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Abstract

Large language models (LLMs) continue to exhibit noteworthy capabilities across a spectrum of areas, including emerging
proficiencies across the health care continuum. Successful LLM implementation and adoption depend on digital readiness, modern
infrastructure, a trained workforce, privacy, and an ethical regulatory landscape. These factors can vary significantly across health
care ecosystems, dictating the choice of a particular LLM implementation pathway. This perspective discusses 3 LLM
implementation pathways—training from scratch pathway (TSP), fine-tuned pathway (FTP), and out-of-the-box pathway (OBP)—as
potential onboarding points for health systems while facilitating equitable adoption. The choice of a particular pathway is governed
by needs as well as affordability. Therefore, the risks, benefits, and economics of these pathways across 4 major cloud service
providers (Amazon, Microsoft, Google, and Oracle) are presented. While cost comparisons, such as on-demand and spot pricing
across the cloud service providers for the 3 pathways, are presented for completeness, the usefulness of managed services and
cloud enterprise tools is elucidated. Managed services can complement the traditional workforce and expertise, while enterprise
tools, such as federated learning, can overcome sample size challenges when implementing LLMs using health care data. Of the
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3 pathways, TSP is expected to be the most resource-intensive regarding infrastructure and workforce while providing maximum
customization, enhanced transparency, and performance. Because TSP trains the LLM using enterprise health care data, it is
expected to harness the digital signatures of the population served by the health care system with the potential to impact outcomes.
The use of pretrained models in FTP is a limitation. It may impact its performance because the training data used in the pretrained
model may have hidden bias and may not necessarily be health care–related. However, FTP provides a balance between
customization, cost, and performance. While OBP can be rapidly deployed, it provides minimal customization and transparency
without guaranteeing long-term availability. OBP may also present challenges in interfacing seamlessly with downstream
applications in health care settings with variations in pricing and use over time. Lack of customization in OBP can significantly
limit its ability to impact outcomes. Finally, potential applications of LLMs in health care, including conversational artificial
intelligence, chatbots, summarization, and machine translation, are highlighted. While the 3 implementation pathways discussed
in this perspective have the potential to facilitate equitable adoption and democratization of LLMs, transitions between them may
be necessary as the needs of health systems evolve. Understanding the economics and trade-offs of these onboarding pathways
can guide their strategic adoption and demonstrate value while impacting health care outcomes favorably.

(J Med Internet Res 2024;26:e64226) doi: 10.2196/64226
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Introduction

Overview
The past decade has witnessed unprecedented growth and
digitization of multivariate and multimodal health care data
from diverse sources (eg, the electronic health record [EHR],
claims, registries, Internet of Things, and molecular) [1,2].
While multivariate data represent data of a given type across a
set of entities (eg, text), multimodal data represent distinct types
of data (eg, text, image, and genomics) across entities of interest
and play a critical role in generating comprehensive patient and
population profiles. Multimodal health care data fall under 2
broad categories, namely structured (eg, diagnosis codes and
the International Classification of Disease, ninth and tenth
revisions) and unstructured data (eg, text and image). About
80% of health care data are unstructured, including text from
clinical narratives [3,4]. The prevalence of unstructured textual
clinical data is perhaps a primary motivating factor behind the
continued evolution and adoption of natural language processing
(NLP) [5] approaches for gaining novel insights from these
datasets [6-8]. More recently, advanced machine learning
techniques, such as deep learning (DL) [9-11], large language
models (LLMs) [12,13], and foundation models, have
accelerated these efforts with enhanced capabilities in
deciphering patterns from unstructured data [14-16]. Multimodal
health care data are usually extracted, transformed, and loaded
(extract, transform, and load [ETL]) from diverse source systems
into an enterprise data warehouse (EDW; Figure 1). Several
variants (eg, Data Lake house) have also been proposed [17].
Subsequently, textual data from EDW are retrieved in a
context-specific manner for downstream analytics and ingestion
by LLMs (Figure 1). LLM implementations are governed by

needs as well as affordability. This perspective discusses factors
that impact LLM implementation and proposes 3 broad LLM
onboarding pathways for its equitable distribution and adoption.

Multimodal digital footprints (Figure 1) capture unique
characteristics of a given population with the potential to assist
in decision-making in an evidence-based and data-driven
manner, impacting outcomes and key performance indicators
(KPIs). These outcomes typically fall under 3 broad categories
(clinical, operational, and financial) that are not necessarily
independent. For instance, data-driven approaches that can
improve preventive care use can minimize aggressive
disease-impacting clinical outcomes. Improved clinical
outcomes can enable optimal resource allocation impacting
operational outcome, reducing the economic burden on the
patient, provider, as well as the payer impacting financial
outcome. Therefore, the outcomes are represented by
bidirectional arrows in Figure 1. While there is considerable
excitement over the transformative potential of LLMs in health
care [18], it is accompanied by significant economic challenges
impacting their equitable distribution across health care
organizations, especially those that serve economically
disadvantaged communities. The choice of a particular LLM
implementation pathway is dictated by the needs as well as
affordability. In this perspective, 3 different LLM
implementation pathways (training from scratch pathway [TSP],
fine-tuned pathway [FTP], and out-of-the-box pathway [OBP];
Figure 1) across 4 major cloud service providers (CSPs; Amazon
Web Services [AWS], Google Cloud Platform [GCP], Azure:
Microsoft, and Oracle Cloud Infrastructure [OCI]) are presented
as “onboarding points.” The risks, benefits, and economics of
these pathways are presented and expected to assist in choosing
a pathway and subsequent migration across pathways.
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Figure 1. Essential ingredients for equitable distribution of large language models (LLMs) comprising 3 interconnected components: (1) digital
readiness, (2) infrastructure workforce and privacy, and (3) LLM onboarding pathways (training from scratch pathway [TSP], fine-tuned pathway [FTP],
and out-of-the-box pathway [OBP]) and applications to impact health care outcomes and key performance indicators (KPIs) in health care settings. AI:
artificial intelligence; API: application programming interface; EDW: enterprise data warehouse; ETL: extract, transform, and load; MRI: magnetic
resonance imaging.

Artificial Intelligence
Operational definition of artificial intelligence (AI) relies on
the Turing test, which emphasizes the ability of computers to
imitate humans in performing certain tasks [19]. These include
automated reasoning, machine learning (ML), and NLP [19].
The hierarchical relationship of AI, ML, DL, and LLMs is
shown in Figure 2. In contrast to classical statistical hypothesis
testing, AI, ML, or DL assist in discovery, hypothesis
generation, and validation in an evidence-based and data-driven
manner, with LLMs exhibiting emergent abilities. ML is a
branch of AI with a focus on the ability of machines to learn
patterns from experience for a given task in an automated
manner and draw inferences on previously unseen instances.
Popular ML approaches with health care applications include
supervised learning, unsupervised learning, reinforcement
learning, and association mining [20,21]. DL [22-25] is a
subfield of ML that specifically uses neural networks with

multiple hidden layers to capture patterns of varying resolution
in the given data. Unlike traditional ML, model parameters in
deep neural networks (DNNs) can be considerably large with
significant storage and computational demands. For example,
DL models, such as transformers [26], an essential ingredient
of LLMs, have billions of parameters [27]. The layered
architecture of DNNs has also been shown to support “transfer
learning,” where an existing neural network trained on a large
dataset can be reused as a base network for predictions on related
datasets by retraining only a subset of the layers. This is in stark
contrast to traditional, shallow ML models where all model
parameters may be altered upon retraining. Recently, proposed
foundation models [5,14], exploit the transfer learning ability
of DNN, where a “base” model trained on large multimodal
data is subsequently adapted for various downstream tasks.
LLMs use transfer learning in conjunction with augmented
intelligence for enhanced performance, as discussed in the
subsequent sections.
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Figure 2. Augmented intelligence along with hierarchical representation of artificial intelligence (AI), machine learning (ML), deep learning (DL),
and large language model (LLM) is shown in panels (A) and (B), respectively. The primary driver is shown to the right of the inequality in each of the
panels.

Augmented Intelligence
Augmented intelligence emphasizes the importance of AI and
humans working in concert for enhanced performance and
generalization ability (Figure 2). The fundamental theorem of
biomedical informatics by Friedman [28] emphasized the
importance of information resources assisting domain experts
by complementing the knowledge of the domain expert. In the
present context, it essentially addresses the question, “Can
domain experts in partnership with an AI resource lead to better
insights than those unassisted?” (Figure 2A). As noted earlier
(Figure 1), health care data are typically large, high-dimensional,
multimodal, ingested from diverse sources and evolving rapidly,
challenging manual interpretation. Therefore, AI models can
assist in gaining novel insights from these datasets in an
evidence-based manner while validating what is already known.
The primary driver in Figure 2A is the domain expert with AI
assisting the knowledge discovery process. On a related note,
AI models implicitly subscribe to optimizing a chosen objective
function and may converge prematurely to a local optimum.
Several factors dictate the convergence aspects of these models
[29]. This raises the question, “Can AI models with feedback
from domain experts perform and generalize better than those
unassisted?” (Figure 2B). More specifically, the role of the
domain expert can assist in narrowing the set of variables in a
context-specific manner, significantly reducing the search space
of potential solutions and improving the performance and
generalization ability while imposing necessary guardrails for
optimal performance. Unlike Figure 2A, the primary driver in
Figure 2B is AI, with the domain expert assisting in the
knowledge discovery process. LLMs incorporate human
feedback (reinforcement learning with human feedback) in
minimizing bias, toxicity, hallucinations with improved
performance, and generalization ability [30].

LLMs in Health Care

Factors Impacting LLM Implementation
This section discusses three critical factors accompanying
successful LLM implementations and deployments in health
care settings: (1) digital readiness, (2) infrastructure and
workforce, and (3) privacy, ethics, and regulatory aspects
(Figure 1). These factors are closely related to the analytics
maturity of a health care organization (eg, Healthcare
Information and Management Systems Society Adoption Model
for Analytics Maturity) [31], and their impact varies across the
3 LLM implementation pathways (TSP, FTP, and OBP).

Digital Readiness
Typically, LLMs (eg, LLaMA [Meta AI], GPT-4 [OpenAI],
Med PALM-2, and Claude) are trained on massive amounts of
data (eg, TB) integrated from multiple data sources, including
those available publicly [32,33]. Large datasets used to train
LLMs often lead to sizeable models with billions of parameters
with a direct impact on their performance [27], while marking
the transition from language models to LLMs with emergent
abilities. So, access to large digital health care data (Figure 1)
is critical in developing LLMs with superior performance.
However, accessing sensitive health care data (eg, protected
health information [PHI] and personally identifiable
information) to train LLMs poses significant privacy and
security challenges. Health care data, such as clinical narratives,
are primarily governed by regulations, such as Health Insurance
Portability and Accountability Act (HIPAA) [34] in the United
States and the General Data Protection Regulation (GDPR) [35]
in Europe. HIPAA establishes national standards for the
protection of individually identifiable health information by
covered entities and their business associates. Similarly, GDPR,
although a European Union regulation, is designed to protect
the privacy of European Union citizens and residents and applies
to all organizations regardless of location. Both HIPAA and
GDPR impose clear regulations on the release and sharing of
health care data, with civil and criminal penalties for violations.
Addressing privacy and security challenges associated with
accessing sensitive health care data for training LLMs demands
a robust data management strategy. Currently, there are 2 key
strategies that stand out in this context: data deidentification
and confidential computing [36,37]. Data deidentification
involves removing personally identifiable information, both
direct and indirect, from datasets to reduce the risk of patient
reidentification. This allows the use of clinical data for model
training purposes without compromising patient privacy. The
deidentification process involves techniques such as removing
names, addresses, social security numbers, and other direct
identifiers, as well as managing quasi-identifiers such as dates
of birth, gender, and medical diagnoses. However, these
identifiers could potentially be used in combination with other
information to reidentify individuals [38,39]. Therefore,
deidentification singularly is not devoid of reidentification risks.
The granularity of the data upon adequate deidentification can
also significantly impact what could be effectively inferred. A
recent study by de Kok et al [40] elucidated some of the
challenges and best practices for sharing health care data
compliant with GDPR. Subsequently, 4 approaches were
proposed [40] for sharing open health care data (consent

J Med Internet Res 2024 | vol. 26 | e64226 | p. 4https://www.jmir.org/2024/1/e64226
(page number not for citation purposes)

Nagarajan et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


pseudonymized, no consent pseudonymized, no consent
anonymized, and no consent cloud). However, the sensitive
nature of health care data sharing has a direct impact on the
sample size for training and fine-tuning LLMs. In general, health
care datasets are relatively smaller by several orders of
magnitude compared with datasets used to train popular
general-purpose LLMs. Recently, Jiang et al [12] pretrained
their LLM (NYUTron) primarily on health care data comprising
4,112,249,482, nearly 4 billion words, resulting in a
109-million-parameter model. In a related yet independent study,
Yang et al [41] pretrained their LLM (GATORTron) primarily
on health care data comprising 82 billion deidentified clinical
words, resulting in 3 different LLM models of varying sizes
(baseline: 345 million parameters, medium: 3.9 billion
parameters, and large: 8.9 billion parameters). It might not be
surprising to note that the size of these LLMs was markedly
smaller than general-purpose LLMs (eg, LLaMA: 65 billion,
GPT-3: 175 billion, and Google Pathways Language Model:
540 billion) [27] by several orders of magnitude. Empirical
studies on the scaling behavior of LLMs reported improved
performance and emergent behavior with increasing number of
parameters (ie, size of the model) [42,43], size of the data, and
compute time [44]. However, sample size challenges are likely
to persist for health care datasets. Recent efforts in boosting the
sample size of the training data from LLMs have explored
supplementing health care data from EDW with biomedical text
from sources, such as PubMed [41]. Approaches, such as
federated learning (FL) [45-48] can also assist in overcoming
some of the sample size-related challenges. However, FL could
be susceptible to data leakage, breach, and fair and equitable
data representation [49].

Multimodal health care data (eg, text, images, and signals) are
usually integrated from diverse enterprise source systems (eg,
electronic medical record, registries, the Internet of Things,
next-generation sequencing, and Picture Archiving and
Communication System) and reside in a centralized EDW
(Figure 1). EDWs support querying, reporting, and enterprise
analytics. Data governance and ETL are essential ingredients
of EDW implementation, dictating the quality and granularity
of the data ingested by downstream analytics tools, such as
LLMs, impacting their performance. Data governance and ETL
can also exhibit marked variations across health care
organizations attributed to several factors, including variations
in source systems and business processes. More importantly,
EDWs demand upfront investment, continued support from
executive leadership, and an existing, evidence-based culture.
EDW economics is governed by several factors, including (1)
architecture of EDW (eg, Inmon [50] and Kimball and Ross
[51]); (2) source systems; (3) type, velocity, and volume of data;
(4) enterprise data governance and ETL processes; (5)
infrastructure and workforce supporting secured storage and
retrieval; and (6) existing culture of data-driven and
evidence-based approaches in impacting outcomes and KPIs in
the health care organization. It is important to note that ETL
and EDW can exhibit marked variations across organizations,
posing challenges in seamless sharing of health care data,
deployment of AI and ML models, and demonstrating their
generalization ability. Common data models, such as the
Observational Medical Outcomes Partnership, have been helpful

in data standardization, data sharing, and federated querying
[52,53]. However, there are inherent limitations to
standardization, including incompleteness in data models and
terminologies resulting in data that cannot be mapped [54],
errors in mapping [55], and the potential loss of information
due to granularity mismatches between the source data and the
standard. In addition, data standards require significant expertise
and a steep learning curve in their absence. The challenges
mentioned earlier can especially be accentuated across health
care organizations that primarily serve the economically
disadvantaged, underserved, and marginalized communities.
Factors contributing to data inequities [56] are multidimensional
and include ethnicity (eg, Hispanic), race (eg, African
American), disease groups and treatment regimens (eg, rare
disease), gender or gender identity (eg, lesbian, gay, bisexual,
transgender, and queer [LGBTQ]), age (eg, pediatric
population), geographic location (eg, rural areas), language
barriers (eg, Spanish), digital divide, and patient literacy [57,58].
It is of interest to note that these dimensions are not mutually
exclusive, and their combination can significantly impact the
representation of a given population in the data and digital
readiness of organizations that serve these communities. Inequity
along these dimensions can lead to potential biases [59,60].
These biases broadly fall under systemic, statistical,
computational, and cognitive bias [61]. Systemic bias can be
further categorized into measurement bias, missing validation
bias, label bias, and modeling bias [61]. Measurement bias
[62,63] may be the result of variations in quality and
representation of the entities of interest across subpopulations
in the data. Missing validation bias may result due to a lack of
adequate validation studies across certain populations. It is
important to note that measurement bias may accentuate
validation bias because validation at small sample sizes can be
statistically challenging. Label bias may be a result of surrogate
variables substituting the actual health care outcomes of interest.
Modeling bias is attributed to the biased results generated by a
specific model. Computational and statistical biases can be a
result of inadequate representation of select groups and
populations in the given data. Human cognitive bias is a bias
due to human perception of AI and ML systems. Mitigating
human cognitive bias may be critical for successful adoption
of AI systems. From this discussion, digital readiness is critical
for health care organizations to embark on their LLM journey
and could dictate the choice of the LLM implementation
pathway.

Infrastructure and Workforce Needs

Infrastructure Needs

LLMs primarily rely on the transformer architecture [26], with
the ability to be trained in a massively parallel manner on
sequential data. However, parallel processing in turn demands
specialized hardware accelerators, such as graphics processing
units (GPUs), and seamless interfaces between various hardware
components in conjunction with significant network bandwidth
for avoiding storage, data transfer, latencies, and bottlenecks
(Figure 1). This is especially true when the training involves
large amounts of data and pretrained LLMs have billions of
parameters. Parallelism falls under 2 broad categories, namely
(1) data parallelism [64] and (2) model parallelism [65]. Data
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parallelism addresses challenges with large training datasets
that cannot fit within a single GPU by partitioning and
distributing them across multiple GPUs. This is especially
helpful because optimization techniques, such as stochastic
gradient descent, used by LLMs rely on small batches of data
that can be distributed across GPUs. Model parallelism addresses
challenges with the size of the LLMs (eg, billions of parameters)
by distributing them (eg, weights and layers) across multiple
GPUs and further subdivided into pipeline parallelism and
tensor parallelism. While pipeline parallelism facilitates the
distribution of the layers of a DNN [66], tensor parallelism [67]
distributes the tensor computation across hardware accelerators.
While partitioning the data and model is useful in overcoming
some of the challenges with their size, fast interconnect between
the GPUs is especially critical for enhanced communication
between them in a cluster (eg, DGX A100 Data Center) and
between clusters (eg, Super PODs) through specialized
high-bandwidth (eg, 900 GB/s) communication links, such as
NVLink/NVLink Switch. Training LLM models using multiple
GPUs is also accompanied by significant carbon footprint and
heating, demanding specialized cooling systems for optimal
performance [68]. While LLM implementations are traditionally
dependent on multiple software libraries [69], there has been
recent interest in developing graphical user interfaces for LLMs
to alleviate some of these challenges for the end users [70]. The
size of the GPUs required is dependent on several factors, such
as the size of the LLM models so that a model can be loaded
into the GPU successfully while permitting necessary
computation. For instance, LLM models with 7 billion
parameters (13 GiB) may need a 16-GiB GPU, such as NVIDIA
T4 Tensor Core for processing, while those with 13 billion (25
GiB) and 70 billion parameters (130 GiB) might require a 32
GiB (eg, NVIDIA-A100 GPU Server) and 160 GiB GPUs (eg,
NVIDIA 2 × A100 multi-GPU Server), respectively.

Cloud-Computing Platforms

On-premise infrastructure had supported more traditional AI
and ML implementations and analytics dashboards in the past.
However, increasing size of the data and compute along with
evolving needs of health care organizations, demand scalable
infrastructure for storage (horizontal scaling) and computing
(vertical scaling), with the latter playing a critical role for LLMs.
For instance, data and model parallelism demand scalable
infrastructure that can vary with training data size as well as the
model size. Cloud-computing environments (Figure 1) provide
infrastructure as a service and software as a service (SaaS) with
pay-as-you-go payment models to address challenges from
scalability, privacy, workforce, and economic standpoints. CSPs
(AWS, GCP, Azure, and OCI) offer robust solutions for LLM
deployment by leveraging their global infrastructures built
around high availability, enterprise security and compliance,
low latency access to computing resources, and managed
services as needed. CSPs can play a critical role in bridging the
chasm between needs, such as growth scale and security of
information technology infrastructure, and affordability by
leveraging existing technology investments on-premises or on
other clouds. More importantly, CSPs can help facilitate
enhanced democratization and equitable adoption of LLMs by
the broader health care communities and not by a privileged

few, a critical aspect for the equitable distribution, widespread
adoption, and long-term success of LLMs in health care. CSPs
also provide hybrid options, such as “cloud bursting,” that allow
organizations to use their private cloud, on-premise
infrastructure, for routine operations and burst into a CSP
temporarily when additional computing resources are needed
to handle peak loads and prevent queuing of computational
workloads. A hybrid approach enables health care organizations
to handle the variable and intensive computational demands of
LLMs at scale. By cloud bursting, health care organizations can
maintain a cost-effective private cloud for steady-state
workloads and then burst into public clouds during periods of
high demand without needing to overprovision their private
cloud infrastructure while minimizing latencies. CSPs provide
essential tools to help organizations manage security and
compliance risks. AWS identity access management and Azure
controls are examples of services that integrate into existing
organizational security investments and aid in configuring
fine-grained access controls and ensuring authorized access to
sensitive data. Hybrid cloud offerings from AWS, GCP, and
Azure also adhere to regulations and compliance (eg, HIPAA)
for handling health care data containing PHI through data
encryption and network security between on-premises and
on-cloud workloads, creating a single flexible, cost-effective
enterprise infrastructure technology solution. These
environments can also assist in minimizing on-premises
workforce needs and advanced skillset needs using readily
available cloud-based tools and managed services. This aspect
is especially critical for health care organizations that do not
have sufficient up-front investment and a history of supporting
analytics teams but would like to experiment with the utility of
LLMs for impacting outcomes. In essence, CSPs can assist in
equitable adoption by starting small with existing resources and
scaling out as needed without large upfront investments. Utility
services from CSPs can significantly reduce the operational
overhead and technical challenges associated with LLM
development, testing, and scale, allowing for health care
organizations to focus more on outcome-based applications
rather than infrastructure management [71]. Serverless options
by CSPs for storage and computing are also expected to
minimize carbon footprints [68].

Cloud-Based Hardware Accelerators

Hardware accelerators assist in overcoming data and
computational bottlenecks working in concert with base
processors (eg, central processing units) [72]. Several types of
accelerators, such as application specific integrated circuits,
field programmable gate arrays, GPUs, and dedicated chips for
AI, have been explored [73-76]. Accelerators, such as GPUs,
as noted earlier, have become an integral part of DL models
and LLMs in overcoming computational bottlenecks. However,
there is renewed interest in developing hardware accelerators
for LLM training and inference that are affordable. Hardware
accelerators offered by CSPs include Trainium and Inferentia
(AWS), tensor processing units (TPUs; GCP), Maia (Azure),
and MI300X (OCI). These chips are optimized for specific
workloads, cost-effective relative to GPUs, and interface to
popular open-source environments. However, multiple factors,
such as the choice of open-source environment and
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machine-learning libraries (eg, Tensorflow and PyTorch), can
impact the benchmarking and performance of hardware
accelerators [77].

• AWS—Trainium AI accelerator [78] supports training DL
models with >100 billion parameters and up to 50% in
cost-to-train savings over comparable elastic compute cloud
instances. Inferentia [79] supports inference, delivering up
to 2.3× higher throughput and up to 70% lower cost per
inference than comparable elastic compute cloud instances.
Both are supported by the AWS Neuro software
development kit, which integrates natively with open-source
DL environments such as PyTorch, TensorFlow, and
HuggingFace. Inference on Meta’s llama 8B would cost
US $0.99/h on Inferentia, a savings of >65% on an NVIDIA
A10G GPU instance.

• GCP—TPUs [80] are custom-designed AI accelerators
optimized for training and inference of AI models [81].
They scale cost-efficiently for a wide range of AI
workloads, spanning training, fine-tuning, and inference.
TPUs provide the versatility to accelerate workloads on
leading AI frameworks, including PyTorch, JAX, and
TensorFlow.

• Azure—Maia 100 AI accelerator [82] is supported by the
Maia software development kit and interfaces to
open-source frameworks such as PyTorch, ONNX Runtime,
and Triton from OpenAI. It can support services such as
Microsoft Copilot and Azure OpenAI Service.

• OCI—MI300X accelerators are powered by AMD’s CDNA
3 architecture, offering memory bandwidth and compute
performance supporting a broad range of precision data that
enable OCI to support larger and more complex
computations for AI and ML workloads [83-85]. Compared
with NVidia’s H100GPUs, MI300X could provide a
cost-effective alternative while still delivering competitive
performance with its 304 compute units, 19,456 stream
cores, and 1216 Matrix cores.

Cloud-Based Managed Services

Managed services from CSPs can assist in LLM implementation
and management while minimizing on-premises workforce
needs. Managed services features can be readily accessed
through application programming interfaces (APIs), accelerating
implementations with an enhanced focus on impacting health
care outcomes. This may include access to multiple LLMs across
vendors via a single API, enabling experimentation by end users
without managing multiple end points, keys, and payloads. This
permits experimentation with new LLM models and automates
this process via CSP-managed services. These features are
especially helpful in exploring the available LLMs that best suit
the current needs of the health care organization. In contrast,
the exploration phase could be fairly involved across on-premise
implementations, accompanied by multiple tokens, API end
points, and access controls. CSP-managed LLM services also
facilitate centralized governance structures for access
management, billing, auditing, and security scanning. Given
the sensitive nature of health care data, using fewer end points
allows health care organizations to set up the necessary access
controls for data and APIs in a seamless manner.

Workforce Needs

LLM implementation and deployment in health care workflows
typically demands a workforce with expertise across a spectrum
of areas (Figure 1). However, the workforce needs will be
dependent on several factors that include (1) LLM
implementation pathway, (2) applications of LLM in health
care workflows, (3) commercial or open-source platforms. and
(4) on-premise or cloud-based implementations. Workforce
needs are especially critical across LLM implementations that
involve training and fine-tuning. This would ideally consist of
a (1) core team comprising data scientists, architects, engineers,
and CSPs with expertise in areas such as warehousing, NLP,
LLMs, ML implementation, deployment, and assessment (eg,
MLOps) [86] in concert with (2) an infrastructure team that
addresses storage and computing needs on-premises and
on-cloud, (3) subject matter experts and health care personnel
who guide the implementation, reinforcement learning, and
prompt engineering aspects of LLMs for optimal performance,
(4) regulatory and compliance teams for ensuring ethical use
of health care data and establishing guardrails, and (5)
information technology that assists in ensuring privacy and
security of health care data while deploying the LLM
applications or API in enterprise workflows to impact outcomes
and KPIs (Figure 1). Agile strategies (eg, DevOps or MLOps)
may be critical for implementation, validation, and seamless
deployment of LLMs in workflows. Given potential bias and
toxicity that may accompany LLM implementations, an
inclusive framework that incorporates critical feedback from
stakeholders, patients, providers, and subject matter experts
across diverse communities can minimize bias and assist in
developing the necessary guardrails.

Privacy, Ethics, and Regulatory Aspects

Privacy and Security in the Cloud

Privacy and security are critical for storage, retrieval, and
analysis of health care data (Figure 1). There has been an
increasing shift in moving health care data and analytics from
on-premises to the cloud [71]. CSPs provide confidential
computing environments (CCEs) that facilitate computations
in hardware-based trusted execution environments (TEEs).
These ensure sensitive data (eg, PHI data) to remain encrypted
in an isolated environment, preventing modification of data and
applications by unauthorized parties, including CSPs, during
processing and transmission [87,88]. They facilitate secure
collaboration of first- and third-party data with the potential to
assist in overcoming sample size constraints for LLM training
as discussed in this section. CCE capabilities across the 4 major
CSPs (AWS, GCP, Azure, and OCI) are discussed in the
subsequent sections.

• AWS—Confidential computing capabilities through the
processor agnostic AWS Nitro System and AWS Nitro
Enclaves, enabling secure isolation of sensitive workloads
[89].

• GCP—Confidential virtual machines (VMs) and
Confidential Google Kubernetes Nodes allow customers
to process sensitive data while keeping them encrypted in
memory [90].
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• Azure—Confidential computing VMs with AMD SEV-SNP
and Intel SGX support ensuring VM-level confidentiality
and protection from cloud operators [91].

• OCI—Confidential computing through Oracle’s confidential
instances leveraging AMD Secure Encrypted Virtualization
for VMs and AMD secure memory encryption for bare
metal instances protecting data and application processing
the data [92].

Attestation

Attestation is a critical component of CCEs that ensures the
trustworthiness of the computing environment. It allows the
integrity and authenticity of the hardware, software, and
configuration to be verified, effectively establishing trust
between parties. Attestation offered by major CSPs (AWS,
GCP, Azure, and OCI) is discussed in the subsequent sections.

• AWS—CCE attestation involves the use of an attestation
document signed by the Nitro Hypervisor. This document
is critical for providing the identity of the enclave to AWS
Key Management Service (KMS), which validates the
document against the KMS key policy. This allows the
enclave to perform cryptographic operations with KMS
keys [93].

• GCP—Provides attestation through the Binary
Authorization and Certificate Authority Service. Through
this service, the confidential workload collects
measurements of itself and the TEE and sends an attestation
request to the Binary Authorization service, which compares
the measurements against an attestation policy. If they
match, service returns a signed attestation [94].

• Azure—Provides CCE attestation via the Microsoft Azure
Attestation service. The confidential workload includes an
attestation client that collects measurements and evidence
from the TEE. It then sends an attestation request with its
evidence to the Microsoft Azure Attestation service that is
verified against policy. If valid, it returns a signed attestation
token.

• OCI—Provides attestation using a hardware-based trusted
security module that generates an attestation report
containing measurements of the hardware and firmware
environment and verified by the customer to ensure
confidential workload is running in a legitimate TEE.

FL Architecture
CSPs also provide FL architectures [47] for decentralized
training of LLM addressing sample size challenges. An FL
model is trained locally and refined through shared updates,
resulting in an aggregated global model without explicit sharing
of health care data. Using federated data for training may
leverage collective knowledge, perhaps resulting in models with
enhanced generalization ability. It is important to note that
because only model updates are shared instead of the actual
data, FL implicitly minimizes the amount of data transferred
over the network. This can be particularly beneficial in scenarios
where data transfer is costly or limited by bandwidth constraints.
FL frameworks developed by CSPs include:

• AWS—FedML on AWS is an open-source library that
supports several FL models. AWS provides tools, libraries,

and algorithms to implement and experiment with FL
algorithms in a private and secured environment [95].

• GCP—TensorFlow Federated is an open-source framework
for ML on decentralized data. TensorFlow Federated is
used to implement FL on Google Cloud, leveraging Google
Kubernetes Engine for hosting and managing the FL process
[96].

• Azure—the AzureML platform supports Azure FL
frameworks NVFlare and Flower for running a FL pipeline.
Azure’s capabilities are leveraged for provisioning and
orchestration of FL algorithms [97].

• OCI—Supports FL through various tools, frameworks, and
services, such as Private Federated Learning with Domain
Adaptation [98].

Confidential FL
While FL ensures compliance with data protection regulations,
such as HIPAA and GDPR, it does have some limitations, as
noted earlier [49]. A possible solution is to combine confidential
computing and FL, resulting in confidential FL (CFL) [99].
This decentralized approach works well for a hybrid cloud
environment that spans on-premise data centers, edge devices,
and public clouds from different CSPs. Confidential computing
TEEs secure the data during processing, while FL enables
collaborative training without explicit sharing of health care
data. Incorporating a deidentification process as a part of CFL
workflow ensures access to large sensitive data for training
LLMs without compromising privacy and security while
maintaining the integrity of health care data management. Key
characteristics of CFL across CSPs are discussed in the
following sections.

• Enhanced privacy and security—while deidentification
removes identifiable information from the data, CFL ensures
that the data are processed in a secure and private manner.

• Compliance or regulations—Deidentification and CFL can
help health care organizations comply with HIPAA and
GDPR. CFL provides the necessary security measures to
protect data in use. Both technologies address regulations
regarding data security.

• Facilitation of data sharing—by combining these
technologies, health care organizations can safely engage
in collaborative data sharing initiatives and develop LLM
models with enhanced performance and generalization
ability.

• Intellectual property protection—CFL can protect
intellectual property such as health care AI algorithms and
research data during collaborative training.

• Building trust—secure handling of health care data builds
trust among patients, providers, and payers.

While CFL has the potential to accelerate LLM implementation
using sensitive federated health care data, some of the challenges
listed here need to be addressed for its successful deployment
and adoption.

• Data heterogeneity—CFL assumes that the data across
participating organizations are independently and identically
distributed. However, in practice, health care data may
exhibit significant heterogeneity, which can impact the
performance of the models. Techniques, such as transfer
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learning and domain adaptation, can be used to address this
challenge.

• Communication efficiency—the iterative nature of CFL
involves frequent communication between the participating
organizations and the central data server. Efficient
communication protocols and compression techniques are
necessary to minimize the communication overhead and
ensure scalability.

• Model interpretability—CFL models may lack
interpretability due to the distributed nature of the training
process. Techniques, such as model distillation and
explainable AI can be used to improve the interpretability
of CFL models.

• Incentive mechanisms—encouraging health care
organizations to participate in CFL initiatives may require
appropriate incentive mechanisms. Developing fair and
transparent incentive approaches that align with the interests
of all stakeholders is an important consideration for success.

• Human in the loop—integrating human expertise and
oversight as a part of the LLM training and decision-making
process ensures that the models are accurate, reliable, and
aligned with human values. Human in the loop also ensures
that the models comply with legal and regulatory
requirements, such as data protection laws and medical
standards.

Ethics and Regulatory Aspects
The potential of AI tools, such as LLM, to transform health care
outcomes does come with various ethical and regulatory
challenges [100-102]. US president Joe Biden’s October 2023
executive order [103] underscored the necessity of ensuring AI
safety and security. It mandated AI-generated content to be
clearly identified and called for substantial investments in
AI-related education, training, and research. The order
emphasized protecting intellectual property, supporting
American workers, advancing equity, civil rights, while
safeguarding privacy and civil liberties. It also directed the
Department of Health and Human Services to establish safety
parameters for AI, including frameworks for identifying and
tracking clinical errors, generating improvement guidelines,
and sharing these among health care organizations. A recent
Health and Human Services 2024 ruling (Section 1557, Patient
Protection and Affordable Care Act) also emphasized protection
to patients against bias and discrimination from AI and ML
decision support tools and the importance of mitigating such
biases [104,105]. In addition, 29 countries attended the AI Safety
Summit in November 2023 and signed the Bletchley Declaration
[106] to “cooperate on AI to promote inclusive economic
growth, sustainable development, and innovation, to protect
human rights and fundamental freedoms, and to foster public
trust and confidence in AI systems to completely realize their
potential.” The Institute for Healthcare Improvement’s Lucian
Leape Institute (LLI) [107] predicted increased use of AI in
clinical documentation support, clinical decision support, and
patient-supportive chatbots in the health care setting. They
recommended prioritizing patient safety, engaging clinicians,
ensuring AI efficacy and bias mitigation, establishing AI
governance and oversight, and fostering collaborative learning
across health systems. In addition, LLI emphasized the

importance of AI systems in reporting confidence levels and
rationale and the need for continuous human monitoring to
maintain trust and accuracy in AI-generated outputs. LLI also
suggested several considerations for regulators and policy
makers: establishing clear guidelines for ethical and trustworthy
AI use, promoting transparency and accountability, supporting
AI literacy, incentivizing AI development that prioritizes safety,
and facilitating localized decision-making. The European AI
Act [108], the first legal framework on AI, categorized AI risks
into 4 levels—unacceptable, high, limited, and minimal—and
introduced transparency obligations for all AI models.
Accreditation agencies, such as the Joint Commission, will need
to advocate to create governance structures and processes for
monitoring patient safety issues related to AI. The World Health
Organization also recently commented on regulatory
considerations for AI in health [109]. It outlined essential
guidelines covering documentation and transparency, risk
management, intended use validation, data quality, privacy
protection, and stakeholder engagement. The ethical
development of AI must adhere to principles, such as
beneficence, nonmaleficence, autonomy, justice, data quality,
transparency, fairness, responsibility, privacy, freedom, trust,
sustainability, dignity, and solidarity. Trustworthiness of
AI-based clinical decision support is often compromised by the
lack of transparency in how AI tool’s function and the basis of
their decisions. There are concerns about the use of proprietary
data, the absence of robust regulation, and the risk of bias from
datasets that do not adequately represent marginalized
populations. Overall, as AI continues to evolve and integrate
into health care, maintaining a balance between innovation and
ethical responsibility is crucial. Regulatory frameworks and
ethical guidelines at health care organizations must evolve to
ensure that AI enhances health care delivery while protecting
the interests and rights of patients and providers alike.

LLM Guardrails for Responsible AI
There has been interest in developing guardrails and regulatory
frameworks to facilitate responsible AI. These guardrails ensure
the behavior of AI tools, such as LLM, falls within expected
bounds while being resilient to adversarial attacks. These efforts
include recent open-source initiatives, such as NeMo Guardrails
[110] for improved trustworthiness [111] of LLM conversational
systems. These guardrails assist in customizing the LLM
interaction with users using topical rails and execution rails
[110]. While topical rails prevent the LLM from veering off
topic, execution rails assist in moderating the LLM output and
ensure it is factual. A recent study by Meskó and Topol [102]
on regulatory oversight of LLMs identified several associated
challenges. The study pointed out the challenges in translating
existing Food and Drug Administration’s regulatory frameworks
for medical devices [112] to contemporary AI-based
technologies, such as LLMs, and the need for new regulatory
frameworks for LLMs. More specifically, it highlighted 2 unique
characteristics of LLMs: (1) the ability to adapt their
performance to training data as well as tasks in contrast to
traditional AI and ML approaches, and (2) the ability to learn
in a self-supervised (autodidactic) manner without the need for
explicit guidance and ground truth labels as in a more classical
supervised ML paradigm. Subsequently, a list of LLM
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regulatory challenges were identified (Table 1 in the study by
Meskó and Topol [102]), including privacy, intellectual
property, medical malpractice liability, quality control and
standardization, informed consent, interpretability and
transparency, fairness and bias, data ownership, overreliance,

and need for continuous monitoring and validation. Some of
these challenges have also been acknowledged in a more recent
US Food and Drug Administration release with a broader focus
on AI and medical products [113].
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Table 1. Summary of risks and benefits of the 3 large language models (LLMs) onboarding pathways (training from scratch pathway [TSP], fine-tuned
pathway [FTP], and out-of-the-box pathway [OBP]).

OBPFTPTSP

Digital readiness

Benefits • Digital readiness for OBP is minimum.• Digital readiness of FTP is
much lesser than TSP because

• LLMs are trained on health care data
and capture characteristics of that

FTP focuses on fine-tuning astarget population with the potential
opposed to training.to impact outcomes in that popula-

tion.
• Enhanced transparency of the data,

implementation, and deployment.
• Enhanced quality of training data

through enterprise governance, mini-
mizing bias.

Risks • General purpose, out-of-the-box mod-
els pretrained on nonhealth care data

• Susceptible to biases in train-
ing data used in the pretrained

• Demands upfront investment in data
warehousing, enterprise governance,

may have limited utility, prone to bias,LLMs.and dedicated workforce.
and hallucinations.• General purpose LLMs are of-

ten trained on nonhealth care
data.

• Prompt engineering demands
can be significant.

LLM

Benefits • Multiple choices of off-the-shelf LLMs

accessed as APIsa.

• Uses off-the-shelf pretrained
LLMs without explicitly train-
ing from scratch.

• Train LLM from scratch using either
existing transformer architectures or
novel architectures. • Readily accessible with minimal

training.•• The number of open-source
pretrained LLMs continues to

Long-term maintenance, customiza-
tion, with evolving needs.

grow.

Risks • Use is dependent on the features ex-
posed by the vendors.

• Susceptible to biases in the
pretrained LLMs.

• Cost of training LLMs can be signif-
icant.

• Generic nature of the output may have
limited utility in addressing the unique

•• Pretrained LLMs on nonhealth
care data may have perfor-

Sharing checkpointed LLMs trained

on PHIb data is a risk.
needs of health systems. No explicitmance limitations.• Novel architectures demand consid-

erable experimentation for optimal training of the LLM model.• Dependency on pretrained
LLMs is a risk. Limited trans-performance. May result in implemen-
parency may be a security risk.tation and deployment delays.

Workforce

Benefits • Minimal on-premise workforce needs
and training.

• Workforce demand is signifi-
cantly less than TSP.

• On-premise workforce can assist in
customizing LLMs with enhanced
transparency and evolving needs. • Rapid implementation using managed

services.

Risks • Complete dependence on vendor
models and services with minimal

• Limited customization of the
pretrained LLMs.

• Demands a skilled workforce with
expertise across a spectrum of areas

transparencyfor implementation and deployment.
• Demands recruitment, growth, and

retention of skilled workforce.
• Continued buy-in from leadership for

sustaining workforce.

Infrastructure and security

Benefits • Infrastructure is needed primarily for
inference.

• Infrastructure needs for com-
pute are significantly less than

• Options for training LLMs across
cloud service providers with on-de-

TSP.mand and spot instance pay-as-you-
go pricing models.

• Secured cloud environments are
available
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OBPFTPTSP

• Infrastructure costs increase with the
number of users.

• Vendor pricing may vary with increas-
ing adoption. Availability of services
is not guaranteed.

• Interfacing to downstream applica-
tions.

• Vendor pricing may vary based
on adoption.

• Prompt engineering on pre-
trained models can be in-
volved.

• Training LLMs on GPUsc is expen-
sive.

• Security and governance for training
sensitive data in the cloud.

Risks

aAPI: application programming interface.
bPHI: protected health information.
cGPU: graphics processing unit.

LLM Implementation Triumvirate

Overview
As noted earlier, LLM implementation is dependent on several
factors. In this section, 3 broad LLM implementation pathways
(Triumvirate) are discussed along with associated risks, benefits,
and economics (Figure 1). These pathways are not necessarily
independent and expected to serve as onboarding points for
equitable distribution and enhanced adoption of LLMs. A
summary of the risk and benefits of these 3 pathways is also
enclosed in Table 1 for convenience.

The TSP
In TSP, an LLM is trained from scratch using health care data
and subsequently customized for specific needs and tasks of
the health care organization. FTP and OBP may follow TSP.

Benefits
The TSP provides enhanced transparency of the data and code,
complete ownership of the model parameters, implementation,
and the ability to assess the quality of the training data at the
most granular level. TSP is expected to facilitate long-term
maintenance of the model and customization to the evolving
needs of the health care organization, including seamless
deployment in workflows and interface to enterprise dashboards.
In addition to using an established LLM architecture, TSP may
also implement novel architectures or modifications to existing
general-purpose transformer architectures. Training LLMs using
data from the EDW of a health care organization implicitly
adheres to the data governance and ETL ensuring high-quality
data and accommodating characteristics of the population served
by the health care organization that may not necessarily be
captured in generic datasets, such as those used to train general
purpose LLMs. This in turn is expected to result in a model
with enhanced performance [114] addressing the needs of the
organization impacting clinical, operational, and financial
outcomes and KPIs (Figure 1). Such a model is also expected
to be better used while demonstrating value because the training
data can significantly impact its behavior and performance
[115]. As noted earlier, it is not uncommon for the
organizational data to be supplemented by high-quality external
data during training [41]. Unlike pretrained LLMs, access to
the training data and enhanced transparency may assist in
mitigating biases, minimizing perpetuation and amplification
of biases, and reducing toxicity by the model as well as
downstream applications and APIs that are dependent on the

base model (Figure 1), leading to improved overall performance.
This aspect is especially critical when deploying the LLM model
in clinical workflows to assist in clinical decision-making.

Risks
TSP implicitly demands digital readiness, infrastructure and
workforce, and regulatory compliance. Because sample-size
challenges can impact TSP, approaches and FL techniques may
be explored. The digital and analytics maturity of an
organization, along with an existing culture of data-driven and
evidence-based approaches to impacting outcomes, may be
critical for successful TSP implementation and continued buy-in
from the enterprise leadership. Unlike pretrained LLMs, TSP
may demand experimentation to identify the optimal model
size, parameters, and checkpointing the model before
deployment. Agile implementation strategies across multiple
teams, such as data science, information technology, clinical,
and support from executive leadership may be critical for the
timely progress of TSP. Therefore, timelines for TSP
implementation and deployment are expected to be significantly
larger than FTP and OBP. In addition to implementation and
validation, timelines would also include seamless deployment
in health care workflows and providing necessary training for
the end users. Delays in demonstrating value are to be expected
as with any new AI tool. TSP will also demand access to
specialized infrastructure for storage and computing, including
distributed frameworks and GPU Clusters or PODS. Enterprise
CSPs can be critical partners in this regard. Unlike general
purpose LLMs, TSPs using cloud infrastructure should follow
strict compliance and security protocols that in turn may incur
additional costs. Because TSP demands unique skill sets for
implementation and critical evaluation, existing skillsets and
investment in the workforce in areas such as data science, DL,
NLP, LLM, and IT, as well as protected time for health care
personnel for critical assessment of the models, would be
important. The quality and performance of TSP will be
dependent on the knowledge of the subject matter experts
assisting with the reinforcement learning with human feedback
process. FTP is likely to follow TSP as a part of customizing
the LLMs to end users and downstream applications (Figure 1).
Given the large number of parameters of LLM models, there is
the possibility of the LLM models memorizing some of the
information in the training data [116]. This in turn may
discourage sharing checkpointed TSP models due to the risk of
information leak.
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Economics of TSP
Among the 3 pathways, TSP demands considerable up-front
investment with regards to digital readiness, infrastructure,
workforce, privacy, and regulatory aspects. TSP implementation
will demand (1) an existing EDW for querying and retrieval of
unstructured data for ingestion by LLMs; (2) a workforce with
competencies across a spectrum of areas, including
implementation, integration as well as technical aspects in
multiple areas, including DL; (3) concerted working of multiple
teams, including subject matter experts for validation and prompt
engineering; and (4) regulatory oversight because the training
phase in TSP would involve using health care data with the DL
algorithm. Data-warehouse implementation and continued
management could cost millions of dollars. The cost of hiring
and retaining a workforce to support LLM implementation can
be substantial, especially given the high demand for such
specialized skillsets. For a midsized health care organization,
the cost of a workforce capable of handling LLM development,
implementation, deployment, and maintenance can range from
US $2 million to US $5 million per year, including salaries,
benefits, and training. Training and deploying LLMs require
significant computational resources, including high-performance
storage and computing infrastructure. For example, DGX A100
data centers (80 GB) were priced at approximately US $200,000
in 2020. LLaMA implementation [32] required 2048 A100
GPUs and 21 days for training their 65 billion parameter model,
resulting in significant costs in millions of dollars. Therefore,
the cost of compute, along with power consumption, physical
space requirements, and dedicated personnel, could easily reach
into the tens of millions of dollars for TSP. Working in
partnership with cloud platforms can address several of these
challenges. Major CSPs, such as AWS, Azure, GCP, and OCI,
offer on-demand compute instances across GPU clusters and

cost profiles based on the user needs and affordability within a
secured framework (Table 2) [117-122]. TSP is usually followed
by FTP to tune the response of the LLMs.

Because TSP demands building an LLM using the health care
organizations data, it may require hundreds of thousands of
hours of training [123]. Comparable pricing of 320 and 640
GiB of GPU memory using 8 × A100 GPUs in a single instance
across the 4 major CSPs is presented in Table 2. On the basis
of the comparison table and the time for training an LLM from
scratch, it might be economical to purchase a long-term (3-year
commitment), which may save around 60% when compared
with on-demand costs. Another option would be to use a “spot
instance” (Table 3) [124-127]. Spot instances are spare compute
capacity offered by CSPs at a reduced cost compared with the
on-demand pricing and serve as a suitable alternative. These
pricing estimates vary with demand and can change throughout
the day, week, or month. However, to use spot instances for
LLM training, organizations need to implement strategies to
handle instance reclamations and checkpoint management. This
is especially critical for TSP, as it takes considerable time to
train an LLM from scratch. CSP-managed services offer
managed spot training or fine-tuning and resume jobs from the
checkpoints. Due to spot interruptions, training or fine-tuning
using spot instances may also take longer to complete compared
with on-demand or reserved instances. With increasing adoption
of LLMs by health care organizations in conjunction with the
popularity of AI and ML availing spot instances in general can
be challenging and could be prone to interruptions with marked
variations in availability as well as pricing across the different
geographic regions. Spot instances can also vary across CSPs,
with some (eg, AWS, GCP, and OCI) providing more options
and higher-memory GPU instances.

Table 2. Comparable per-hour pricing of graphics processing unit (GPU) clusters across cloud service providers (CSPs; Amazon Web Services [AWS],
Azure, Google Cloud Platform [GCP], and Oracle Cloud Infrastructure [OCI]) for 320 or 640 GiB GPU memory for the training from scratch pathway
(TSP). Representative data retrieved on June 2024.

3 years
(US $)

1 year (US
$)

On demand
per GPU
(US $)

On demand
(US $)

Total GPU
memory

Per GPU
memory

GPUsMemory
(GiB)

CPUa

(cores)

Instance typeCSP

11.5719.224.1032.77320408115296p4d.24xlargeAWS

14.4624.015.1240.96640808115296p4de.24xlargeAWS

13.6322.623.4027.2032040890096ND96asr A100 v4Azure

14.4220.974.1032.77640808190096ND96amsr A100 v4Azure

10.2918.523.6729.3932040868096a2-highgpu-8gGCP

——b5.0340.22640808136096a2-ultragpu-8gGCP

——3.0524.40320408204864BM.GPU4.8OCI

——432.006408082048128BM.GPU.A100-v2.8OCI

aCPU: central processing unit.
bNot applicable.
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Table 3. Comparison of per-hour spot-instance and on-demand pricing across cloud service providers (CSPs; Amazon Web Services [AWS], Azure,
Google Cloud Platform [GCP], and Oracle Cloud Infrastructure [OCI]) large language models (eg, 320 GiB, 8 × A100 graphics processing units [GPUs]
single instance) and smaller and medium large language models (eg, 64, 16 GiB V100 GPU). Representative data were retrieved in June 2024.

Medium and smaller modelsLarge modelsCSP

Spot cost per
hour (US $)

On-demand cost per
hour (US $)

Instance typeSpot cost per
hour (US $)

On-demand cost per
hour (US $)

Instance type

3.9712.24p3.8xlarge8.3732.77p4d.24xlargeAWS

0.9113.46NC24rs_v38.1927.20ND96asr A100 v4Azure

3.6321.73n1-highmem-3211.7529.39a2-highgpu-8gGCP

6.0212.03BM.GPU3.412.2024.40BM.GPU4.8OCI

FTP Overview
While TSP focuses on pretraining LLMs, FTP focuses on
adapting an existing pretrained LLM with a given architecture
and parameters to tasks at hand in a domain-specific manner.
This is usually accomplished by (1) adjusting the model
parameters of the LLM using context-specific data that are much
smaller than the training data and (2) adjusting the LLM
performance and behavior by prompt engineering inputs and
outputs of the LLM. The pretrained LLMs can be either
open-source or proprietary LLMs, with those pretrained on
health care data expected to perform better than general-purpose
LLMs.

Benefits
The timeline for implementation, budgeting, infrastructure, and
workforce needs for FTP is expected to be significantly lower
than that of TSP because it does not involve training LLMs
from scratch [114]. Typically, FTP uses readily available,
pretrained proprietary or open-source LLM with open-source
licenses for modifying the source code as per user needs. The
number of open-source LLM offerings has continued to increase
with time with communities, such as Hugging Face hosting
leaderboards comparing their performance. Managed services
by CSPs can assist in setting up multistep tasks across systems
and data sources, generate knowledge bases from private data
sources for FTP, and implement safeguards on inputs and
outputs adhering to governance and responsible AI.

Risks
FTP will demand resources, access to quality data, relevant
prompts (eg, input-output pairs), protected time for subject
matter experts, and agile implementation strategies for adapting
the pretrained LLMs for specific tasks. While automated
approaches have been proposed for prompt engineering [128],
prompt engineering risks for FTP may be relatively higher
compared with fine-tuning on TSP because the training data of
the pretrained models may not be domain-specific and can have
potential biases. Implementation details of proprietary pretrained
LLMs may not be readily accessible, limiting innovation and

modification with evolving needs. Pricing of proprietary LLMs
used by FTP may also increase with enhanced adoption across
health care organizations, and their downtime may impact
several dependent downstream applications in health care
workflows. While several open-source LLMs are readily
available from platforms, such as Hugging Face, these are
primarily a result of crowdsourcing efforts and voluntary
contributions posing challenges in translating them to enterprise
tools. Dependency on an existing pretrained open-source or
proprietary LLM can be a risk because these models are rapidly
evolving and that could challenge active maintenance of legacy
models. Open-source implementations traditionally do not
support extensive documentation and training materials for
onboarding. These in turn may demand workforce and digital
capacity on-premises. This includes challenges in interfacing
these tools with other systems and health care workflows.
Open-source implementations may also be susceptible to
vulnerabilities that may not be readily apparent; hence, they
could be susceptible to security breaches, malicious content,
malware, and ransomware attacks on models and downstream
applications compromising patient privacy and leading to
liabilities. Pretrained proprietary LLMs may have minimal
flexibility, transparency, and interface options to downstream
applications and dashboards in health care workflows. Because
health care data can contain PHI, open-source and pretrained
proprietary LLMs should be HIPAA compliant.

Economics of FTP
The economics of FTP (Table 4) are expected to be markedly
lower compared with TSP as it does not involve the
computationally intensive task of pretraining an LLM. More
specifically, digital readiness and infrastructure and workforce
costs are expected to be markedly lesser than those of TSP. In
addition, FTP may require access to the annotated health care
data that are several magnitudes less than the training data used
in TSP. Unlike TSP, fine-tuning is typically accompanied by
high GPU consumption for a short burst of time and ideal for
availing pay-as-you-go models offered by CSPs in contrast to
on-premise systems.
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Table 4. Comparable pricing of graphics processing unit [GPU] clusters across cloud service providers (CSPs; Amazon Web Services [AWS], Azure,
Google Cloud Platform [GCP], and Oracle Cloud Infrastructure [OCI]) for the fine-tuned pathway. Representative data were retrieved in June 2024.

3 year
(US $)

1 year
(US $)

On demand
(US $)

Total GPU
memory

Per GPU
memory

GPUsMemory
(GiB)

CPUa coresInstance typeCSP

8.3915.9124.4812816848864p3.16xlargeAWS

9.6418.3931.2225632876896p3dn.24xlargeAWS

6.528.9812.246416444824NC24rs_v3Azure

10.6314.8823.6312816841664n1-highmem-64GCP

——b23.6012816876852BM.GPU3.8OCI

aCPU: central processing unit.
bNot applicable.

OBP Overview
OBP includes commercial off-the-shelf LLMs typically accessed
by end users through Representational State Transfer APIs
(SaaS) with minimal or no local customization.

Benefits
Unlike TSP and FTP, OBP is usually enterprise-ready. OBPs
do not require digital readiness in access to integrated datasets
and data warehouses. LLMs are accessed through a web
interface; hence, no budgeting needs to be allocated for the
storage and computing infrastructure needs of LLMs or the
workforce to support LLM implementation and maintenance,
as in TSP and FTP. Because OBP is provided by multiple
vendors, there is an option to choose the best-performing LLM
for a given price. Transitioning between OBP services can be
done with ease because there is no explicit sharing of sensitive
health care data or customized LLM architecture. User training
needs in OBP are minimal compared with TSP and FTP.
Managed services provided by CSPs can assist OBP
implementation with minimal workforce needs on-premises.
This includes CSP-managed API end points that offer access
to 1 or more LLMs, whose cost is proportional to the number
of input and output tokens. Services provided by the 4 major
CSPs in this regard include (AWS: Claude, Azure: OpenAI
Service, GCP: Gemini, and OCI: Cohere). Managed services
by CSPs also support OBP LLM deployment on GPUs with
minimal ease and a per-hour charge (AWS: Amazon SageMaker
Canvas, Azure: AI Studio, and GCP: Vertex AI).

Risks
Unlike TSP and FTP, OBP is completely dependent on the SaaS
or infrastructure as a service option provided by the vendor,
with no control over training and fine-tuning and limited
transparency on potential biases and the details of the LLM
model and the training data. Prompt engineering risks of OBP
may be larger than those of FTP and TSP because the OBP may
use models that are not domain-specific, and the absence of
domain-specific knowledge may result in OBP being sensitive
to prompting. Output variability can be relatively higher for

OBP, leading to inconsistent results and challenging deploying
these models in clinical workflows. Copyright protection may
limit the extent to which OBP can reveal the implementation
details, and OBP services can be black boxes. Therefore, OBP
services are expected to provide generic insights that may not
necessarily accommodate the digital footprints and
characteristics of the population served by a health care
organization. This in turn may diminish the value and utility of
OBP in addressing the needs that are specific to the organization.
It might not be feasible to use PHI data across OBP services
that are not HIPAA compliant. Posing questions to OBP services
may unintentionally compromise patient privacy, especially
when the sample size of the cohort being queried is small (eg,
rare disease). OBP services may pose challenges in interfacing
other applications, dashboards, and workflows without the
explicit involvement of the vendor. Cost is usually incurred per
inference and can aggregate over time with increasing
dependency and number of users. These in turn may demand
user authentication, quota allocation, and auditing. The
reliability of the OBP service is dependent on the vendor and
not necessarily guaranteed, with the potential for pricing options
to increase with increasing adoption.

Economics of OBP
The cost of digital readiness for OBP is expected to be minimal
as OBP services are provided as ready-to-use solutions without
any need for training or fine-tuning as in TSP and FTP. Ideally,
OBP would not require a dedicated team to support other than
training materials for end users. However, hosting open-source
LLM models, such as those from Hugging Face Hub, may
demand infrastructure costs on-premises or in the cloud.
Alternatively, LLM models in the OBP can be availed through
APIs whose charges vary based on the input and output tokens
and use patterns. Use patterns need to be carefully monitored
as they could gradually increase to millions of tokens per month,
significantly impacting the cost of OBP long-term. Pricing
estimates of LLM APIs across major CSPs are shown in Table
5 [129-132]. Due to the per-unit pricing of certain CSPs, an
average of 4 characters per token is assumed in generating these
estimates.
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Table 5. Comparable pricing of large language models through application programming interface across cloud service providers (CSPs; Amazon Web
Services [AWS], Azure, Google Cloud Platform [GCP], and Oracle Cloud Infrastructure [OCI]). Representative data were retrieved in June 2024.

Total cost
(US $)

500 Output
tokens (US
$)

10,000 In-
put tokens
(US $)

Output parametersOutput
unit cost
(US $)

Input parametersInput unit
cost (US $)

ModelCSP

0.0380.0080.030Per 1000 tokens0.015Per 1000 tokens0.003Claude 3 Son-
net

AWS

0.0580.0080.050Per 1000 tokens0.015Per 1000 tokens0.005GPT-4o global
deployment

Azure

0.0580.0150.050Per 1000 characters (ap-
proximately 250 tokens)

0.00375Per 1000 characters (ap-
proximately 250 tokens)

0.00125Gemini 1.5 proGCP

0.0920.0040.088Per 10,000 transactions
(approximately 2500 to-
kens)

0.022Per 10,000 transactions
(approximately 2500 to-
kens)

0.022Cohere largeOCI

LLM Applications in Health Care
LLMs have the potential to offer health care providers new
mechanisms for optimization and automation of documentation,
clinical review, and direct patient communication. Its use is
expected to reduce provider time in using systems, such as EHR,
and improve clinical documentation while minimizing repetitive

workflows. LLMs can also benefit patients by serving as an
approachable tool to manage their health information assist in
health literacy, appointment scheduling, and ambulatory
encounters. Typical LLM applications in health care are shown
in Figure 3. These applications broadly rely on the principles
underlying dialogue systems [133]. They facilitate text-based
and voice-based interactions between LLMs and the end user.

Figure 3. Typical health care applications of (A) large language models (LLMs) and conversational artificial intelligence (AI), (B) chatbots, (C)
summarization, and (D) translation. Q/A: question and answer.

Conversational AI in Clinical Practice
Conversational AI (Figure 3A) focuses on the application of
AI-based approaches, such as LLMs, for developing dialogue
systems [133]. It is an omnibus term that includes chatbots and
virtual assistants as well as text and voice-based interaction
with the end user. The ability of these systems to understand
user intent and generate relevant and accurate responses has
continued to improve over time [134,135]. Conversational
AI-enabled systems can significantly enhance information
seeking and retrieval capabilities of health care information by
patient, provider, and payer. Specifically in clinical practice,
conversational AI integrated within EHRs [136] can facilitate
increased patient-provider engagement and reduced
documentation time, minimizing physician burnout. Moreover,
these ambient listening, generative AI solutions have the
opportunity to dramatically reduce documentation and cognitive
burden, further leading to an improved clinician EHR
experience. Depending on the services needed, the integration
can be pursued through TSP for a bespoke solution, FTP for
modifying existing models, and the OBP pathway with minimal
customization. In addition to the risks and benefits of these
pathways, their deployment in EHR workflows may demand

expertise in user interface design for functional integration. The
focus should be on ensuring that AI-supported interactions
enhance rather than impede the patient-provider relationship.
Operationally, such systems streamline data management
processes, leading to increased efficiency and potential financial
savings due to reduced time spent on repetitive tasks. Depending
on digital and analytics maturity, there could be challenges
related to integration and deployment challenges and enhanced
adoption. In enhancing the conversational AI interfaces within
EHR systems, a more detailed exploration of specific use cases
and scenarios would reveal their impact on clinical workflow,
such as patient portal communications or clinical decision
support. Long-term adoption studies, focusing on the acceptance
and resistance among health care professionals, can provide
insights into the practical aspects of implementing these
technologies. Moreover, a deeper discussion on how these AI
interfaces evolve through ML and adaptation to user behaviors
and preferences can illustrate the potential for increasingly
efficient and user-friendly medical systems. The development
of guardrails on AI-moderated operations and data security,
particularly in the context of sensitive EHR data, is imperative
to address concerns around privacy and compliance with health
care regulations.
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Conversational AI economics depends on the quantity,
complexity, and scale of integration. For instance, conversational
AI tools for EHR demand seamless and secured integration of
the tool to the EHR either directly or through third-party
interfaces, training the users for enhanced adoption, and
customization of the tools through fine-tuning. Training
conversational AI tools is critical to maintaining high accuracy
on clinical tasks and dialogue understanding impacting its
adoption. Successful deployment will demand active
involvement of multiple teams, including analytics, information
technology, the governance team, compliance, and security.
Scalability considerations are crucial if deployed across multiple
facilities, necessitating robust infrastructure investments. In
addition, ongoing optimization costs are incurred as the AI must
continuously update to align with new medical guidelines and
treatment protocols, ensuring reliability and accuracy in patient
data management.

Chatbots in Health Care
A chatbot is a conversational AI system that enables
communication between computers and humans using natural
language in completing specific tasks, such as question
answering (Figure 3B). LLM-based chatbots are transforming
the way patients, providers, and payers interact within health
care settings [137]. They have the potential to improve health
care outcomes by providing timely health information to
patients, assisting in patient education and interventions,
improving operational productivity by assisting decision-making
processes, and reducing administrative tasks and overhead costs
[138]. Chatbots can also assist in individualized services,
including symptom assessment through virtual consults,
appointment scheduling, and improving health literacy by
making health care information accessible in a preferred
language [139-141]. In developing chatbots, health care systems
may opt for TSP for a completely customized solution, FTP for
adapting existing models, or OBP for ready-to-use prebuilt
templates. In addition to the risks and benefits of these pathways
discussed earlier, chatbot implementations demand a good
understanding of patient engagement strategies and health care
communication norms. Successful deployment should ensure
privacy and security of patients, adhere to regulations, and
establish necessary guardrails [110]. Their design should also
prioritize empathy and cultural sensitivity to ensure inclusive
and respectful interactions with diverse patient populations in
addition to minimizing bias and assumptions in conversations
[137]. These, in turn, are expected to build trust and harmony
with users, leading to enhanced adoption [142]. Successful
chatbot design should also accommodate nuances of human
interactions (eg, patient emotions and expectations). These in
turn may demand well-articulated prompt engineering,
fine-tuning, and optimization of the parameters in the underlying
model [143]. Incorporating feedback from patients and health
care providers will offer a deeper understanding of user
experience and areas for improvement. Chatbots can also be
integrated with other digital health technologies and workflows,
such as telemedicine and electronic medical record. In addition,
it can assist in personalization of services, tailoring interactions
based on individual patient profiles and needs, significantly
impacting patient engagement. Integrating chatbots with

predictive analytics can also assist in assessing the usefulness
of these tools by incorporating feedback.

The economics of LLM-powered chatbots in health care can be
impacted by integration, compliance needs, feature complexity,
and deployment scale. OBP is generally the least expensive,
potentially costing a few thousand to tens of thousands of dollars
annually, based on a subscription model. However, these figures
can easily grow with the frequency of use and number of users.
Fine-tuning existing models can cost tens to hundreds of
thousands of dollars, depending on the extent of customization
and licensing fees. Developing a highly customized chatbot
from scratch is the most expensive option, with expenses
running into hundreds of thousands to millions of dollars.
Additional costs arise from ongoing maintenance, server costs,
updates, and compliance with regulations such as HIPAA or
GDPR, which necessitate robust security measures. The
complexity of features, such as multilingual support advanced
diagnostic capabilities, and the scale of deployment can also
significantly impact the overall cost.

Summarization in Health Care
LLMs excel in summarization (Figure 3C), tasks critical for
managing extensive medical documentation and improving
clinical workflows [144]. These AI-driven systems can distill
complex medical records into concise summaries for improved
decision-making and patient management. Summarization also
reduces task load while improving documentation quality,
operational efficiency in processing documents, and financial
savings by reducing the time and resources spent on
administrative tasks. Summarization can also succinctly capture
details of patient-provider conversations in team settings
comprising a large number of clinicians, resulting in enhanced
care continuity, coordination, and overall quality. While similar
in integration complexity to conversational AI systems, the
implementation of LLMs for summarization specifically requires
tuning the models to capture critical medical insights accurately.
Summarization leverages advanced natural language
understanding capabilities, a step beyond general chatbot
applications to ensure that summaries are not only succinct but
also clinically relevant. These can be developed through TSP
for high specificity, FTP for a balanced approach, or OBP for
broader applications. The summarization process requires an
augmented framework comprising a group of experts in the
domain of AI, clinical knowledge and medical terminology,
and data-processing infrastructure for critical validation.
Successful implementation of LLM summarization is expected
to ensure integrity of medical information, preventing any loss
of critical details in the summarization process, minimizing the
risk of misinterpretation of condensed information, and seamless
integration of these tools into existing clinical workflows.

The economics of summarization while overlapping with those
of broader AI integrations, such as conversational AI tools, are
particularly influenced by the need for high-quality training
data and the development of interfaces that clinicians can use
effectively within existing digital health frameworks and
workflows. The cost and investment may increase for
summarization tools that meet high standards of accuracy and
reliability in medical contexts while minimizing risks. This
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includes rigorous testing and validation in real-world settings
to adhere to the data handling and privacy regulations
characteristic of the health care institution and industry. In
addition, the ongoing maintenance to update the models with
new medical information and guidelines further adds to the
overall expenditure. These factors combined make the
economics of summarization technologies substantial yet crucial
for enhancing efficiency and decision-making in health care
environments.

Machine Translation in Health Care
Machine translation (Figure 3D) serves diverse linguistic
communities by the translation of text or speech from one
language to another. Its role is especially helpful in overcoming
language barriers in medical communication and documentation,
especially across health care organizations that serve
non–English-speaking communities. Machine translation can
improve patient–health care provider communication, patient
understanding of instructions, and discharge summaries, as well
as operational benefits by facilitating multilingual
documentation and financial advantages by potentially reducing
the workload for human interpreters in low-resource settings
[145]. It also has the potential to assist in the transmission of
critical medical information in a culturally sensitive and
empathetic manner, with the potential to minimize adverse
events and impact health care outcomes favorable, especially
across non–English-speaking communities. Machine translation
can be developed through TSP for precise, context-specific
translations using data from communities served by a specific
health care organization, FTP for adapting existing models to
medical language nuances, or OBP for immediate
implementation with off-the-shelf translation tools. In addition
to the applications mentioned here, machine translation requires
collaboration with linguists and cultural sensitivity advisers to
ensure translations are accurate and culturally appropriate.
Ethical and regulatory considerations revolve around the
accuracy and cultural appropriateness of translations. There is
a strong emphasis on avoiding miscommunication in critical
medical contexts while respecting linguistic diversity.
Challenges include the risk of mistranslation, cultural
insensitivity, and loss of nuanced medical context. The impact
on target populations is usually diverse. It enables payers to
offer multilingual services efficiently, aids providers in
delivering equitable care to non–English-speaking patients and
empowers patients by providing access to medical information
in their preferred native languages. Here, underlining cultural
competency alongside language translation is crucial. This
includes not only translating text but also understanding and
conveying cultural nuances, which is critical in medical contexts
with potential favorable impact outcomes. Establishing specific
metrics or standards to gauge the accuracy and reliability of
translations can provide a benchmark for evaluating these tools.
Discussing the legal implications and responsibilities in cases
of mistranslation or miscommunication is also vital to
understanding the potential liabilities involved. Extensive testing
may be required before deployment in high-stakes areas, such
as emergency medicine, where quick and accurate translation
is vital.

The economics of machine translation in health care settings
largely overlap with those of conversational AI technologies,
as discussed previously. Costs can vary based on the
development pathway chosen: OBP solutions may offer a lower
upfront cost with general translation tools available for
immediate use, while the FTP and the TSP require more
substantial investments to adapt or develop models that handle
medical language nuances and specific community dialects.
However, OBP solutions could have severe limitations in
high-stakes applications compared with FTP and TSP. Costs
usually include customization, system integration with existing
health care IT infrastructures such as EHRs, and ongoing
expenses for maintenance and updates. Additional significant
expenses are incurred in ensuring accuracy and cultural
appropriateness, which involves collaboration with linguists
and cultural experts. This collaboration is essential to mitigate
risks of mistranslation and to comply with health care
communication standards. Therefore, while the base technology
may be like those used in conversational AI, the specificity and
critical nature of medical translations can lead to higher costs,
particularly when ensuring the system meets the stringent
requirements of medical accuracy and regulatory compliance.

Conclusions
LLMs have the potential to meaningfully impact health care
delivery and health outcomes. However, LLM implementations
are impacted by the needs and affordability. This perspective
provided 3 LLM implementation pathways (TSP, FTP, and
OBP) and a road map for onboarding, enhanced democratization,
and equitable adoption by the health care ecosystem. The
economics, risks, and benefits of these pathways were also
presented across 4 major CSPs (AWS, GCP, Azure, and OCI)
to assist in choosing the best pathway for an organization. As
LLMs continue to evolve [146], additional onboarding pathways
are expected to join the repertoire.

The critical role of cloud-computing frameworks to support
onboarding efforts from scalability, privacy, workforce, and
economic standpoints was discussed. Pay-as-you-go models
offered by CSPs alleviate the need for significant upfront
investments while providing the ability to experiment with
different pathways with the flexibility to scale and transition
between pathways based on the usefulness of these tools in
impacting outcomes and KPIs and use with evolving needs of
health care organizations. Managed services provided by CSPs
can assist in optimal management of resources and infrastructure
while streamlining workflows and minimizing the need for
considerable expertise across a variety of areas. These aspects
are especially suited for organizations that do not have sufficient
resources and upfront investment for LLM implementation.
CSPs also provide privacy and security features, including
confidential computing and TEEs for safeguarding sensitive
health care data and maintaining regulatory compliance. The
size of health care datasets used to train LLMs is often small
compared with datasets used to train general-purpose models.
CSPs can facilitate FL in conjunction with TEEs and
deidentification in overcoming sample size constraints by
enabling collaborative training strategies across health care
organizations without explicit data sharing and ensuring privacy.
FL approaches can result in models with enhanced
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generalization ability in contrast to those trained using data from
a single health care organization. Because LLMs may have the
potential to memorize sensitive information from training data,
hindering the sharing of checkpointed models due to privacy
concerns. Techniques such as differential privacy and secure
multiparty computation in CSPs can mitigate such risks. CSPs
also provide access to specialized hardware accelerators,
presenting an opportunity to improve the efficiency and
cost-effectiveness of LLM training and inference. However, it
is important to consider compatibility and performance
trade-offs when integrating these accelerators into existing
workflows.

As LLMs are used across health care, it is crucial to consider
potential challenges and unintended consequences. Choice of
an LLM implementation pathway can be significantly impacted
by digital readiness, infrastructure, workforce, and ethical and
regulatory landscape. Overreliance on LLMs could also diminish
the critical thinking skills of health care professionals. As with
all AI and ML tools, optimization is an essential ingredient of
LLMs. Therefore, it is essential that LLMs be used within an
augmented framework to support human decision-making rather
than serving as a replacement. Establishing guardrails, ethical
guidelines, and training programs for ensuring the responsible
use of LLMs in clinical settings is important. Providing training
and support for health care professionals and actively engaging
them in the LLM implementation is critical for their successful

deployment and long-term adoption. Workforce is a critical
ingredient for LLM implementation, deployment, and
maintenance. Prioritizing the inclusion of belonging, diversity,
equity, and inclusion leaders as a part of LLM development is
crucial to ensuring implementation that is inclusive and
representative of diverse populations. Engaging policy makers
and educating them about LLM limitations and adoption in
health care is critical for realistic expectations from these tools
and developing the necessary regulatory frameworks. Incentives
could be introduced to encourage LLM adoption across health
care organizations, and KPIs should be identified to assess its
impact on health care outcomes. Short-term incentives can
facilitate initial adoption of a particular onboarding pathway,
while long-term incentives may assist in shifting across these
pathways.

Identifying onboarding pathways for LLM implementation
leveraging cloud computing along with metrics to demonstrate
value while incorporating the necessary regulations and
guardrails of responsible AI is critical for its equitable
distribution and enhanced adoption in the health care ecosystem.
Widespread adoption is also expected to facilitate feedback
from diverse communities served by the health care ecosystem,
improving patient outcomes and operational efficiency and
addressing the unique challenges and considerations in health
care.
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