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Abstract

Background: Digital and mobile health interventions using personalization via reinforcement learning algorithms have the
potential to reach large number of people to support physical activity and help manage diabetes and depression in daily life.

Objective: The Diabetes and Mental Health Adaptive Notification and Tracking Evaluation (DIAMANTE) study tested whether
a digital physical activity intervention using personalized text messaging via reinforcement learning algorithms could increase
step counts in a diverse, multilingual sample of people with diabetes and depression symptoms.

Methods: From January 2020 to June 2022, participants were recruited from 4 San Francisco, California–based public primary
care clinics and through web-based platforms to participate in the 24-week randomized controlled trial. Eligibility criteria included
English or Spanish language preference and a documented diagnosis of diabetes and elevated depression symptoms. The trial
had 3 arms: a Control group receiving a weekly mood monitoring message, a Random messaging group receiving randomly
selected feedback and motivational text messages daily, and an Adaptive messaging group receiving text messages selected by
a reinforcement learning algorithm daily. Randomization was performed with a 1:1:1 allocation. The primary outcome, changes
in daily step counts, was passively collected via a mobile app. The primary analysis assessed changes in daily step count using
a linear mixed-effects model. An a priori subanalysis compared the primary step count outcome within recruitment samples.

Results: In total, 168 participants were analyzed, including those with 24% (40/168) Spanish language preference and 37.5%
(63/168) from clinic-based recruitment. The results of the linear mixed-effects model indicated that participants in the Adaptive
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arm cumulatively gained an average of 3.6 steps each day (95% CI 2.45-4.78; P<.001) over the 24-week intervention (average
of 608 total steps), whereas both the Control and Random arm participants had significantly decreased rates of change.
Postintervention estimates suggest that participants in the Adaptive messaging arm showed a significant step count increase of
19% (606/3197; P<.001), in contrast to 1.6% (59/3698) and 3.9% (136/3480) step count increase in the Random and Control
arms, respectively. Intervention effectiveness differences were observed between participants recruited from the San Francisco
clinics and those recruited via web-based platforms, with the significant step count trend persisting across both samples for
participants in the Adaptive group.

Conclusions: Our study supports the use of reinforcement learning algorithms for personalizing text messaging interventions
to increase physical activity in a diverse sample of people with diabetes and depression. It is the first to test this approach in a
large, diverse, and multilingual sample.

Trial Registration: ClinicalTrials.gov NCT03490253; https://clinicaltrials.gov/study/NCT03490253

International Registered Report Identifier (IRRID): RR2-10.1136/bmjopen-2019-034723

(J Med Internet Res 2024;26:e60834) doi: 10.2196/60834
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Introduction

Noncommunicable diseases such as type 2 diabetes and
depression are significant public health problems individually
and interact to worsen outcomes for each other [1]. Depression
is associated with unhealthy behaviors such as physical
inactivity and poor dietary habits, which are also risk factors
for the development of type 2 diabetes [2]. The psychosocial
burden of living with a chronic illness such as diabetes can
contribute to the development and worsening of
depression—leading to a cycle of multiplicative negative health
effects. Diabetes and depression exhibit racial and
socioeconomic disparities stemming from known barriers from
the individual to the structural levels, such as the stressors due
to discrimination and poverty, difficulty in accessing care related
to language barriers, competing health demands, and beyond
[3,4].

Physical activity is a core intervention for both type 2 diabetes
and depression, as both are associated with low physical activity
levels [5,6]. Increased physical activity has positive effects on
both conditions, including improved glycemic control in diabetes
and reduced symptoms of depression [7]. Behavioral activation
interventions that incorporate physical activity as a core element
are among the most effective for treating depression, relative
to other behavioral and psychological approaches [8,9].
Targeting physical activity is thus an efficient method of
improving outcomes in both diabetes and depression.

Digital and mobile health interventions have the potential to
reach a large number of people to support physical activity and
help manage diabetes and depression in daily life, with a large
research base using digital technology to improve and
personalize health behavior programs [10,11]. Machine learning
algorithms can help personalize and optimize interventions by
tailoring them to the individual’s specific needs, preferences,
and capabilities. Reinforcement learning algorithms, in
particular, have the potential to create adaptive and dynamic
interventions focused on a goal or reward that can adjust based
on an individual’s responses and behaviors [12]. In previous

work these algorithms increased physical activity among patients
with diabetes [13]. However, novel data science methods such
as personalization via reinforcement learning algorithms
typically do not include data from marginalized populations (ie,
ethnic and racialized minoritized populations and those from
low-income backgrounds) [14]. It is crucial that digital platforms
and newer algorithms are built with diverse populations to
increase their generalizability and effectiveness, particularly to
make an impact on entrenched health inequities.

The Diabetes and Mental Health Adaptive Notification Tracking
and Evaluation (DIAMANTE) study aimed to address these
gaps by developing and evaluating a reinforcement
learning-based digital health app co-designed with English- and
Spanish-speaking adults with comorbid diabetes and depression
symptoms. The app used reinforcement learning algorithms to
tailor daily text messages based on feedback type, motivation
type, and message timing. The algorithm training data included
demographic (eg, age), clinical data (eg, baseline depression
scores), and contextual data (eg, timing and category of
messages previously sent) [15]. Here, we present the efficacy
of the DIAMANTE intervention, in a 3-arm randomized trial,
on daily step count outcomes.

Methods

Study Design
We conducted a randomized controlled trial (RCT) with 3 arms
from January 2020 to June 2022. We used the Standard Protocol
Items: Recommendations for Interventional Trials checklist for
reporting our findings [16]. A study protocol and a correction
to the protocol outlining changes in recruitment approach were
published in 2020 and 2023, respectively [15,17].

Participants
RCT recruitment occurred on 2 tracks. Clinic-based patient
recruitment at the San Francisco Health Network (SFHN, the
public health care delivery system for the city and county of
San Francisco, California) was our first method of enrolling
study participants. These clinic-based strategies were
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significantly impacted by the COVID-19 pandemic. Prior to
March 2020 and after California’s reopening in June 2021,
patients were recruited by direct provider referrals, with
in-person clinic recruitment timed to eligible patient visits. To
identify potentially in-person eligible patients, we asked for
permission from known providers to access patient lists and
then reviewed and identified patients with documented electronic
health records diagnosis of diabetes and elevated depression
symptoms (depression diagnosis or Patient Health Questionnaire
(PHQ-8) score of 5 or higher in the past 5-year period) and
whether they were adults aged 18 years or older. Eligible
patients were required to use text messaging and own a
smartphone in order to download the pedometer app into their
phone. Patients were excluded if they were unable to walk or
were pregnant at the time of the study. Researchers then
contacted patients directly (via in-person visits and via phone
calls) to determine interest in joining the DIAMANTE study
and review study eligibility criteria. Interested individuals were
invited for a study visit that included obtaining informed consent
and completing a baseline survey. All patients were offered
assistance in downloading the DIAMANTE app onto their phone
and sent test text messages back to our system. The researcher
established a baseline plan for physical activity goals with the
patient (ie, average 4000 steps daily) and instructed patients to
have the app open at all times. To replicate real-world conditions
and increase generalizability, participants were not provided
with any instructions about how much, when, or where in their
body to carry their phones. All participants were invited back
at 24-weeks to complete a follow-up survey when the active
intervention period ended.

We added a second web-based recruitment strategy during the
COVID-19 pandemic, given that in-clinic recruitment was not
possible for many months during the active enrollment period
for our RCT. Specifically, between March 2020 and October
2021, we recruited through social media advertisements via
advertisements posted on Facebook, Google Ads, and Craigslist.
Potential participants completed a screening survey to assess
eligibility (ie, self-reported diabetes diagnosis and PHQ-8). In
addition to the exclusion criteria, if participants were unable to
walk or currently pregnant, we also excluded those who did not
have an eligible phone number, were outside of the United
States, or those who failed the CAPTCHA requirements to
verify their identity on the web. Web-based participants were
enrolled remotely, offering Zoom (Zoom Video
Communications, Inc) meeting and phone assistance to complete
all enrollment procedures (eg, onboarding, downloading the
app, and setting a step count goal) as needed. All informed
consent and survey data collection matched our in-clinic
recruitment procedures.

Ethical Considerations
The study was approved by the University of California San
Francisco (UCSF) institutional review board (17-22608). The
project coordinator and research assistants were responsible for
managing patient data collection. Self-reported participant data
were stored on REDCap (Research Electronic Data Capture;
Vanderbilt University), surveys were stored on UCSF Qualtrics,
and daily step count and text messaging data were stored on the
HealthySMS platform [18]. To maintain patient privacy and

confidentiality only institutional review board–approved
research staff had access to the data collection platforms. Data
were downloaded from their respective servers and stored in a
secure UCSF Box Folder. All participants gave written or
electronic informed consent in the language of their choice,
English or Spanish, prior to participating in the study. Patients
received a compensation of US $40 in cash for participating in
the baseline questionnaire and an additional US $70 in cash for
the 24-week follow-up questionnaire.

Randomization
Randomization was performed with block randomization (block
size 3) and a 1:1:1 allocation into arms (adaptive messaging,
random messaging, and app only), stratified by patient language
preference (English vs Spanish). Upon sign-up, participants
were automatically randomized via a randomization table in the
HealthySMS system (developed by author CK) into one of the
study conditions after they were onboarded into the study,
thereby ensuring allocation concealment. Patients were informed
of the nature of the app and frequency of the messages they
would be receiving. The necessity of these steps made it
unfeasible to fully blind participants or research staff; however,
the final data analyses were completely blinded.

Procedures
In brief, the DIAMANTE study compared the effectiveness of
different text messaging strategies on physical activity
(measured by step counts on participants’ smartphones) over
an active 24-weeks intervention period. We created a custom
mobile phone app titled “DIAMANTE” developed by Audacious
Software for this study. This application passively tracks step
counts by pooling from Google Fit, Apple HealthKit, or the
built-in pedometer on patients’ phones. We used a text
messaging platform HealthySMS, previously developed by Dr
Aguilera and Audacious Software, to integrate with the
DIAMANTE app and send text messages by intervention arm.
The DIAMANTE app only needed to be installed once and then
remain open consistently. The app was designed in English and
Spanish versions and was freely available as a download from
the Apple App Store and Android Google Play App.

Figure 1 shows the different intervention groups during the trial
period. The three comparator arms were (1) Control arm, who
received only 1 weekly message inquiring about their mood
over the past week, (2) Random messaging arm, who received
daily randomly selected messages (1 feedback message on their
step count [eg, “You walked 4000 steps yesterday”] and 1
motivational message about their health [eg, “Going for a walk
can improve your mood and clear your mind]) from a preexisting
bank of messages, and (3) Adaptive messaging arm, who
received daily messages from the same feedback and
motivational messaging banks, with message categories and
times selected by a reinforcement learning algorithm. The
Random and Adaptive arms also received the weekly mood
message. In summary, the feedback messages were selected
from 5 message types (step number, step number plus
encouragement or reinforcement, relative [walked more or less
relative to goal], relative [achieved or did not achieve goal], or
no message), and motivation messages could be from 4
categories of messages based on the COM-B (capability,
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opportunity, motivation, and behavior) model (each with 18
message options in these categories, or a “no message” option).
Messages were generated from behavioral science theoretical
domains and final messages were selected based on

user-centered design methods [19]; examples are shown in Table
1. Moreover, patients and end users provided feedback on the
text messages, mobile app interface, and study protocols during
user-centered design phases of the study [20].

Figure 1. Diabetes and Mental Health Adaptive Notification Tracking and Evaluation (DIAMANTE) CONSORT (Consolidated Standards of Reporting
Trials) diagram.
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Table 1. Feedback and motivational messages and algorithm message choices.

P valueAdaptive
(n=53), %

Random
(n=51), %

Examples

A: Feedback messages

<.0016.019.50. No feedback message

.3520.819.9“Yesterday, you did not reach your goal”1. Reaching goal

<.00128.120.5“Yesterday, you walked 3824 steps”2. Steps walked yesterday

<.00125.619.7“Yesterday, you walked more than your
goal”

3. Walked more/less today than yesterday

.5419.520.4“You walked 8000 steps yesterday. Great
job!”

4. Steps walked yesterday, plus a positive/nega-
tive motivational message

B: Motivational messages

<.0019.324.3—a0. No message

<.00137.224.8“Doing more physical activity can help
reduce feelings of fatigue”

1. Capability, describes the physical and psycho-
logical benefits of walking and exercise

<.00119.325.6“You have made changes to improve your
health before, you can do it again”

2. Motivation, meant to increase self-confidence
and the belief that one is capable of walking even
in the face of challenges

<.00134.225.2“It there a local park you have been wait-
ing to visit? Use it as an opportunity to get
out of the house and do more steps!”

3. Opportunity, physical and social environment
cues that make it more likely to engage in
walking

aNot applicable.

We developed the reinforcement learning algorithm (a type of
machine learning) based on previous work [15]. The
reinforcement learning algorithm had a “cold-start” beginning
with a randomly selected message for each patient and used
ongoing participant data for personalizing (1) the feedback
message category selection, (2) the motivational message
category selection, and (3) the timing of the message delivery
daily (into 4 time periods from 8 AM to 8 PM)—upweighting
messages and times that had a higher probability of increasing
steps. As described previously, we used reinforcement learning
algorithms for contextual multiarmed bandit problems [21], as
these can maximize cumulative rewards in sequential decision
tasks (as here, which sequences of messages optimally promote
the highest step count in the upcoming day). We also used
Thompson Sampling, a Bayesian method that can handle small
amounts of data [22], which allowed the algorithm to
continuously learn which feedback and motivational messages
were effective for a user, based on contextual features like their
previous step counts and which messages were sent previously,
as well as participant data such as demographic and clinical
characteristics (such as age, gender, and depressive symptoms
scores collected at baseline). In summary, each morning within
the adaptive intervention arm, the algorithms evaluated which
categories of feedback and motivational messages would likely
increase the step count for each participant in the upcoming day
and at which time period the messages should be delivered to
increase step count. The rates of algorithm message choices are
shown in Table 1.

Researchers monitored the incoming step data to ensure that
the system was collecting data to inform the algorithm and
adaptive messages. Patients in all groups received reminders to
open the app if no data were being transmitted from the

DIAMANTE app to the HealthySMS system. An automated
algorithm within HealthySMS triggered daily text messages to
participants if the system did not receive step count data from
the DIAMANTE app. The research team contacted the patients
by phone for troubleshooting and to remind them to keep the
app open in the background if patients’ phones were not
transmitting data for more than 3 days (after the automated SMS
reminders). In addition, patients in all groups could reply
“STOP” or “PARAR” if they wished to stop receiving messages.

Outcomes
Our primary outcome for the RCT, total change in daily step
counts, was passively collected by a mobile phone application
during the time that patients remain in the intervention (using
Apple Healthkit, Google Fit, and pedometer data from
participants’ phones). We anticipated some variability between
methods of data collection but considered this to be a trade-off
for greater generalizability and broader implementation. As
specified in our Protocol paper [15], the a priori sample size
was 276 patients to account for the 3 intervention arms and with
80% power and up to 15% (41/276) participant dropout.
Similarly, prior to analysis, participants were required to have
at least 28 days of step count data during the intervention in
order to be included in the primary analysis, given that the
algorithm needed sufficient step count data to be able to
personalize content for each participant. Data quality was
evaluated for all participants upon study exit (blinded by study
arm), with removal of 3 participants with less than 28 days of
step count data, 6 participants with no step count data, and 5
participants whose data signaled a major discrepancy (>25%
of available daily step counts greater than 20,000 steps), as this
may have indicated a flaw in the DIAMANTE app step count
data extraction.
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Statistical Analysis
First, we reported on the overall demographics of the full sample
and by intervention arm and overall step counts within the
sample. Our per protocol primary analysis included all
participants who had at least 28 days of steep count data and
used longitudinal regression to determine the impact of the
treatment arms on the change in step count for each participant.
We analyzed changes in daily step count using a linear
mixed-effects model (LMM) with an intervention variable
(Adaptive arm as reference group, Control arm, and Random
arm) and a time variable (day, Control × day, Random × day)
as fixed effects and a random intercept for each participant. We
plotted the raw step count data and the residuals to examine
their distributions via histograms. As specified in our protocol,
we also completed 1 a priori subanalysis: the impact of the
intervention by recruitment sample (SFHN clinic-based
recruitment vs web-based recruitment). We analyzed descriptive
data in SPSS (version 28; IBM Corp) and the LMM analysis
using the “lme4” package in R.

Results

The research team recruited a total of 195 participants into the
RCT between January 2020 and June 2022. The CONSORT
(Consolidated Standards of Reporting Trials) diagram is shown

in Figure 1. A total of 13 participants were dropped by the
researchers due not installing or immediately deleting the
DIAMANTE app, and another 14 were excluded because of
insufficient (n=9) or incorrect (n=5) step count data. The final
analytical sample included 168 participants, each of them is
observed for 168 days. More than one-third of participants were
recruited from the SFHN (63/168, 37.5%) and the remaining
were recruited via the web (105/168, 62.5%). Baseline
demographic characteristics stratified by the intervention arm
are reported in Table 2. Overall, the sample participants were
middle-aged (mean age 49, SD 12.1 years), predominantly
female (104/168, 62%), and majority were English speakers
(128/168, 76%). The sample was diverse in terms of race or
ethnicity, education, and employment status. Finally, due to
data transmission errors (eg, not having the app open) there was
an average of 20 missing days of step data (SD 32.72) for study
participants, and the average step count within the sample was
3221 steps at baseline and 3783 at follow-up. By arm,
participants in the Control arm had an average of 3701 steps
(SD 3054.53) on day 1 of the intervention and an average of 26
days of missing data (SD 36.91); participants in the Random
arm had an average of 3471 steps on day 1 (SD 3274.78) and
an average of 20 days of missing data (SD 32.54). Finally,
Adaptive arm participants had an average of 2277 steps on day
1 (SD 2250.87) and an average of 14 days of missing data (SD
27.2).
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Table 2. Baseline demographics.

Total (N=168)Adaptive (n=55)Random (n=56)Control (n=57)

49 (12.1)48 (12.1)49 (11.0)51 (13.2)Age (years), mean (SD)

Sex, n (%)

104 (62)31 (56)38 (68)35 (61)Female

61 (36)23 (42)18 (32)20 (35)Male

Language, n (%)

128 (76)42 (76)44 (79)42 (74)English

40 (24)13 (24)12 (21)15 (26)Spanish

Race/ethnicity, n (%)

12 (7)4 (7)4 (7)4 (7)Asian or Pacific Islander

27 (16)7 (13)9 (16)11 (19)Black or African American

50 (30)19 (34)17 (30)14 (25)White or Caucasian

64 (38)22 (40)20 (36)22 (39)Latinx or Hispanic

15 (9)3 (6)6 (11)6 (11)Multiracial/Ethnic

Education, n (%)

29 (17)8 (14)10 (18)11 (19)Some high school or less

24 (14)9 (16)8 (14)7 (12)High school graduate

44 (26)18 (33)17 (30)9 (16)Some college or technical school

55 (33)15 (27)16 (29)24 (42)College graduate

16 (10)5 (9)5 (9)6 (11)Graduate degree

Employment, n (%)

60 (36)22 (40)19 (34)19 (33)Full time (>35 hours/week)

29 (17)5 (9)15 (27)9 (16)Part-time (<35 hours/week)

11 (6)6 (11)3 (5)2 (4)Homemaker

27 (16)10 (18)9 (16)8 (14)Unemployed

27 (16)10 (18)6 (11)11 (19)Disabled/on disability

12 (7)1 (2)4 (7)7 (12)Retired

Depression scores

10.88 (6.42)10.42 (6.0)12.0 (6.67)10.23 (6.54)PHQ-8a, mean (SD)

aPHQ-8: Patient Health Questionnaire-8.

The results of the primary LMM are shown in Table 3. The
results indicate that on average, at the start of the intervention,
participants in the Adaptive group had 3197 steps, the Control
group had 3480 steps, and Random group had 3698 steps. The
random intercept effects were estimated at 5,419,080.25 (SD
2237.39), indicating a large amount of variability in step count
between participants. There were no statistically significant
differences in baseline step count between intervention groups.
For the Adaptive group there was a significant increase of 3.6
steps (P<.001) each day of the 24-week intervention;
cumulatively and estimating for the 168-day time period,

participants in the Adaptive group would have gained an average
of 606 steps indicating a 19% increase in daily step count. The
Control (P=.001) and Random (P<.001) groups had statistically
significantly lower rates of change (albeit positive) in daily step
count relative to Adaptive group. The Control group increased
linearly by 0.81 steps per day for a total of 136 steps or an
increase of 3.9% daily steps from day 1 to day 168 of the
intervention. Finally, the Random group increased linearly by
0.35 steps per day for a total of 59 steps per day indicating an
increase of 1.6% daily steps from day 1 to day 168 of the
intervention (Figure 2).
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Table 3. Linear mixed-effects model daily step count.

P value95% CI upper limit95% CI lower limitEstimateParameter

<.0013825.542568.033196.79Intercept (Adaptive)

.531165.32–598.67283.32Control

.271386.36–384.54500.92Random

<.0014.782.453.61Day 1

.001–1.13–4.47–2.80Control (day 1)

<.001–1.60–4.92–3.26Random (day 1)

Figure 2. Linear trajectory of step count over 168 days of study.

Based on our a priori subanalysis, the LMM results indicated
statistically significant positive rates of change in daily step
count for Adaptive group participants in both the SFHN
subsample (average baseline steps 3278, daily rate of change
6.0 steps [P<.001], 30.6% increase in daily step count post
intervention) and the web-based subsample (average baseline
steps 3156, daily rate of change 2.3 steps (P=.002), 12.2%
increase in daily step count post intervention). These results
were in line with the overall analysis. However, in the SFHN
sample the daily steps rate of change for the Random and
Control groups was statistically significantly different and
negative relative to the Adaptive group. Whereas for the
web-based sample the daily rate of change for both the Random
and Control groups was positive but not statistically significantly
different than that of the Adaptive group.

Discussion

Our study found that applying a reinforcement learning
algorithm for personalizing text messaging interventions is an
effective approach for increasing physical activity in a diverse
sample of people with diabetes and depression. We found that

significant step count increases over 6 months (168 days) in the
adaptive, reinforcement learning intervention arm, as compared
with participants who received randomly selected text message
content (Random messaging arm) or only a weekly mood
self-monitoring message (Control arm). We found that
reinforcement learning algorithms can increase the effectiveness
of a physical activity–based digital health intervention in a
diverse, real-world sample with comorbid diabetes and
depression symptoms. Our findings are particularly significant
because most digital health studies in vulnerable populations
to date have been pilot studies, and the use of machine learning
methods for personalization is rarely applied to low-income and
Spanish-speaking populations. These findings also support
previous studies using a similar reinforcement learning
algorithms [12].

Personalization (particularly those based on content that might
be more meaningful for participants) has been one of the core
challenges for the digital health field. Until now, many digital
health studies show high dropout and low engagement of digital
health interventions, also linked to a lack of personalization
[23]. Here, we show that reinforcement learning holds promise
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for the future of digital health, especially given the rapid recent
advancements in artificial intelligence. Our study importantly
personalized the content using existing health behavior theory
(COM-B), such as motivational content as opportunity cues for
behavior change, which are likely important components for
future machine learning interventions [24]. In this study, it
appears that participants in the Adaptive messaging arm received
messages that were more relevant in content as evidenced by
the varying rates of message selection in the Adaptive arm
versus the Random arm of the intervention. Furthermore, the
real-world implementation of this study demonstrates the
importance of establishing both efficacy and effectiveness of
machine learning interventions [25].

We did find some differences in our primary step count outcome
by recruitment source, with the clinic-based sample receiving
more benefit from the intervention than the web-based
recruitment sample (30% overall step count gain vs 12% overall
step count gain among Adaptive group participants). The
significant clinic-based sample findings are particularly of note,
given that this population is primarily insured via Medicaid and
receiving primary care within a public health care delivery
system, which is reflected in the much higher proportion of
Spanish speakers and individuals with lower educational
attainment who typically do not have access to these types of
interventions. There are various possible explanations for these
differences that should be studied in future work including
reaching a population that has less access to these types of
interventions, better integration into care, or benefiting from
co-design with similar populations.

A key strength of this study is the inclusion of a diverse sample
in terms of race and ethnicity and language, education, and
employment status. As machine learning algorithms continue
to be developed and used in health interventions, it is crucial
that the basis for these algorithmic approaches includes diverse
and real-world samples so that algorithmic biases are minimized
and their findings and potential benefits can be broadly shared.
The results of this RCT provide valuable insights into the
potential of adaptive messaging interventions to increase
physical activity, especially in groups that are typically excluded
from digital health research. If this intervention is widely

disseminated and implemented, it can decrease health inequities
by providing a type of personalized care for communities
historically and presently marginalized.

Our study also highlights the need for further research to
understand how digital health interventions can be tailored to
different populations to maximize their effectiveness. Our future
research will further investigate the parameters that influenced
algorithmic decision-making, regarding the patterns of sending
feedback messages, motivational messages, and timing of
message delivery. It is also important to understand whether
overall categories of messages were more impactful on behavior
change and to understand how the algorithm can be refined to
be more effective in achieving the goal of increasing physical
activity in diverse samples.

Limitations of this study include challenges with data accuracy
from phones. We chose to emphasize replicability in the real
word and thus did not provide users with wearable devices or
standardize the mobile phones that users had to have. This
resulted in variability in data collection and some data collection
errors. Furthermore, in order for these types of interventions to
scale, we must maximize adoption and relevance (eg, use of
devices that users already own) alongside precision (eg, “better”
measurement using new devices).

Another limitation is that we did not specifically assess
engagement with the messages. Similar to other text message
interventions, we do not know whether or when people actually
read messages; we only know when messages were sent. Finally,
due to the unforeseen circumstances from the COVID-19
pandemic, recruitment number for our project was also less than
our goal stated in the RCT protocol; however, our effect size
was still large enough to be detected in the primary analysis.

The DIAMANTE intervention has shown that reinforcement
learning algorithms can be used to improve the personalization
of physical activity interventions in a diverse, multilingual
sample with diabetes and depression symptoms. Moving
forward, artificial intelligence and machine learning
interventions will rapidly expand, and real-world studies
targeting diverse end users are critical, especially when built
upon co-design with end users.
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