of
the output layer according to 2 criteria. First, the models were
classified based on whether they predicted a single scale at a
time (Single) or predicted all scales simultaneously (Multi).
Multi models used a multitask learning (MTL) approach [47].
Second, the models were distinguished based on whether they
classified instances where the symptom scale score increased
from the previous assessment within an individual
(Deterioration) or predicted the absolute severity score of the
symptoms (Score). Deterioration models corresponded to a
within-subject design, while Score models aligned with a
between-subject design [48]. Consequently, 4 types of models
were developed for each scale by intersecting these 2 criteria:
Single-Deterioration, Single-Score, Multi-Deterioration, and
Multi-Score.

Participants recruited prior to May 1, 2024, were allocated to
the internal cross-validation set, while those recruited on or
after May 1, 2024, were assigned to the external validation set.
The internal cross-validation set underwent a 5-fold
cross-validation. Hyperparameters were optimized using the
random search method [49]. The final model was evaluated on
the external validation set. The performance of Deterioration
models was evaluated using accuracy, area under the curve
(AUC), and receiver operating characteristic (ROC) curve. In
the cross-validation, the ROC curve was generated by vertically
pooling the curves from each fold. The performance of Score

models was assessed using R2 and normalized root mean squared
error (NRMSE), with NRMSE chosen to account for varying
score ranges across scales. Permutation feature importance was
measured for features in the external validation set. The deep

learning model was built using PyTorch (version 2.2) [50], and
model performance evaluation and t-SNE were performed using
scikit-learn (version 1.3) [51].

Results

Overall, 244 participants were enrolled in the SAFER study
between May 26, 2023, and August 5, 2024. Sixteen participants
were excluded based on the exclusion criteria or consent
withdrawal after initially agreeing to participate. Additionally,
37 participants were excluded from the analysis because they
lacked at least 1 assessment or had > 50% missing data from
wearable sensors. Ultimately, data from 191 participants,
encompassing 3954 person-days of observation, were analyzed.
Participants were observed for a mean of 20.7 (SD 17.5) days,
with 4.3 (SD 2.9) assessments per participant. In the final
sample, 57.6% (110/191) were female, and the most frequent
diagnosis was a mood disorder with a current depressive episode
(93/191, 48.7%). For validation purposes, 139 participants were
assigned to the cross-validation set and 52 participants were
assigned to the external validation set.

Significant differences were observed in sex, age, and household
income across hospitals (all P<.001). The first psychiatric
admission (P=.17) did not show any significant differences nor
did BPRS (P=.45) or HAM-A (P=.27) scores, suggesting general
clinical severity was similar. However, significant differences
were observed in the number of assessments (P=.02), days of
observation (P=.007), diagnostic groups (P=.005), and MADRS
(P=.002) and YMRS (P<.001) scores across the hospitals (Table
1).

J Med Internet Res 2024 | vol. 26 | e65994 | p. 4https://www.jmir.org/2024/1/e65994
(page number not for citation purposes)

Hong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Basic characteristics and statistical comparison of participants by hospital. The Kruskal-Wallis test was performed for continuous variables,
and the chi-square test was performed for categorical variables.

P valueStatisticsHospital 3c

(n=30)
Hospital 2b

(n=88)
Hospital 1a

(n=73)

Total (N=191)

Kruskal-Wallis
test (H)

Chi-square (df)

<.001—d19.6 (2)Sex, n (%)

13 (43.3)51 (58.0)17 (23.3)81 (42.4)Male

17 (56.7)37 (42.0)56 (76.7)110 (57.6)Female

<.00121.5—Age (years)

38.7 (17.1)35.0 (13.5)27.2 (10.7)32.6 (13.8)Mean (SD)

32 (24-52)30 (22-45)24 (19-29)27 (21-40)Median (IQR)

.005—14.8 (4)Diagnostic group, n (%)

19 (63.3)34 (38.6)19 (26.0)72 (37.7)Schizophrenia spectrum

10 (33.3)39 (44.3)44 (60.3)93 (48.7)Mood-depressivee

1 (3.3)15 (17.0)10 (13.7)26 (13.6)Mood-manicf

<.001—24.1 (2)Household income (KRW 5 million=US $3600), n (%)

23 (76.7)23 (26.1)32 (43.8)78 (40.8)>KRW 5 million

7 (23.3)65 (73.9)41 (56.2)113 (59.2)≤KRW 5 million

.07—8.5 (4)Education level, n (%)

7 (23.3)25 (28.4)16 (21.9)48 (25.1)≥College

20 (66.7)57 (64.8)41 (56.2)118 (61.8)High school

3 (10.0)6 (6.8)16 (21.9)25 (13.1)≤Middle school

.027.7—Number of assessments

3.5 (2.8)4.6 (3.1)4.1 (2.8)4.3 (2.9)Mean (SD)

.0079.9—Observational days

15.8 (17.5)23.4 (19.3)19.4 (14.5)20.7 (17.5)Mean (SD)

Baseline symptom score, mean (SD)

.451.6—21.2 (6.7)20.6 (8.1)22.8 (10.9)21.5 (9.1)BPRSg

.272.6—11.5 (3.3)12.0 (8.2)10.2 (4.6)11.2 (6.4)HAM-Ah

.00212.2—16.7 (6.2)16.8 (12.4)22.0 (9.7)18.8 (10.9)MADRSi

<.00117.5—15.5 (6.1)10.7 (8.4)9.8 (8.5)11.1 (8.3)YMRSj

.17—3.5 (2)First psychiatric admission, n (%)

6 (20.0)34 (38.6)26 (35.6)66 (34.6)Yes

24 (80.0)54 (61.4)47 (64.4)125 (65.4)No

aHospital 1: Seoul National University Hospital.
bHospital 2: Yongin Mental Hospital.
cHospital 3: Dongguk University Ilsan Hospital.
dNot applicable.
eMood-depressive: Mood disorder with current depressive episode.
fMood-manic: Mood disorder with current manic episode.
gBPRS: Brief Psychiatric Rating Scale.
hHAM-A: Hamilton Anxiety Rating Scale.
iMADRS: Montgomery-Asberg Depression Rating Scale.
jYMRS: Young Mania Rating Scale.
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The group-level mean for the scale scores were 15.9 (SD 9.5)
for the BPRS, 8.8 (SD 6.0) for the HAM-A, 14.1 (SD 10.5) for
the MADRS, and 8.1 (SD 7.1) for the YMRS, with no significant
differences between the cross-validation and external validation
sets (all P>.05; Table S1 in Multimedia Appendix 1). The
deterioration of symptom cases, where the assessment score
was increased to that of the previous assessment for an
individual, were 22.9% (143/624) for the BPRS, 26.1%
(163/624) for the HAM-A, 28.8% (180/624) for the MADRS,

and 28.2% (176/624) for the YMRS; no significant differences
were observed between the cross-validation and external
validation sets (all P>.05; Table S2 in Multimedia Appendix
1).

The distribution of the multidimensional sensor data visualized
using t-SNE revealed several clusters. Many clusters comprised
data originating from 1 or 2 wards. Clusters with overlapping
data from all wards were rare (Figure 2).

Figure 2. Visualization of the distribution of sensor data using t-SNE. Each point is color-coded to differentiate between hospital wards—hospital 1:
Seoul National University Hospital; hospital 2: male (M) and female (F) wards in Yongin Mental Hospital; and hospital 3: Dongguk University Ilsan
Hospital. t-SNE: t-distributed stochastic neighbor embedding.

In the Deterioration models, the Single-Deterioration and
Multi-Deterioration models showed similar overall performance.
Cross-validation revealed that both models achieved an accuracy
of 0.75, with an AUC of 0.74 and 0.76, respectively. External
validation revealed an accuracy of 0.73 for both models, with
an AUC of 0.71 and 0.74, respectively. Among the scales, the
BPRS demonstrated the highest accuracy across all models and
sets, with accuracy ranging from 0.75 to 0.79 and AUC from
0.76 to 0.82. The MADRS performed the least accurately in
cross-validation and the the YMRS performed the least

accurately in external validation, regardless of model type (Table
2). The ROC curve for the BPRS in cross-validation showed
no clear superiority between Single-Deterioration and
Multi-Deterioration models within 1 SD. External validation
indicated that the 2 models’ curves intersected at both ends of
the false positive rate range, with the Multi-Deterioration model
generally outperforming in the central portion (0.1 to 0.6; Figure
3). Similar patterns were observed for other scales (Figures S1-3
in Multimedia Appendix 1).

J Med Internet Res 2024 | vol. 26 | e65994 | p. 6https://www.jmir.org/2024/1/e65994
(page number not for citation purposes)

Hong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Performance of the Deterioration models measured by accuracy and area under the curve (AUC). The Deterioration models predict whether
scale scores increased compared with the previous assessment.

External validationCross-validation, mean (SD)

MultiSingleMultiSingle

Accuracy

0.730.730.75 (0.03)0.75 (0.02)Overall

0.750.790.79 (0.03)0.79 (0.02)BPRSa

0.750.760.75 (0.05)0.76 (0.05)HAM-Ab

0.750.740.73 (0.05)0.72 (0.03)MADRSc

0.690.650.74 (0.02)0.73 (0.04)YMRSd

AUC

0.740.710.76 (0.04)0.74 (0.04)Overall

0.820.760.80 (0.06)0.79 (0.07)BPRS

0.750.730.77 (0.05)0.75 (0.06)HAM-A

0.730.690.72 (0.05)0.69 (0.03)MADRS

0.670.640.76 (0.04)0.73 (0.05)YMRS

aBPRS: Brief Psychiatric Rating Scale.
bHAM-A: Hamilton Anxiety Rating Scale.
cMADRS: Montgomery-Asberg Depression Rating Scale.
dYMRS: Young Mania Rating Scale.

Figure 3. Receiver operating characteristic curve of the Deterioration models with respect to BPRS scores: (A) cross-validation and (B) external
validation. The Deterioration models predict whether BPRS scores increased compared with the previous assessment. Colored areas in cross-validation
represent the range of 1 SD. BPRS: Brief Psychiatric Rating Scale.

The Multi-Score model outperformed the Single-Score model

in both R2 and NRMSE. In the cross-validation set, the

Single-Score and Multi-Score models achieved R2 values of
0.78 and 0.83 and NRMSE values of 0.072 and 0.064,
respectively. External validation showed that the Single-Score

and Multi-Score models achieved R2 values of 0.66 and 0.74

and NRMSE values of 0.067 and 0.056, respectively. Among
the scales, the BPRS, which was predicted well in the

Deterioration models, demonstrated the lowest R2 values during
external validation: 0.47 for Single-Score and 0.57 for

Multi-Score. In contrast, the MADRS and YMRS exhibited R2

values exceeding 0.85 in the external validation of the
Multi-Score model (Figure 4).
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Figure 4. Performance of the Score model measured by R2 and NRMSE: (A) cross-validation and (B) external validation. The Score models predict
scale scores; the error bar represents an interval of 1 SD. The dotted line indicates an R2 value of 0.7. BPRS: Brief Psychiatric Rating Scale; HAM-A:
Hamilton Anxiety Rating Scale; MADRS: Montgomery-Asberg Depression Rating Scale; Multi: model predicting multiple symptoms simultaneously;
NRMSE: normalized root mean squared error; Single: model predicting single symptoms individually; YMRS: Young Mania Rating Scale.

The permutation feature importance analysis indicated that time
spent in places other than rooms or hallways (place_other, 5
models), the number of unique heart rate values
(nunique_HEARTBEAT, 4 models), and 2 location entropy
indicators (Location_Entropy_Daily and
Location_Normalized_Entropy_8hr, 4 models each) were among

the top 5 important features in 4 or more models. Notably, no
single feature consistently ranked in the top 5 across more than
half of the models. Nonsensor features such as age and sex did
not rank in the top 5 important features for the Deterioration
models but were frequently included in the Score models (Figure
5).
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Figure 5. Permutation feature importance in external validation. The horizontal axis represents 31 individual features, and the vertical axis represents
the prediction models. To ensure comparability, the importance values are converted to ranks, with the top 5 annotated. BPRS: Brief Psychiatric Rating
Scale; HAM-A: Hamilton Anxiety Rating Scale; MADRS: Montgomery-Asberg Depression Rating Scale; Multi: model predicting multiple symptoms
simultaneously; Single: model predicting single symptoms individually; YMRS: Young Mania Rating Scale.

Discussion

Principal Findings
We conducted a longitudinal, prospective, multicenter study of
inpatients using wearable devices to develop and validate deep
learning models for predicting comprehensive symptoms. To
our knowledge, this is the first study to predict clinical rating
scale scores of pandiagnostic cases in acute psychiatric wards
using wearable devices and deep learning models. While direct
benchmarks are unavailable owing to our inpatient setting, we
can compare our results to those of similar studies. A
meta-analysis of depression prediction studies using wearable
devices reported a pooled mean accuracy ranging from 0.70 to
0.89 [52]. Similarly, a meta-analysis of anxiety prediction
studies using wearable devices reported a 95% CI for pooled
mean accuracy of 0.71 to 0.89 [53]. Our Single-Deterioration
and Multi-Deterioration models for MADRS, HAM-A, and
overall performance fall within these ranges, demonstrating
comparable performance. The Single-Score and Multi-Score

models showed overall R2 values of approximately 0.8 in
cross-validation and 0.7 in external validation, indicating
substantial explanatory power. In summary, our wearable-based
deep learning models effectively predict comprehensive
psychiatric symptoms.

Single Versus Multi Models
Our Multi models used an MTL framework to simultaneously
predict 4 different scale scores. While Single models might be
expected to outperform Multi models, given that they require
approximately 4 times the computational resources and
parameters to learn and solve the same tasks [47], our findings
suggest otherwise. The Single-Deterioration and

Multi-Deterioration models, which predict changes from
previous assessments for an individual, showed no material
differences in both accuracy and AUC. Moreover,
Multi-Deterioration models demonstrated a superior balance
between sensitivity and specificity, as the AUC value and ROC
curve indicated. Considering the class imbalance in symptom
deterioration cases, this suggests that MTL-based models
provide a more balanced predictive performance. Furthermore,
the Single-Score and Multi-Score models, which predict absolute
symptom severity, showed that the Multi-Score model
demonstrated better explanatory power and lower errors in both
cross-validation and external validation.

This study is not the first to attempt to predict mental health
indicators using MTL-based models. Several studies have
reported significant success using this approach with data from
social media [54], electrocardiography [55], functional magnetic
resonance imaging [56], and so on. Interestingly, while Harvey
et al [57] argued that thousands of samples might be necessary
for MTL to show benefits over single-task learning in predicting
psychiatric diagnoses using functional magnetic resonance
imaging, our study demonstrated these benefits with fewer
samples. Although the comparability is limited due to the
difference between cross-sectional brain imaging and
longitudinal wearable sensor data, a notable distinction is that
they predicted diagnoses, whereas we predicted symptoms.

Many contemporary psychopathologists agree that individual
psychiatric symptoms form a complex network [58,59]. From
this perspective, symptoms are not merely passive
manifestations of specific diagnoses but active entities
influencing other symptoms [60]. Thus, information learned in
predicting one symptom can inform the prediction of others. In
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contrast, psychiatric diagnoses are defined through operational
criteria of symptom constellations [61]. Consequently, learning
shared latent information for multiple symptom prediction may
be more feasible and may require fewer samples than those
required for predicting multiple diagnoses. A similar study
predicting symptoms in individuals with schizophrenia using
smartphone passive data found benefits from MTL with only
61 samples [19]. This was likely possible because the prediction
targets were individual symptoms rather than diagnoses.
Although there are not yet many studies directly comparable
with the present research, our study findings suggest that MTL
is an effective framework for psychiatric symptom prediction
tasks.

Deterioration Versus Score Models
The Deterioration and Score models exhibit several notable
differences. The purpose of the Deterioration models was to
detect symptom changes within individuals compared with their
previous state, whereas the Score models aimed to predict the
absolute symptom severity between individuals. For feature
importance, no shared patterns of important features were
observed between the Deterioration and Score models predicting
the same symptom scale. For instance, age and sex emerged as
important in most Score models but not in Deterioration models.
This is likely because predicting absolute symptom severity
relies more on basic demographic information as crucial
calibration data compared with predicting relative changes.
Performance patterns during external validation also varied
across scales. The BPRS demonstrated the best performance
among all scales in both cross-validation and external validation
for the Deterioration models, but the Score models showed a

considerable R2 reduction in external validation. Conversely,
the YMRS exhibited the most significant performance decline
in external validation for the Deterioration models but not for
the Score models. This indicates that the Deterioration and Score
models, even when predicting the same symptom scale, differ
in their required information and generalization challenges. This
serves as another example demonstrating the distinction between
within-subject and between-subject designs [62]. Future studies
on predicting symptoms in acute psychiatric inpatients should
consider treating relative change and absolute severity as distinct
analyses.

Challenges to Generalizability in AI-CDSSs for Acute
Psychiatric Wards
The generalizability of models is a critical issue in developing
AI models for predicting mental health indicators [63,64].
SAFER’s ultimate goal was to develop a predictive model that
can serve as the foundation for an AI-CDSS in acute psychiatric
wards with broad generalizability. In this study, external
validation based on time point maintained considerable
performance compared with internal cross-validation,
demonstrating the model’s temporal robustness at least for the
study period. However, recent studies have pointed out that
external validation alone cannot fully guarantee reliability and
generalizability in clinical prediction models [65]. In this study,
challenges to generalizability remain in 2 aspects.

One challenge is interward variations. In this study, participant
characteristics and sensor data distributions showed considerable

differences across institutions. This was partly inevitable owing
to the study’s aim to include diverse regions and hospital types.
Nevertheless, the observed substantial interward variation
suggests that applying an AI-CDSS based on this study to any
other facility may encounter significant generalization
difficulties. Studies on other clinical prediction models have
noted that even models developed from large international
multisite clinical trials often see their performance drop to
chance levels when subjected to completely independent tests
[66]. A potential solution to this issue is a method called
recurring local validation or targeted validation [67,68]. This
method involves validation and adjustment of prediction models
to fit the specific settings, where they will be deployed. Future
research should explore whether such ward-specific models
could replace a single universal model.

The other challenge is the issue of selection bias [69]. In this
study, we recruited pandiagnostic cases by minimizing the
exclusion criteria based on clinical conditions and accepting
various comorbidities. One reason for needing such an inclusive
sample is that the end users of an AI-CDSS in acute psychiatric
wards are primarily the ward’s medical staff [31]; thus, its
usability can only be ensured if it can be applied with minimal
restrictions to patients in the ward. However, participants in
this study were recruited based on informed consent. Even with
minimized exclusion criteria, patients with acute psychiatric
symptoms may be subject to selection bias owing to differences
in their ability to consent caused by their symptoms, making it
difficult to recruit participants in a completely inclusive manner,
like those with stroke or Alzheimer disease [70,71]. Therefore,
in the future deployment of this model, validation based on data
collected close to usual care, similar to the concept of pragmatic
trials, will be necessary [72]. Waivers of the requirement for
informed consent could be helpful in this case, but they require
various ethical and regulatory considerations [73]. One of these
is that the collected sensor data contains sensitive personal
information, which makes it difficult to analyze through data
centralization in one place. A promising solution to this could
be engineering techniques such as federated learning, which
allows for learning and validation without exporting raw data
outside the institution [74].

Limitations
First, although external validation was performed, it was
conducted by dividing participants based on recruitment periods
rather than by institutions. As confirmed in this study, acute
psychiatric facilities varied significantly from one another,
resulting in inherent generalizability issues. Thus, while the
significance of the external validation is somewhat limited, we
discussed various challenges and potential solutions to improve
the model’s generalizability. Second, this study was conducted
in acute psychiatric wards within the context of South Korea’s
specific ethnic, sociocultural, legislative, and reimbursement
systems. These contextual factors surrounding mental health
facilities differ considerably between countries [30,75].
Therefore, developing a comprehensive symptom prediction
model based on this study in other countries would require
substantial consideration of these factors. Third, the average
duration of the study was <3 weeks, which is relatively short.
Therefore, patients with shorter treatment durations may have
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been overrepresented, while relatively few participants provided
data over a sufficiently long observation period. Fourth, the
sample size was insufficient to fully cover the objectives of this
study, which aimed at a diverse population across various
settings. In particular, the number of participants older than 40
years or with low educational attainment was small, and the
usefulness of our clinical prediction model may be reduced for
participants with these demographic characteristics. Fifth,
different raters were responsible for clinical assessments at each
hospital. Efforts were made to improve measurement reliability
through specialized training courses and periodic research
conferences; however, interrater errors were not statistically
measured or adjusted.

Conclusions
We developed and validated a model to predict multidimensional
symptoms in various acute psychiatric wards using wearable
sensor data and deep learning models. The constructed model
proved effective in predicting a single symptom individually
and multiple symptoms simultaneously. Notably, a model that
predicted multiple symptoms simultaneously demonstrated more
balanced within-subject classification and better between-subject
symptom severity prediction. Substantial interward variations
were also found in this study, suggesting that generalizability
is a key issue. By discussing challenges and solutions for
generalizability, we have contemplated the future direction of
AI-CDSSs in acute psychiatric wards.
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