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Abstract

Background: Cardiac arrest (CA) is one of the leading causes of death among patients in the intensive care unit (ICU). Although
many CA prediction models with high sensitivity have been developed to anticipate CA, their practical application has been
challenging due to a lack of generalization and validation. Additionally, the heterogeneity among patients in different ICU subtypes
has not been adequately addressed.

Objective: This study aims to propose a clinically interpretable ensemble approach for the timely and accurate prediction of
CA within 24 hours, regardless of patient heterogeneity, including variations across different populations and ICU subtypes.
Additionally, we conducted patient-independent evaluations to emphasize the model’s generalization performance and analyzed
interpretable results that can be readily adopted by clinicians in real-time.

Methods: Patients were retrospectively analyzed using data from the Medical Information Mart for Intensive Care-IV (MIMIC-IV)
and the eICU-Collaborative Research Database (eICU-CRD). To address the problem of underperformance, we constructed our
framework using feature sets based on vital signs, multiresolution statistical analysis, and the Gini index, with a 12-hour window
to capture the unique characteristics of CA. We extracted 3 types of features from each database to compare the performance of
CA prediction between high-risk patient groups from MIMIC-IV and patients without CA from eICU-CRD. After feature
extraction, we developed a tabular network (TabNet) model using feature screening with cost-sensitive learning. To assess
real-time CA prediction performance, we used 10-fold leave-one-patient-out cross-validation and a cross–data set method. We
evaluated MIMIC-IV and eICU-CRD across different cohort populations and subtypes of ICU within each database. Finally,
external validation using the eICU-CRD and MIMIC-IV databases was conducted to assess the model’s generalization ability.
The decision mask of the proposed method was used to capture the interpretability of the model.

Results: The proposed method outperformed conventional approaches across different cohort populations in both MIMIC-IV
and eICU-CRD. Additionally, it achieved higher accuracy than baseline models for various ICU subtypes within both databases.
The interpretable prediction results can enhance clinicians’ understanding of CA prediction by serving as a statistical comparison
between non-CA and CA groups. Next, we tested the eICU-CRD and MIMIC-IV data sets using models trained on MIMIC-IV
and eICU-CRD, respectively, to evaluate generalization ability. The results demonstrated superior performance compared with
baseline models.

Conclusions: Our novel framework for learning unique features provides stable predictive power across different ICU
environments. Most of the interpretable global information reveals statistical differences between CA and non-CA groups,
demonstrating its utility as an indicator for clinical decisions. Consequently, the proposed CA prediction system is a clinically
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validated algorithm that enables clinicians to intervene early based on CA prediction information and can be applied to clinical
trials in digital health.

(J Med Internet Res 2024;26:e62890) doi: 10.2196/62890
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early cardiac arrest warning system; electric medical record; explainable clinical decision support system; pseudo-real-time
evaluation; ensemble learning; cost-sensitive learning

Introduction

Critical illness is defined as the presence or potential
development of organ dysfunction. Cardiac arrest (CA), a critical
condition that impacts patient safety, refers to the sudden
cessation of cardiac function due to specific abnormal events,
such as ventricular arrhythmia, asystole, and pulseless electrical
activity [1]. At least one abnormal sign, such as respiratory
distress or hemodynamic instability, occurs in 59.4% of patients
within 1-4 hours before the onset of CA [2]. Early identification
of the causes of CA improves patient survival by approximately
29% within the first hour of the episode and 19% at discharge
[3]. Therefore, early prediction of CA is crucial to allow for
more time for clinical intervention, thereby reducing mortality.

Clinical decision support systems (CDSSs) are clinical computer
systems that apply algorithms to patient information, use
machine learning to evaluate clinical data, and provide clinical
decision support [4,5]. These systems, developed using
electronic medical records, utilize various paradigms—such as
predicting early cardiac events, heart failure (HF), and critical
illness—to enable rapid response through real-time patient
monitoring [6-9]. To enhance the quality and speed of medical
services, CA prediction and warning systems have been
developed for use in intensive care units (ICUs) within the field
of CDSSs [6]. These computer-based CA prediction algorithms
offer new opportunities for clinicians to improve the accuracy
of predicting CA events [10].

Traditional score–based methods, including the Simplified Acute
Physiology Score (SAPS)-II, Sequential Organ Failure
Assessment (SOFA), and Modified Early Warning Score
(MEWS), are tools used by in-hospital care teams to identify
early indicators of CA and initiate early intervention and therapy
[11-15]. However, these score-based systems suffer from low
sensitivity or a high false alarm rate [16]. To address these
issues, machine learning methods have been used in CA
prediction [17,18], leading to significant improvements in
performance.

Churpek et al [19] proposed the use of a random forest (RF)
classifier, based on clinical information extracted from a
multicenter data set, achieving an area under the receiver
operating characteristic curve (AUROC) of 0.83. Similarly,
Hong et al [20] implemented an RF model using a clinical data
set from a retrospective study, attaining an AUROC of 0.97 and
an area under the precision-recall curve (AUPRC) of 0.86.
Although the authors achieved accurate CA prediction results,
their methodology relied heavily on features not commonly
used during hospitalization and did not offer real-time
predictions. To address this, Layeghian Javan et al [21] proposed

a stacking method that combines RF, balanced bagging, and
logistic regression to predict CA 1 hour in advance. Layeghian
Javan et al [21] achieved an AUROC of 0.82 using the Medical
Information Mart for Intensive Care (MIMIC)-III data set. Kwon
et al [17] proposed a deep learning–based early warning system
that utilizes a recurrent neural network (RNN) to assess risk
scores from input vectors measured over an 8-hour period. Their
system, based on vital signs extracted from a retrospective
multicenter cohort data set, resulted in AUROC and AUPRC
values of 0.85 and 0.04, respectively. Additionally, Kim et al
[18] developed an ensemble-based CA prediction system using
the light gradient boosting method (LGBM) to predict CA 1
hour in advance, obtaining AUROC and AUPRC values of 0.86
and 0.58, respectively, using the MIMIC-IV data set.

As mentioned earlier, artificial intelligence (AI) has been applied
to CA prediction solutions and has demonstrated high predictive
power in several studies [22]. However, hospitals often group
patients with similar conditions and illness severity within the
same unit for more efficient treatment. Specifically, ICUs are
divided into subtypes, such as general ICUs and cardiac ICUs,
to optimize care. In this context, previous studies on CA
prediction focused on the entire ICU without accounting for the
heterogeneity within subtypes. As a result, the performance of
CA prediction models may vary depending on the distinct
characteristics of each group [23].

Although numerous studies have applied AI to CA prediction
[17,18], challenges persist in their practical application. First,
CA prediction studies must confirm clinical validity through
multicenter studies [2]. However, clinical maturity for CA
prediction has not been established when monitored in real-time,
as validation was typically performed using representative events
extracted from the validation site. Second, patients grouped into
different ICU subtypes exhibit varying characteristics and
likelihood of developing CA. However, the performance of CA
prediction models across these subtypes has not been validated.
Third, while interpreting the results of prediction models is
crucial for clinicians to make informed decisions [13], an
interpretable model capable of providing this information in
real-time monitoring—especially among deep learning–based
models—has yet to be developed.

This study proposes a framework for early and accurate
prediction of CA across diverse clinical settings, accounting for
heterogeneity. We aim to validate the clinical maturity, safety,
and effectiveness of the proposed framework by comparing it
with existing trigger systems and machine learning methods
using a pseudo real-time CA evaluation system. We propose a
novel framework that learns patient-independent and
subtype-specific characteristics in the ICU to improve CA
prediction and reduce the false alarm rate. As a deep
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learning–based model optimized for tabular data, such as tabular
network (TabNet), it can address the overfitting and performance
limitations of existing tree-based models [24]. In addition, a
cost-sensitive learning approach was applied to address the class
imbalance in CA events. We then used the MIMIC-IV and
eICU-Collaborative Research Database (eICU-CRD) to evaluate
clinical maturity across various patient populations and ICU
subtypes [25,26]. To illustrate changes in feature importance
over time for clinical decisions, we utilized the MIMIC-IV data
set [25]. Therefore, the proposed CA prediction framework can
offer clinicians a reliable warning of CA occurrence within 24
hours. It also provides interpretable information about CA
alarms and insights for rapid response.

Methods

Data Source
We used 2 databases: MIMIC-IV and eICU-CRD. The
MIMIC-IV database, which includes information on vital signs,
laboratory tests, and procedural events for ICU patients, was
utilized to develop and validate a CA prediction model using
multivariate vital sign time-series data from patients with HF.
Specifically, MIMIC-IV is a well-known single-center database
containing information on 46,520 patients admitted to the Beth
Israel Deaconess Medical Center (BIDMC) between 2008 and
2019. The database includes demographic data, International
Classification of Diseases (ICD) codes, clinical modification
codes, hourly vital signs, inputs and outputs, laboratory test and
microbiological culture results, imaging data, treatment methods,
medication administration, and survival statistics. In addition,
MIMIC-IV includes data from the clinical information system
iMDsoft MetaVision. Compared with MIMIC-III, which extracts
data from heterogeneous sources, MIMIC-IV provides more
comprehensive patient data and detailed information on
procedural events, serving as a primary source of clinical
information in ICUs [25]. Consequently, MIMIC-IV data are
more homogeneous compared with MIMIC-III data [25].

The eICU-CRD contains data from over 200,000 ICU
admissions monitored across the United States through the
eICU-CRD program developed by Philips Healthcare. This
collaborative database includes information on patients admitted
to the ICU in 2014 and 2015 [26].

Ethical Considerations
The MIMIC-IV database and eICU-CRD are deidentified,
transformed, and made available to researchers who have
completed human research training and signed a data use
agreement. The Institutional Review Board at the BIDMC
granted a waiver of informed consent and approved the sharing
of the MIMIC-IV database. Similarly, the eICU-CRD data were
exempt from Institutional Review Board approval and were
also granted a waiver of informed consent [25,26].

To enhance the system for doctors and patients, AI has addressed
concerns related to bias and fairness in health care. Our
strategies to mitigate these issues are as follows:

Bias in AI generally arises from 2 primary sources: the data
used for algorithmic training (data bias) and the intrinsic design
or learning mechanisms of the algorithm itself (algorithmic

bias). In health care settings, the involvement of human
interaction and decision-making can introduce additional bias
due to the inherently complex nature of the process [27]. To
mitigate the impact of data bias, we used a patient-centered data
set rather than relying solely on representative event data.
Additionally, we conducted a subgroup analysis to identify
potential biases in various environments. Key factors
contributing to algorithmic bias are label bias and cohort bias
[28,29]. Label bias has been addressed through updates to the
MIMIC-IV and eICU-CRD databases [25,26]. To counter cohort
bias, which may arise when different group levels are not
adequately considered, we evaluated both patients with heart
disease and the broader population using different databases
[30].

Fairness in health care is multidimensional, involving the
equitable distribution of resources, opportunities, and outcomes
among diverse patient populations. Health care systems must
ensure access to quality care for all individuals without
discrimination [31]. To uphold this fairness, we selected
MIMIC-IV and eICU-CRD—2 representative databases in
critical care—and proceeded with AI development only after
minimizing bias in each database. Additionally, we assessed
explainability and the Brier score to address potential errors,
harmful outcomes, and biases in AI-generated predictions.

The use of AI-driven predictions in critical care decisions can
introduce various biases. Bias related to clinician interaction
may be common in CDSS systems, with risks including
overconfidence in the AI system or desensitization to real-world
events due to excessive alerts [32,33]. To mitigate these biases,
we evaluated the false alarm rate, event recall, and sensitivity.
Additionally, future deployments will require clinician training
on inherent biases and regular monitoring of the algorithm.

Problem Definition
The task of the study is to predict CA events within 24 hours.
The input data include the patient’s vital signs and the MEWS
over a 12-hour time window. We then generate continuous
labels every hour regarding the risk of CA within the next 24
hours and calculate the alarm rate based on the correctness of
the alarms. The primary outcome was the AUROC, used to
quantitatively assess the prediction results for CA events within
24 hours. The alarm rate, including false alarm rate and event
recall, was calculated as a secondary outcome to evaluate alarm
fatigue. Sensitivity was also assessed as a secondary outcome
to identify any reductions in false alarms or missed CA events.
Additionally, we provided clinically interpretable decision
support information.

Prediction Model Framework

Overview
We propose a framework for predicting CA events within 24
hours in advance. As illustrated in Figure 1, the framework
consists of 6 components: data preparation, data preprocessing
and extraction, feature generation, feature aggregation and CA
event labeling, model development, and evaluation. Details
about the open-source tools and development code used are
provided in Multimedia Appendix 1 [34].
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After applying the inclusion and exclusion criteria, we extracted
vital signs and calculated the MEWS based on these vital signs.
In step 2, we processed and normalized the features after
resampling the vital signs and MEWS to a 1-hour resolution.
In step 3, we generated multiresolution statistical features and
Gini index–based features. The multiresolution statistical
features were created using a sliding window approach to
segment each vital sign into 4-, 6-, and 12-hour intervals. Next,
we generated continuous labels every hour indicating the risk

of CA within the next 24 hours. In step 4, we aggregated
multiresolution statistical features, Gini index–based features,
and labels. In step 5, we developed a TabNet classifier, known
for its effectiveness in various classification tasks with tabular
data [24], and incorporated different cost weights for each class.
Finally, in step 6, we evaluated the performance of the proposed
model using sensitivity, false alarm rate, event recall, and
AUROC.

Figure 1. Patient inclusion and exclusion flow diagram for the MIMIC-IV and eICU-CRD. (A) MIMIC-IV, (B) eICU-CRD. CA: cardiac arrest;
eICU-CRD: eICU-Collaborative Research Database; HF: heart failure; ICU: intensive care unit; MIMIC: Medical Information Mart for Intensive Care;
SAPS: Simplified Acute Physiology Score; SOFA: Sequential Organ Failure Assessment.

Step 1: Data Preparation
Data were obtained from the MIMIC-IV and eICU-CRD
databases to construct cohorts meeting the inclusion and
exclusion criteria [25]. The target populations of the 2 databases
differed: MIMIC-IV includes only patients with cardiac issues
in the ICU, while eICU-CRD encompasses all ICU patients.
The number of CA events per patient also varied between the
databases. MIMIC-IV typically has 1 CA event per patient,
whereas eICU-CRD often records multiple CA events per
patient. As CA events can occur multiple times per patient in a
clinical setting, we validated multiple events in the eICU-CRD.
Finally, we performed an analysis that accounted for differences
across databases to compare the performance of CA prediction
between high-risk patient groups and those without CA, as well
as across different clinical settings, using the proposed
framework, as shown in Figure 2.

For the inclusion and exclusion processing of MIMIC-IV, we
applied the criteria to select the study cohort. Patients aged over
18 and under 100 years were included. Records of patients
without SOFA and SAPS-II scores were excluded, as these

scores were used to compare the prediction performance of the
prognostic scales with the proposed framework. HF is a major
risk factor for sudden CA and a significant contributor to
CA-related mortality. CA is more prevalent in patients with a
history of HF or previous CA. Therefore, we included ICU stays
of patients with these cardiovascular conditions in the cohort
study. For the CA group, we included ICU data if the vital sign
data were not outliers and if any events occurred within 1 hour
before the CA within 24 hours of patient admission.

For the inclusion and exclusion processing of the eICU-CRD,
we acknowledged the differences in target population
characteristics as mentioned above. Therefore, the inclusion
and exclusion criteria were the same as those for MIMIC-IV,
except for the criteria related to patients with high-risk CA.

MIMIC-IV includes only patients with cardiac issues in the
ICU, while eICU-CRD encompasses all ICU patients.
Consequently, the MIMIC-IV data set included 77 patients in
the CA group and 1474 patients in the normal group, whereas
the eICU-CRD data set included 106 patients in the CA group
and 3641 patients in the normal group.
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Figure 2. Overview of the proposed framework. This is composed of 6 steps including data preparation; data preprocessing and extraction; feature
generation; feature aggregation and CA event labeling; model development; and evaluation. Three components make up TabNet, including feature
transformer, attentive transformer, and feature masking. A split block separates the processed representation for the overall output and is used by the
attentive transformer of the next phase. The feature selection mask provides comprehensible details about the functioning of the model for each step,
and the masks can be combined to produce global feature important attribution. BN: batch normalization; CA: cardiac arrest; DBP: diastolic blood
pressure; EWS: early warning score; HR: heart rate; MBP: mean blood pressure; MEWS: Modified Early Warning Score; ReLU: rectified linear unit;
RFE: recursive feature elimination; RR: respiratory rate; SBP: systolic blood pressure; SpO2: oxyhemoglobin saturation; TabNet: tabular network;
TEMP: temperature.

Step 2: Data Preprocessing and Extraction
We collected data on vital sign parameters, including heart rate
(HR), systolic blood pressure (SBP), diastolic blood pressure
(DBP), temperature, respiratory rate (RR), and oxyhemoglobin
saturation (SpO2) from the experimental database. These vital
sign parameters may be recorded with irregular time-series data
due to equipment malfunctions and varying patient responses
[35]. Prediction models are not designed to classify data with
irregular time-series samples between groups. To address this
issue, the models require data collected at regular time intervals.
We used a bucketing technique to manage the irregularities in
the time series [21]. We divided the 12-hour time windows into
12 sequential 1-hour buckets, and the measured values within
each bucket were averaged. Consequently, each time series
consisted of 12 values at regular 1-hour intervals. If there were
no values in a bucket, it was marked as null. To address missing
values, we used the last observation carried forward (LOCF)
and last observation carried backward (LOCB) imputation
techniques [36]. In the LOCF method, missing values are filled
by carrying forward the most recent nonmissing values.
Similarly, in the LOCB method, missing values are filled by

carrying backward the subsequent nonmissing values. Although
we primarily used the LOCB method to impute missing values,
the LOCF method was applied when subsequent values were
missing, filling in missing values with the most recent
nonmissing values.

Additionally, we extracted the early warning scores (EWS) for
vital signs. We used the MEWS [15], a composite score
commonly used by medical staff to assess illness severity. EWS
observations were assigned scores ranging from 0 to 3. The
EWS was calculated every hour. To remove outliers, we
determined the acceptable range for each variable based on the
input from medical experts. Values falling outside this range
were eliminated. We normalized each feature using the
minimum and maximum values within the abnormal range for
each vital sign, as each feature column had a different scale.
We converted the database into an hourly time series with
12-hour intervals. Subsequently, we combined the CA and
non-CA groups to perform the imputation task.
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Step 3: Feature Generation and Aggregation

Feature Extraction and Processing for Cardiac Arrest
Prediction

After applying the inclusion and exclusion criteria, we extracted
vital signs—such as HR, SBP, DBP, temperature, RR, and
SpO2—and calculated the MEWS based on these vital signs.
The features were then processed and normalized after
resampling both the vital signs and MEWS to a 1-hour resolution
[37]. The database was organized into an hourly time series
with 12-hour intervals. Finally, we combined the CA and
non-CA groups to perform the imputation task.

We generated 3 types of features within a 12-hour time window:
vital sign–based features, multiresolution statistical features,
and Gini index–based features. These features were designed
to capture meaningful changes for predicting the occurrence of
CA by identifying temporal patterns in vital signs, statistical
variations across different resolutions, and the degree of
information imbalance. The method for generating these features
is outlined in the following sections.

Vital Sign–Based Features

To extract the pattern of vital signs, we used normalized vital
signs and MEWS within a 12-hour time window.

Multiresolution Statistical Features

To capture statistical changes across different sections, we
created time windows of increasing sizes and extracted summary
statistics from these multiresolution sliding windows. For the
multiresolution sliding window–based statistical features, the
input data were segmented into resolutions of 0-4 hours, 0-6
hours, and 0-12 hours. Each time-series segment of the vital
sign data was then aggregated to calculate the mean, median,
minimum, maximum, and SD for each feature.

Specifically, the temporal patterns of each biological signal
over a 12-hour period, with representative values for each 1-hour
segment, show distinctive characteristics between the group
that experienced CA and the group that did not. However,
compressing the 5 statistical features mentioned above for the
entire input window into a single statistical summary may not
fully capture the differences in patterns between the groups.
Consequently, 5 statistical values were derived by shifting a
4-hour window across the 12-hour input window. This approach
allowed us to obtain statistical values for each section using
both 6- and 12-hour windows. This feature extraction method,
previously used in our research, was shown to enhance CA
prediction accuracy by providing a condensed statistical
summary of various sections [18].

Gini Index–Based Features

Inspired by the Gini index, which measures statistical variance
to indicate income inequality in economics, we propose a
method to calculate the imbalance of patterns within each vital
sign over the input time steps. This method calculates inequality
for each vital sign and uses it as a feature to distinguish between
situations where CA occurred and did not occur. Previous
research suggests that significant changes in temporal patterns
often precede CA, making this imbalance a valuable

characteristic variable. The index-based feature formulation is
expressed as follows:

GV = 1 – (2G/NDiff)

where G is the index; GV indicates index-based features of each
vital sign; xi and xj are the values of vital signs within the input
range in each vital sign; and NDiff is the number of intervals in
the input vital sign. We calculated the Gini index to assess the
impurity of each vital sign variation and then performed the
normalization step, denoted as GV.

For instance, if the Gini index–based feature value is relatively
low, it indicates that the values within the input window are
stable. Conversely, if there is a rapid change in HR before CA,
the Gini index–based feature value will increase. This pattern
change is captured by the Gini index, which measures statistical
dispersion.

Step 4: Feature Aggregation and CA Event Labeling
We aggregated multiresolution statistical features, Gini
index–based features, and labels to enhance temporal features
and achieve better inter-ICU generalizations from the model,
utilizing vital signs and specific clinical latent scores.

To select and screen the most relevant and nonredundant
features, we used 2 feature selection methods: recursive feature
elimination and the Boruta method. Recursive feature
elimination identifies the most relevant features for predicting
the target by recursively eliminating a small number of features
in each iteration [38]. This process helps eliminate collinearity
within the proposed framework. The Boruta method assesses
the relevance of each feature using statistical testing and shadow
features [39].

To overcome the limitations of conventional feature selection
methods, we used an ensemble feature screening approach using
a majority voting mechanism. This method was applied to a
total of 653 features, resulting in the selection of 86 features
from the MIMIC-IV database and 94 features from the
eICU-CRD database. In this approach, each feature screening
method casts 1 vote for a selected feature, and a feature will
receive 2 votes if both feature screening methods choose it.

We then aggregated the variables into binary indicators to denote
the presence or absence of CA in each class.

Step 5: Model Development
We used a TabNet classifier with features from a 12-hour time
window to predict CA events within a 24-hour period. We
generated continuous labels every hour indicating the risk of
CA in the next 24 hours and calculated the alarming rate based
on whether the alarm was correct or incorrect. Additionally, we
applied cost-sensitive learning as an algorithm-level approach
to address the extreme imbalances in the MIMIC-IV and
eICU-CRD data sets [40]. Cost-sensitive learning was applied
to penalize errors in the minority class (the CA group). The

J Med Internet Res 2024 | vol. 26 | e62890 | p. 6https://www.jmir.org/2024/1/e62890
(page number not for citation purposes)

Kim et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


TabNet classifier, using cost-sensitive learning, helps reduce
bias or variance and improve the stability of machine learning
algorithms [41,42]. The minority classes from the MIMIC-IV
and eICU-CRD data sets were penalized with a weight of 100.
Finally, we set the weight for the CA class to 100 and the
learning rate to 0.01.

Step 6: Evaluation

Leave-One-Patient-Out K-Fold Internal Validation

We used leave-one-patient-out (LOPO) K-fold validation to
evaluate the individual patient performance of CA prediction
and to provide a realistic estimate of model performance on
new patients [43]. This method is a variant of K-fold
cross-validation, where the folds consist of individual patients.
Specifically, we used a 10-fold LOPO validation [44].

Additionally, we established a pseudo-real-time CA evaluation
system to assess and compare the real-time CA prediction
performance for hospitalized patients, simulating an ICU
environment. This system used the LOPO K-fold validation
approach to predict CA events within a 24-hour period.

Cross-Data Set External Validation

In this experimental setting, both the proposed method and
comparison methods were trained on 1 database and tested on
another to evaluate their generalization ability [45]. We
alternately used MIMIC-IV and eICU-CRD as the source and
target databases to assess generalization performance. To ensure
consistency in feature properties across databases, we excluded
SAPS-II, which includes laboratory tests. The experiment
consisted of 2 steps. First, we trained the models, including the
proposed method and comparison models, using MIMIC-IV as
the source database. Next, we tested the CA prediction
performance on eICU-CRD using the trained models and
compared their performance.

To assess the generalization ability and minimize the impact of
specific group characteristics in the learning data, we conducted
another cross-data set external validation. We trained the models
using eICU-CRD as the source database and evaluated CA
prediction performance on MIMIC-IV as the target database.

Subgroup Analysis

We evaluated the CA prediction performance for each ICU
subtype to determine if there were differences in performance
between the proposed method and the comparative models for
each ICU cluster. The common ICU subtypes across MIMIC-IV
and eICU-CRD were general, cardiac, neuro, and trauma. Neuro
and trauma ICUs were excluded from this analysis due to the
low number or absence of admissions of patients with CA. We
used 10-fold LOPO cross-validation for subgroup evaluation.
In this process, the entire data set assigned to each fold was
used for training, and during testing, performance was evaluated
by categorizing patients according to their ICU subtype.

Baseline Models

To evaluate the performance of the proposed method, we used
the following baseline models: National Early Warning Score
(NEWS), SOFA, SAPS-II, logistic regression, k-nearest
neighbors, multilayer perceptron, LGBM, RNN, and reverse

time attention. Details of these baseline models can be found
in Multimedia Appendix 2.

Evaluation Metrics

We assessed the performance of the proposed and baseline
methods using AUROC, event recall, false alarm rate, and
sensitivity. Our goal was to evaluate the proposed method in a
clinically relevant context by focusing on the percentage of CA
events detected and the rate of false alarms. We specifically
measured event recall [46], which quantifies whether the CA
prediction system correctly triggered an alarm in the period
preceding a CA event.

ER = NCaptured/NTotal

where ER is event recall; NCaptured implies the number of
captured events; and NTotal indicates the number of total CA
events.

Next, the false alarm rate was defined as the fraction of alarms
that failed to detect an actual event, to investigate whether
operational costs were being wasted. This concept is analogous
to exon prediction in gene discovery. The false alarm rate is
evaluated as follows:

FAR = 1 – (NTrue/NAlarm)

where FAR is the false alarm rate; NTrue is the number of true
alarms; and NAlarm is the number of total alarms in the CA
prediction system.

Explainable Predictions
We extracted both local and global interpretability information
by examining the decision masks of TabNet. After determining
the impact of each feature using the proposed model, we
summarized and visualized the top 25 features with the highest
mean values. Additionally, we visualized the impact of features
over time using a heatmap and tracked changes in the features
with the highest values. To compare the differences in impact
between non-CA and CA groups, we conducted a statistical
test. Specifically, an independent t test with false discovery rate
(FDR) correction was used to assess the differences in
interpretability information between the 2 groups.

Statistical Analysis
Differences in patient characteristics, such as age, ICU length
of stay, and vital signs, between the non-CA and CA groups
were evaluated using independent t tests. To compare
performance metrics between the baseline and proposed models,
we used the Kruskal-Wallis test, followed by the honestly
significant difference (HSD) test for post hoc analysis. The
differences in interpretable information between the non-CA
and CA groups were evaluated using an independent t test with
FDR correction. A significance level of 5% (P<.05) was used
for all analyses.

Results

Patient Characteristics
The patient characteristics are presented as means and SDs in
Table 1.

J Med Internet Res 2024 | vol. 26 | e62890 | p. 7https://www.jmir.org/2024/1/e62890
(page number not for citation purposes)

Kim et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


In the 12-hour time window for MIMIC-IV, age did not differ
significantly between the CA and non-CA groups. However,
the ICU length of stay was statistically different between the 2
groups (P=.02). Significant differences were observed in HR
(P<.001), RR (P<.001), SBP (P<.001), DBP (P=.01), SpO2

(P<.001), and temperature (P<.001). In the eICU-CRD data set,
age (P=.11) and ICU length of stay (P=.21) were not considered
significant because their P values were greater than .05. Except
for HR, which was not significant in either group (<.001 in the
MIMIC-IV data set and .41 in the eICU-CRD data set), the other
variables had significance levels (ie, P<.05; see full data in
Table 1).

Next, we provided the patient characteristics for each ICU
subtype, specifically general and cardiac ICUs, as shown in

Multimedia Appendices 3 and 4. In the 12-hour time window
for MIMIC-IV, the characteristics of general and cardiac ICUs
were similar to those of the overall ICU population between the
CA and non-CA groups, except for ICU length of stay (hours).
In the general ICU, the length of stay was significantly longer
in the CA group (P=.006). In the 12-hour time window for
eICU-CRD, notable discrepancies were observed in the
characteristics of general and cardiac ICUs between the CA and
non-CA groups with respect to HR. In the general ICU, the CA
group had a significantly higher HR compared with the non-CA
group (P<.001). By contrast, the non-CA group in the cardiac
ICU had a lower HR, although this difference was not
statistically significant (P=.41).

Table 1. Demographic information of patients from MIMIC-IVa and eICU-CRDb.

eICU-CRDMIMIC-IVCharacteristic

P valueNoncardiac arrest (n=3541)Cardiac arrest
(n=106)

P valueNoncardiac arrest
(n=1474)

Cardiac arrest

(nc=77)

.1162.65 (15.83)60.03 (16.52).7467.64 (13.57)68.53 (13.63)Age (year), mean (SD)

.21175.28 (144.14)199.82 (198.01).02273.26 (142.96)318.90 (346.82)Intensive care unit length of
stay (hours), mean (SD)

Vital signs, mean (SD)

.4187.35 (17.30)87.45 (19.54)<.00187.10 (17.30)88.79 (17.60)Heart rate (beats/minute)

<.00119.76 (4.85)20.10 (5.90)<.00120.99 (5.70)21.26 (5.68)Respiratory rate
(breaths/minute)

<.001125.68 (21.73)118.88 (21.21)<.001118.03 (21.27)111.21 (22.60)Systolic blood pressure
(mmHg)

<.00168.49 (13.86)63.47 (14.06).0159.64 (13.70)59.41 (14.17)Diastolic blood pressure
(mmHg)

<.00196.55 (2.82)96.94 (4.01)<.00196.92 (2.87)97.22 (3.57)Oxyhemoglobin saturation
(SpO2)

<.00136.90 (0.58)36.94 (0.94)<.00137.12 (0.64)36.88 (0.91)Temperature (°C)

aMIMIC: Medical Information Mart for Intensive Care.
beICU-CRD: eICU-Collaborative Research Database.
cn: number of ICU stays.

Feature Screening Strategy
Table 2 illustrates the efficacy of the proposed methodology,
both in its original form and when combined with the ensemble
feature screening process. Initially, the proposed framework
was trained and validated using all features for CA prediction,
with validation performed through a 10-fold LOPO
cross-validation approach. The framework achieved AUROC
values of 0.75, 0.99, 0.80, and 0.80 for event recall, false alarm
rate, sensitivity, and specificity, respectively, on the MIMIC-IV
data set. For the eICU-CRD data set, the AUROC values were
0.78, 0.99, 0.45, and 0.99, respectively, for event recall, false
alarm rate, sensitivity, and specificity.

To minimize the risk of overfitting in the proposed method,
feature screening was essential. An ensemble feature screening
method was used to identify the optimal feature set for the best
results. The selected feature sets from the ensemble screening
on the MIMIC-IV data set were then incorporated into the
proposed framework. This adjustment led to AUROC values
of 0.79, event recall of 0.99, false alarm rate of 0.77, and
sensitivity of 0.89 for the proposed framework. The selected
feature sets from the ensemble feature screening on the
eICU-CRD data set were incorporated into the proposed
framework. This adjustment resulted in AUROC values of 0.80,
event recall of 0.99, false alarm rate of 0.36, and sensitivity of
0.99. The proposed ensemble feature screening approach
demonstrated superior performance compared with using all
feature sets.
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Table 2. Performance comparison without and with ensemble feature screening methods along with the proposed framework using MIMIC-IVa and

eICU-CRDb.

eICU-CRDMIMIC-IVMethod

Sensitivity (↓)False alarm rate (↓)Event recall (↑)Sensitivity (↑)False alarm rate (↓d)Event recall (↑c)

0.99 (0.01)0.45 (0.14)0.99 (0.01)0.80 (0.09)0.80 (0.04)0.99 (0.00)Proposed method, mean (SD)

0.99 (0.00)0.36 (0.16)0.99 (0.00)0.89 (0.06)0.77 (0.05)0.99 (0.00)Proposed method with feature
screening, mean (SD)

aMIMIC: Medical Information Mart for Intensive Care.
beICU-CRD: eICU-Collaborative Research Database.
cThe ↑ symbol indicates that a higher value for the evaluation metric corresponds to a more meaningful or effective model.
dThe ↓ symbol indicates that a lower value for the evaluation metric corresponds to more meaningful or effective model performance.

Predictive Performance
This section presents the results of CA predictive performance.
We evaluated the performance using metrics including AUROC,
event recall, false alarm rate, and sensitivity.

In the 12-hour time window from the MIMIC-IV database, we
compared the AUROC of the proposed framework with that of
baseline methods to investigate CA predictive performance.
The proposed method achieved a higher overall AUROC value
compared with the baseline methods, as shown in Figure 3. The
AUROC results using the proposed method were statistically

higher than those of the comparison methods (χ2
15=68.67), as

determined by the Kruskal-Wallis test with HSD post hoc
analysis (see Multimedia Appendix 5). Additionally, we
compared other performance metrics, including event recall,
false alarm rate, and sensitivity, to assess effectiveness in a
clinically relevant context. This evaluation focused on detecting
CA events within a 24-hour period and minimizing false alarm
rates, as shown in Table 3. The proposed method achieved
statistically higher performance in event recall and sensitivity

(χ2
15=90.34 for event recall and χ2

15=38.70 for sensitivity), as
shown in Multimedia Appendices 6 and 7. Additionally, the
proposed method demonstrated a statistically lower false alarm

rate (χ2
15=110.00), as detailed in Multimedia Appendix 8.

We compared the AUROC of the comparison methods and the
proposed framework using the 12-hour time window from the
eICU-CRD data set. The proposed method achieved statistically
higher performance, with an overall AUROC value as shown

in Figure 3 and Multimedia Appendix 9 (χ2
14=81.38).

Additionally, we evaluated other performance metrics, including
event recall, false alarm rate, and sensitivity, as detailed in Table
4. The proposed method achieved statistically higher values for
event recall and sensitivity compared with other methods, as

demonstrated by the Kruskal-Wallis test with HSD (χ2
14=90.75

for event recall, χ2
14=100.86 for sensitivity), as shown in

Multimedia Appendices 10 and 11. The proposed method also
achieved a lower false alarm rate than the comparison methods,
except for SAPS-II and LGBM.

Figure 3. Comparison of AUROC performance among baseline models and the proposed method from MIMIC-IV and eICU-CRD. (A) AUROC from
MIMIC-IV and (B) AUROC from eICU-CRD. AUROC: area under the receiver operating characteristic curve; DEWS: Deep Early Warning Score;
eICU-CRD: eICU-Collaborative Research Database; FS: feature screening; KNN: K-nearest neighbors; LGBM: light gradient boosting method; LR:
logistic regression; MIMIC: Medical Information Mart for Intensive Care; MLP: multilayer perceptron; NEWS: National Early Warning Score; RETAIN:
reverse time attention; SAPS: Simplified Acute Physiology Score; SOFA: Sequential Organ Failure Assessment.
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Table 3. Comparison of LOPOa cross-validation performance using MIMIC-IVb.

Sensitivity (↑)False alarm rate (↓d)Event recall (↑c)Model

0.39 (0.10)0.89 (0.09)0.87 (0.12)National Early Warning Score ≥5, mean (SD)

0.59 (0.15)0.90 (0.08)0.71 (0.13)Sequential Organ Failure Assessment ≥6, mean (SD)

0.91 (0.10)0.90 (0.10)0.91 (0.10)Simplified Acute Physiology Score-II ≥32, mean (SD)

0.69 (0.21)0.90 (0.10)0.99 (0.04)Logistic regression, mean (SD)

0.01 (0.01)0.96 (0.10)0.05 (0.06)k-Nearest neighbors, mean (SD)

0.03 (0.02)0.88 (0.04)0.36 (0.13)Multilayer perceptron, mean (SD)

0.17 (0.08)0.87 (0.01)0.51 (0.17)Light gradient boosting method, mean (SD)

0.44 (0.10)0.92 (0.08)0.91 (0.11)DEWSe ≥2.9, mean (SD)

0.44 (0.10)0.92 (0.02)0.91 (0.11)DEWS ≥3, mean (SD)

0.37 (0.09)0.92 (0.03)0.85 (0.10)DEWS ≥7.1, mean (SD)

0.35 (0.09)0.92 (0.05)0.84 (0.10)DEWS ≥8, mean (SD)

0.29 (0.09)0.92 (0.09)0.83 (0.12)DEWS ≥18.2, mean (SD)

0.18 (0.06)0.92 (0.07)0.69 (0.13)DEWS ≥52.8, mean (SD)

0.94 (0.10)0.92 (0.03)0.98 (0.05)Reverse time attention, mean (SD)

0.80 (0.09)0.80 (0.04)0.99 (0.00)Proposed method, mean (SD)

0.89 (0.06)0.77 (0.05)0.99 (0.00)Proposed method with feature screening, mean (SD)

aLOPO: leave-one-patient-out.
bMIMIC: Medical Information Mart for Intensive Care.
cThe ↑ symbol indicates that a higher value for the evaluation metric corresponds to a more meaningful or effective model.
dThe ↓ symbol indicates that a lower value for the evaluation metric corresponds to more meaningful or effective model performance.
eDEWS: Deep Learning–Based Early Warning Score.
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Table 4. Comparison of LOPOa cross-validation performance using eICU-CRDb.

Sensitivity (↑)False alarm rate (↓d)Event recall (↑c)Model

0.68 (0.12)0.51 (0.16)0.99 (0.02)National Early Warning Score ≥5, mean (SD)

0.70 (0.24)0.44 (0.19)0.70 (0.21)Simplified Acute Physiology Score-II ≥32, mean (SD)

0.86 (0.20)0.48 (0.14)0.99 (0.02)Logistic regression, mean (SD)

0.02 (0.01)0.43 (0.27)0.19 (0.08)k-Nearest neighbors, mean (SD)

0.08 (0.02)0.49 (0.14)0.54 (0.11)Multilayer perceptron, mean (SD)

0.67 (0.05)0.42 (0.14)0.94 (0.05)Light gradient boosting method, mean (SD)

0.63 (0.09)0.56 (0.18)0.98 (0.03)DEWSe ≥2.9, mean (SD)

0.63 (0.09)0.56 (0.18)0.98 (0.03)DEWS ≥3, mean (SD)

0.55 (0.09)0.55 (0.18)0.96 (0.04)DEWS ≥7.1, mean (SD)

0.54 (0.09)0.55 (0.18)0.96 (0.04)DEWS ≥8, mean (SD)

0.45 (0.08)0.55 (0.18)0.92 (0.06)DEWS ≥18.2, mean (SD)

0.29 (0.06)0.55 (0.18)0.86 (0.09)DEWS ≥52.8, mean (SD)

0.99 (0.01)0.50 (0.14)0.99 (0.00)Reverse time attention, mean (SD)

0.99 (0.01)0.45 (0.14)0.99 (0.01)Proposed method, mean (SD)

0.99 (0.01)0.36 (0.16)0.99 (0.00)Proposed method with feature screening, mean (SD)

aLOPO: leave-one-patient-out.
beICU-CRD: eICU-Collaborative Research Database.
cThe ↑ symbol indicates that a higher value for the evaluation metric corresponds to a more meaningful or effective model.
dThe ↓ symbol indicates that a lower value for the evaluation metric corresponds to more meaningful or effective model performance.
eDEWS: Deep Learning–Based Early Warning Score.

Subgroup Analysis
We evaluated the performance of the comparison models and
the proposed framework across different ICU types, including
general and cardiac ICUs. Most ICU types showed similar
performance, except for patients in the cardiac ICU within the
eICU-CRD data set. As shown in Figure 4, the proposed method
demonstrated statistically higher performance compared with

the comparative models across all ICU types in both MIMIC-IV
and eICU-CRD data sets. The comparisons by ICU type are as

follows: general ICU in MIMIC-IV (χ2
8=29.67), cardiac ICU

in MIMIC-IV (χ2
8=44.22), and cardiac ICU in eICU-CRD

(χ2
8=45.07). Detailed statistical comparison results are presented

in Multimedia Appendices 12-14.
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Figure 4. Model performance in difference patient cohorts from MIMIC-IV and eICU-CRD. (A) AUROC on ICU types of MIMIC-IV. (B) AUROC
on ICU types of eICU-CRD. Boxes in the box plot show IQR and the cross marks are outliers with values that lie outside the minimum and maximum
ranges of the whiskers, where minimum = Q1 - 1.5 × IQR and maximum = Q3 + 1.5 × IQR. * Statistically significant (P<.05). AUROC: area under the
receiver operating characteristic curve; DEWS: Deep Learning–Based Early Warning Score; eICU-CRD: eICU-Collaborative Research Database; ICU:
intensive care unit; KNN: k-nearest neighbors; LGBM: light gradient boosting method; LR: logistic regression; MIMIC: Medical Information Mart for
Intensive Care; MLP: Multilayer perceptron; NEWS: National Early Warning Score; Q1: first quartile; Q3: third quartile; RETAIN: reverse time
attention; SAPS: Simplified Acute Physiology Score.

External Validation
We conducted cross-data set external validation to assess the
generalization ability of the proposed method and comparison
models. After training on the MIMIC-IV data set, we evaluated
the clinical validity of predicting CA within 24 hours using the
eICU-CRD data set as the test set. Figure 5 and Table 5 present
the external validation results for conventional systems
(including NEWS, SOFA, and SAPS-II), machine
learning–based comparison methods, and deep learning–based

scoring systems. The proposed method achieved higher
AUROC, event recall, and a lower false alarm rate compared
with the comparison methods.

Conversely, we tested the proposed framework by evaluating
a cohort from a general hospital setting (eICU-CRD) and a
cohort with heart disease (MIMIC-IV). The results showed that
the proposed framework achieved superior performance in
AUROC, false alarm rate, and sensitivity, as detailed in Table
6.

Figure 5. Cross–data set external validation AUROC performance. (A) eICU after training MIMIC-IV. (B) MIMIC-IV after training eICU-CRD.
AUROC: area under the receiver operating characteristic curve; DEWS: Deep Learning–Based Early Warning Score; eICU-CRD: eICU-Collaborative
Research Database; KNN: k-nearest neighbors; LGBM: light gradient boosting method; LR: logistic regression; MIMIC: Medical Information Mart
for Intensive Care; MLP: multilayer perceptron; NEWS: National Early Warning Score; RETAIN: reverse time attention.
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Table 5. Cross-data set external validation performance using eICU-CRDa after training MIMIC-IVb.

Brier score (95% CI)Sensitivity (↑) (95% CI)False alarm rate (↓d)
(95% CI)

Event recall (↑c) (95%
CI)

Model

0.18 (0.18-0.18)0.20 (0.20-0.20)0.93 (0.93-0.93)0.64 (0.64-0.64)National Early Warning Score ≥5

0.23 (0.22-0.23)0.25 (0.25-0.26)0.94 (0.94-0.94)0.74 (0.74-0.75)Logistic regression

0.05 (0.05-0.05)0.00 (0.00-0.00)0.89 (0.89-0.90)0.02 (0.02-0.02)k-Nearest neighbors

0.06 (0.06-0.06)0.01 (0.01-0.01)0.93 (0.93-0.93)0.08 (0.08-0.09)Multilayer perceptron

0.06 (0.06-0.06)0.03 (0.03-0.03)0.92 (0.91-0.92)0.14 (0.14-0.14)Light gradient boosting method

0.09 (0.08-0.09)0.32 (0.32-0.32)0.97 (0.97-0.97)0.84 (0.84-0.84)DEWSe ≥2.9

0.09 (0.08-0.09)0.32 (0.31-0.32)0.97 (0.97-0.97)0.84 (0.84-0.84)DEWS ≥3

0.09 (0.08-0.09)0.25 (0.25-0.25)0.97 (0.97-0.97)0.78 (0.78-0.79)DEWS ≥7.1

0.09 (0.08-0.09)0.24 (0.24-0.24)0.97 (0.97-0.97)0.77 (0.77-0.77)DEWS ≥8

0.08 (0.08-0.09)0.17 (0.17-0.17)0.97 (0.97-0.97)0.69 (0.68-0.69)DEWS ≥18.2

0.08 (0.08-0.09)0.09 (0.09-0.10)0.97 (0.97-0.97)0.54 (0.54-0.54)DEWS ≥52.8

0.40 (0.40-0.40)0.98 (0.98-0.98)0.95 (0.95-0.95)0.94 (0.97-0.98)Reverse time attention

0.30 (0.30-0.30)0.99 (0.99-0100)0.91 (0.90-0.91)0.98 (0.98-0.99)Proposed method

aeICU-CRD: eICU-Collaborative Research Database.
bMIMIC: Medical Information Mart for Intensive Care.
cThe ↑ symbol indicates that a higher value for the evaluation metric corresponds to a more meaningful or effective model.
dThe ↓ symbol indicates that a lower value for the evaluation metric corresponds to more meaningful or effective model performance.
eDEWS: Deep Learning–Based Early Warning Score.

Table 6. Cross-data set external validation performance using MIMIC-IVa after training eICU-CRDb.

Brier score (95%
CI)

Sensitivity (↑) (95%
CI)

False alarm rate (↓d)
(95% CI)

Event recall (↑c) (95%
CI)

Model

0.75 (0.75-0.75)0.84 (0.84-0.84)0.98 (0.98-0.98)0.99 (0.98-0.99)National Early Warning Score ≥5

0.91 (0.91-0.91)0.95 (0.95-0.95)0.98 (0.98-0.98)0.99 (0.98-0.99)Logistic regression

0.04 (0.04-0.04)0.01 (0.01-0.01)0.98 (0.98-0.98)0.20 (0.19-0.20)k-Nearest neighbors

0.08 (0.08-0.08)0.10 (0.09-0.10)0.98 (0.98-0.98)0.69 (0.68-0.69)Multilayer perceptron

0.40 (0.40-0.40)0.58 (0.57-0.58)0.98 (0.98-0.98)0.86 (0.86-0.86)Light gradient boosting method

0.25 (0.25-0.25)0.60 (0.60-0.60)0.98 (0.98-0.98)0.95 (0.94-0.95)DEWSe ≥2.9

0.25 (0.25-0.25)0.60 (0.60-0.60)0.98 (0.98-0.98)0.95 (0.95-0.95)DEWS ≥3

0.25 (0.25-0.25)0.54 (0.54-0.54)0.98 (0.98-0.98)0.92 (0.92-0.93)DEWS ≥7.1

0.25 (0.25-0.25)0.52 (0.52-0.53)0.98 (0.98-0.98)0.92 (0.92-0.92)DEWS ≥8

0.25 (0.25-0.25)0.45 (0.45-0.45)0.98 (0.98-0.98)0.91 (0.91-0.91)DEWS ≥18.2

0.25 (0.25-0.25)0.29 (0.29-0.29)0.98 (0.98-0.98)0.83 (0.83-0.83)DEWS ≥52.8

0.76 (0.76-0.76)0.99 (0.98-0.99)0.98 (0.98-0.98)0.99 (0.98-0.99)Reverse time attention

0.31 (0.31-0.31)0.99 (0.98-0.99)0.50 (0.50-0.50)0.99 (0.98-0.99)Proposed method

aMIMIC: Medical Information Mart for Intensive Care.
beICU-CRD: eICU-Collaborative Research Database.
cThe ↑ symbol indicates that a higher value for the evaluation metric corresponds to a more meaningful or effective model.
dThe ↓ symbol indicates that a lower value for the evaluation metric corresponds to more meaningful or effective model performance.
eDEWS: Deep Learning–Based Early Warning Score.
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Clinical Interpretability
We utilized local and global interpretability information from
TabNet to assess the impact of each feature on the proposed
model’s output. Positive importance values indicated features
that increased prediction scores, while negative values indicated
features that decreased prediction scores. Figure 6 displays the
top 25 features of the proposed model.

Specifically, the features EWS_SpO2_1_6 h_Min (P<.001),
Temp_2 h (P<.001), and HR_5_8 h_Skewness (P<.001) had
relatively significant impacts on the performance of the proposed
method, as shown in Figure 6A. Additionally, most of the top
25 influential features were based on vital signs and
multiresolution statistical features. Of these, 20 (all features
except DBP_9_12h_Skewness, EWS_HR_8h, and
EWS_SBP_9_12h_Max: P<.001; DBP_9_12h_Skewness:

P=.02; EWS_HR_8h: P=.03; and EWS_SBP_9_12h_Max:
P=.01) out of the 25 global interpretability features showed
statistically significant differences between the non-CA and CA
groups, as determined by an independent t test with FDR
correction, detailed in Multimedia Appendix 15. In the
multiresolution statistical features based on the sliding window,
temperature (all P<.001), EWS-SpO2 (all P<.001), EWS-RR
(all P<.001), EWS-total (EWS_9_12 h_max: P<.001),
EWS-SBP (all P<.001), HR (all P<.001), TEMP (all P<.001),
SpO2 (SpO2_5_8 h_Min: P<.001), and DBP (P=.02) had
statistically significant effects on the proposed model, as shown
in Figure 6C [47]. Additionally, the Gini index–based function,
calculated over a 12-hour window for SpO2, emerged as the
most important indicator for both the non-CA and CA groups,
as shown in Figure 6D [48].
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Figure 6. Feature inspection on MIMIC-IV. (A) Global feature impact values produced by the proposed method. (B) Vital sign–based feature set
between the non-CA and CA groups. (C) Multiresolution feature set between the non-CA and CA groups. (D) Gini index–based feature set between
the non-CA and CA groups. CA: cardiac arrest; DBP: diastolic blood pressure; EWS: Early warning score; HR: heart rate; Max: maximum; Min:
minimum; MIMIC: Medical Information Mart for Intensive Care; MR: medical record; RR: respiratory rate; SBP: systolic blood pressure; SpO2:
oxyhemoglobin saturation; TEMP: temperature.

Computational Cost Analysis
We analyzed the computational complexity and time required
for model training and prediction of both the comparison models
and the proposed framework to assess their applicability in
real-time critical care settings. Computational complexity

measures the amount of computing resources consumed by an
algorithm [49] and can be expressed in terms of both time and
space. In essence, computational complexity measures how
quickly or slowly an algorithm performs relative to a given
input size. It is specified in terms of time complexity and space
complexity. Time complexity refers to the amount of
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computational time an algorithm requires, while space
complexity describes the amount of additional memory needed
to execute the algorithm. Both types of complexity are expressed
relative to a specific input size, which includes factors such as
the number of training examples, the number of features, the
depth and number of trees, and the length and dimension of the
input.

Table 7 illustrates the computational complexity of both the
comparative models and the proposed framework, categorized
by time and space complexity. Additionally, the table depicts
the actual training time and the time required to generate results
with the trained model, expressed as training and inference time,

respectively. As a result, the proposed method required 31.82
and 60.51 seconds of training time per epoch on the MIMIC-IV
and eICU-CRD data sets, respectively. Additionally, the
prediction time for the proposed method was 0.25 and 0.54
seconds on the MIMIC-IV and eICU-CRD data sets,
respectively. In comparison, LGBM demonstrated the shortest
training time and fastest prediction time, making it the most
lightweight algorithm. The proposed method required the least
training and prediction time among the deep learning–based
methods. Although the training time was longer than that of
LGBM, the prediction time was not significantly different from
that of LGBM (MIMIC-IV: P=.11, eICU-CRD: P=.08).

Table 7. Comparisons of computational complexity and actual training and inference time.

eICU-CRDbMIMIC-IVaComputational complexityMethod

Inference
time (sec-
onds)

Time per
training (sec-
onds)

Inference
time (sec-
onds)

Time per
training (sec-
onds)

SpaceTime

——————cNational Early Warning Score

——————Simplified Acute Physiology Score-II

0.0352.620.0227.69O(f)O(ndfe)Logistic regression

136.240.0833.180.04O(nf)O[fnlog(n)]k-Nearest neighbors

6.485061.212.51624.98—O(nfl2oi)Multilayer perceptron

0.097.170.064.94O[nlog(n)]O[nlog(n)]kfLight gradient boosting method

1.332907.940.871384.37O(ND2)O(NgD2h)Deep Learning–Based Early Warning Score

0.102906.910.061497.30O(ND2)O(ND2)Reverse time attention

0.5460.510.2531.82O(ND2)O(ND2)Proposed method

aMIMIC: Medical Information Mart for Intensive Care.
beICU-CRD: eICU-Collaborative Research Database.
cNot available.
dn: number of training examples.
ef: number of features.
fk: number of trees.
gN: the length of the input.
hD: the dimension of the input.

Discussion

Principal Findings
Clinicians can use the proposed model to make consistent
clinical decisions for patients in various ICUs with similar organ
failure types, facilitating efficient management [50]. This study
developed and validated an ensemble-based model capable of
predicting CA events 24 hours in advance, regardless of different
hospitalization settings, patient populations, and ICU subtypes
within each database, as well as across external validations.
Therefore, the proposed method can help reduce the number of
CA events and ICU deaths without compromising performance
due to heterogeneity. Additionally, it lowers the false alarm rate
compared with existing methods, providing clinicians with more
reliable CA event alarms and better preparedness in hospitals.

For CA prediction across different patient populations, the
proposed method, utilizing 3 types of features, demonstrated
statistically superior performance in AUROC, sensitivity, false
alarm rate, and event recall compared with the comparison
models. The proposed method achieved significant performance
improvements in predicting CA events for the entire ICU patient
group (AUROC: P<.001; sensitivity: P<.001; and event recall:
P<.001) and showed even greater statistical differences in
high-risk patients with CA (AUROC: P<.001; sensitivity:
P<.001; false alarm rate: P<.001; and event recall: P<.001).
Therefore, the proposed method is crucial for predicting
significant CA events in both the high-risk CA group and the
entire ICU population.

We evaluated the performance of both the comparison models
and the proposed framework across different ICU types,
including general and cardiac ICUs. We found similar
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performance levels across most ICU types, except for patients
in the cardiac ICU of the eICU-CRD.

For the MIMIC-IV data set, which includes patients with
cardiac-related diseases in the ICU, the class distribution rate
between the CA and non-CA groups is 3.2% (24/738; CA group,
n=24 and non-CA group, n=738) in the general ICU. In the
cardiac ICU, the ratio is 5.8% (43/741; CA group, n=43 and
non-CA group, n=741), which is slightly higher than in the
general ICU. The AUROC performance improved in all cases
except for LGBM in the cardiac ICU, where the distribution
trend increased, although LGBM’s performance was similar
between the general and cardiac ICUs. Overall, the AUROC
performance for each ICU type, including both general and
cardiac ICUs, was consistent with the performance observed
across all patients. The AUROC performance of NEWS and
SAPS-II in the cardiac ICU improved by 0.02 and 0.10,
respectively, compared with their performance in the general
ICU. This finding aligns with the analysis results in MIMIC-IV,
which indicated that vital sign–based features had a strong
influence on performance, as mentioned in the results of the
analysis of the effect of the feature set on performance in
MIMIC-IV.

When analyzing the AUROC for each ICU type in the
eICU-CRD, which includes all hospitalized ICU patients, the
performance patterns differed from those observed in the
MIMIC-IV data set. The class distribution ratio between the
CA and non-CA groups in both the general and cardiac ICUs
in the eICU-CRD is similar to that in MIMIC-IV. Specifically,
in the general ICU of eICU-CRD, the class distribution rate
between the CA and non-CA groups is 2.35% (60/2554; CA
group, n=60 and non-CA group, n=2554). In the cardiac ICU,
the ratio is 5.80% (43/741; CA group, n=43 and non-CA group,
n=741). However, the AUROC performance of NEWS and
SAPS-II decreased by 0.17 and 0.10, respectively. Additionally,
the AUROC performance of the other comparison models
remained similar, despite the increased class ratio of the CA
group in the cardiac ICU of the eICU-CRD.

Strengths
This study has several strengths. First, we assessed the
performance of predicting CA across different patient
populations and hospital settings. Moreover, we evaluated the
predictive performance of CA over the entire hospitalization
period for each patient, rather than relying on event-based
assessments that represent the patient’s CA or normal condition.
Second, we optimized the hyperparameter values of each
machine learning model through iterative grid search.
Hyperparameter tuning has been shown to improve the
performance of these models. We proposed an interpretable and
calibrated ensemble approach using TabNet with different cost
weights for each class to predict CA events within 24 hours.
The proposed feature sets, defined according to the AI
development cycle, and TabNet demonstrated significantly
higher CA prediction accuracy compared with the baseline
models (all P<.001). Therefore, clinicians would have sufficient
time to respond to CA events when using the proposed model.
Third, we examined the extent to which bias in the data

influenced our framework. Ultimately, our proposed framework
outperformed all comparative models when trained and tested
on these diverse populations. This demonstrates that the
framework has strong generalization capabilities and is not
overly affected by the confounding effects of specific group
characteristics in the learning data.

We analyzed the computational complexity and time required
for model training and prediction to determine whether the
comparative models and the proposed framework could be
applied in real-time within the critical care field. Although the
training time for the proposed method was longer than that for
LGBM, the prediction time was comparable. Therefore, the
proposed method can deliver prediction results without delay
in response time, making it suitable for clinical use in critical
care settings and integration into existing systems.

Limitations
This study has several limitations. Although the proposed model
demonstrated superior performance in external validation,
further validation using independent data sets is necessary.
Additionally, the ensemble approach based on TabNet was
developed without feature screening. However, as the
high-performance results indicate, this did not greatly impact
the model’s effectiveness. Although the proposed method
demonstrated higher precision, sensitivity, specificity, AUROC,
and a lower false alarm rate, the false alarm rate remains high,
which is a limitation of our study. Further research is needed
to develop feature-generation methods and models that can
further reduce the false alarm rate. In the future, the proposed
model could be optimized to include feature screening.
Nevertheless, as discussed, the prediction model in this study
shows strong potential for clinical application in CDSSs and
early interventions. Accessibility and user experience can be
enhanced by implementing a user-centered CDSS or web-based
application according to the proposed model. Lastly, although
we extensively validated the framework on various data sets
and subgroups through retrospective analysis, achieving clinical
maturity will require real-time prospective studies. Therefore,
further research is necessary to ensure clinical maturity through
prospective clinical studies in critical care environments.

Conclusions
In this study, we evaluated the performance of an interpretable
AI alert model across different ICU populations in a simulated
real-time clinical setting. As these results were tested in
real-time clinical scenarios based on various databases for each
patient group, we anticipate that similar outcomes will be
observed in actual clinical trials. Consequently, the test results
are expected to be valuable and applicable in real clinical
settings. We then used the interpretable information from the
proposed method to describe both global and time-specific
relevance. This clinical descriptive information aids clinicians
in decision-making by highlighting the associations between
predicted outcomes and patient characteristics. Consequently,
our CA prediction system is considered to have achieved clinical
validity and is now being used and validated for routine clinical
applications.
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