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Abstract

Background: Medical texts present significant domain-specific challenges, and manually curating these texts is a time-consuming
and labor-intensive process. To address this, natural language processing (NLP) algorithms have been developed to automate
text processing. In the biomedical field, various toolkits for text processing exist, which have greatly improved the efficiency of
handling unstructured text. However, these existing toolkits tend to emphasize different perspectives, and none of them offer
generation capabilities, leaving a significant gap in the current offerings.

Objective: This study aims to describe the development and preliminary evaluation of Ascle. Ascle is tailored for biomedical
researchers and clinical staff with an easy-to-use, all-in-one solution that requires minimal programming expertise. For the first
time, Ascle provides 4 advanced and challenging generative functions: question-answering, text summarization, text simplification,
and machine translation. In addition, Ascle integrates 12 essential NLP functions, along with query and search capabilities for
clinical databases.

Methods: We fine-tuned 32 domain-specific language models and evaluated them thoroughly on 27 established benchmarks.
In addition, for the question-answering task, we developed a retrieval-augmented generation (RAG) framework for large language

J Med Internet Res 2024 | vol. 26 | e60601 | p. 1https://www.jmir.org/2024/1/e60601
(page number not for citation purposes)

Yang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:ireneli@ds.itc.u-tokyo.ac.jp
http://www.w3.org/Style/XSL
http://www.renderx.com/


models that incorporated a medical knowledge graph with ranking techniques to enhance the reliability of generated answers.
Additionally, we conducted a physician validation to assess the quality of generated content beyond automated metrics.

Results: The fine-tuned models and RAG framework consistently enhanced text generation tasks. For example, the fine-tuned
models improved the machine translation task by 20.27 in terms of BLEU score. In the question-answering task, the RAG
framework raised the ROUGE-L score by 18% over the vanilla models. Physician validation of generated answers showed high
scores for readability (4.95/5) and relevancy (4.43/5), with a lower score for accuracy (3.90/5) and completeness (3.31/5).

Conclusions: This study introduces the development and evaluation of Ascle, a user-friendly NLP toolkit designed for medical
text generation. All code is publicly available through the Ascle GitHub repository. All fine-tuned language models can be
accessed through Hugging Face.

(J Med Internet Res 2024;26:e60601) doi: 10.2196/60601
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Introduction

Medical texts pose considerable challenges due to their
domain-specific nature, including issues such as ambiguities,
frequent abbreviations, and specialized terminology [1,2]. The
manual curation of these texts is both time-consuming and
labor-intensive [2]. Therefore, natural language processing
(NLP) algorithms have been developed to automate text
processing [2-4]. Recent years have seen a notable shift toward
the use of domain-specific pretrained language models,
transitioning from shallow embeddings such as BioWordVec
[5] and BioSentVec [6] to advanced architectures like
Bidirectional Encoder Representations from Transformers
(BERT) [7], such as BioBERT [8], ClinicalBERT [9], and
PubMedBERT [10]. Furthermore, large language models

(LLMs), such as Med-PaLM [11] and Med-Gemini [12], have
demonstrated powerful generative capabilities, possessing
exceptional zero- and few-shot performance. These
domain-specific language models have substantially enhanced
the effectiveness of NLP tasks in the biomedical and clinical
domains [13-15].

Despite the success of these advanced methods, their complexity
remains a significant barrier to practical application for health
care professionals lacking basic programming skills.
Consequently, there is an increasing demand for user-friendly
and accessible toolkits designed to simplify medical text
processing. Multiple toolkits for text processing are available
in the biomedical domain. Table 1 summarizes representative
tools. While there are many other useful tools, here we mainly
limit our comparison with Python-based open-source toolkits.

Table 1. A comparison of Ascle with existing Python-based toolkits.

Query SearchBasic NLPb

Functions

Machine

Translation

Text

Simplification

Text

Summarization

Question-

Answeringa

Toolkits

✓—————cMIMIC-Extract [16]

—✓————ScispaCy [17]

—✓————MedspaCy [18]

—✓————Transformers-sklearn [19]

—✓————Stanza Biomed [20]

✓✓✓✓✓✓Ascle (this study)

aFor the question-answering task, we specifically propose a retrieval-augmented generation framework for large language models that incorporates a
medical knowledge graph with ranking techniques.
bNLP: natural language processing. Basic natural language processing functions include abbreviation extraction, sentence tokenization, word tokenization,
negation detection, hyponym detection, Unified Medical Language System concept extraction, named entity recognition, document clustering,
part-of-speech tagging, entity linking, text summarization (extractive methods), and multiple-choice question-answering. It is worth noting that not
every toolkit includes these 12 basic natural language processing functions, but Ascle includes them all.
cNot applicable.

These existing toolkits tend to emphasize different perspectives,
and none of them offer generation capabilities, leaving a
significant gap in the current offerings. In response, we present
Ascle, a pioneering NLP toolkit for medical text generation,
which, for the first time, includes 4 advanced generative
functions. We fine-tuned 32 domain-specific language models

and evaluated them thoroughly on 27 established benchmarks.
In addition, for the question-answering task, we developed a
retrieval-augmented generation (RAG) framework [21] that
combines a medical knowledge graph (The Unified Medical
Language System [UMLS]) [22] with ranking techniques, aimed
at improving the reliability of long-form answers [15]. We
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uploaded all fine-tuned language models to Hugging Face and
listed 32 fine-tuned language models along with 27 benchmarks
in Multimedia Appendix 1 for a clearer explanation.

In conclusion, Ascle empowers a diverse spectrum of users,
from novices to experienced professionals, enabling them to
effortlessly address their NLP tasks, even with limited technical
expertise in handling textual data. We believe that Ascle not
only democratizes access to cutting-edge methods but also
expedites their integration into health care.

Methods

The Overall Architecture of Ascle
Ascle consists of 3 modules, with the core module being the
“generative functions,” including 4 challenging generation tasks:

question-answering, text summarization, text simplification,
and machine translation, covering a variety of application
scenarios in health care. In addition, Ascle integrates 12 basic
NLP functions, as well as query and search capabilities for
clinical databases. The overall architecture of Ascle is shown
in Figure 1. This section will focus on introducing the core
module of Ascle—Generative Functions. For more information
on basic NLP functions and query and search functions within
Ascle, please refer to Multimedia Appendix 2 and Multimedia
Appendix 3, respectively.

Figure 1. The overall architecture of Ascle. indicates that we have our fine-tuned language models for this task. indicates that we conducted
evaluations for this task. POS: Parts-Of-Speech; QA: Question-Answering; UMLS: Unified Medical Language System.

Generative Functions
Ascle offers a range of generative functions through pretrained
and fine-tuned language models, all of which are publicly
available for user access. In the following sections, we will
introduce these powerful generative functions separately.

Question-Answering
Question-answering is particularly crucial in health care [13].
When integrated into health care systems, it assumes roles, such
as preconsultation and remote consultation, effectively coping
with the exponential increase in patient load. Furthermore,
specialized question-answering systems hold the potential to
contribute to medical education [13,21].

In Ascle, we first provide an interface for medical LLMs, such
as Baize-healthcare [23], allowing users to use them directly.
In addition, we develop a RAG framework that uses UMLS
with ranking techniques to enhance LLMs in generating
long-form answers [21]. Specifically, when receiving a query,

the RAG framework first extracts medical entities within the
query automatically and then retrieves related triplets from
UMLS for each extracted entity. A triplet consists of 2 medical
concepts and the relation between them, that is, (Myopia,
clinically_associated_with, HYPERGLYCEMIA). Subsequently,
the RAG framework uses ranking and reranking techniques to
refine the ordering of these triples. Finally, the query and the
retrieved triplets would be prompted to LLM for inference. For
more details about the RAG framework, please refer to
Multimedia Appendix 4. We apply this framework to the GPT
(OpenAI) [24] and LLaMA (Meta) [25] series of LLMs.

We conducted evaluations on 4 medical QA data sets, including
LiveQA [26], ExpertQA (Med & Bio) [27], and MedicationQA
[28]. LiveQA consists of health questions submitted by
consumers to the National Library of Medicine. It includes a
training set with 634 QA pairs and a test set comprising 104
QA pairs, and the test set was used for evaluation. ExpertQA
is a high-quality long-form QA data set covering multiple fields,
along with answers verified by domain experts. Among them,
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we used 504 medical questions (Med) and 96 biology (Bio)
questions for evaluation. MedicationQA includes 690
drug-related consumer questions along with information
retrieved from reliable websites and scientific papers.

Additionally, considering that automated metrics cannot
effectively assess the quality of generated content, especially
in terms of factuality, we performed a physician validation. A
total of 50 question-answer pairs from LiveQA were randomly
selected, with answers generated by Baize-healthcare.
Subsequently, 2 health care professionals (1 resident and 1
attending specialist) rated these generated answers on the criteria
of readability, relevancy, accuracy, and completeness, using a
5-point Likert scale.

Text Summarization
In health care, clinicians and researchers are confronted with
an increasing amount of information, including literature,
clinical notes, and more [29,30]. Text summarization is an
important generation task, aiming to distill essential information
from the overwhelming complexity of texts and compress it
into a more concise format [31]. Through automatic text
summarization, clinicians and researchers can efficiently acquire
information, thereby avoiding information overload.

We provide an abstractive text summarization function and
compare general pretrained summarization models, including
Pegasus [32], BigBird [33], Bidirectional and Auto-Regressive
Transformer (BART) [34], PRIMERA [35], as well as
domain-specific models, such as SciFive [36] and BioBART
[37], which make use of biomedical corpora. Furthermore, we
chose PubMed [38], MIMIC Chest X-Ray (MIMIC-CXR [39]),
and MEDIQA-AnS [40] data sets for evaluation. The PubMed
data set consists of biomedical scientific publications from the
PubMed database, where each input document is a scientific
article with its abstract serving as the ground truth. We reported
the evaluation results for the test set, which contains 1660
examples. MIMIC-CXR is a deidentified data set of chest
radiographs with free-text radiology reports, and we used a
subset of MIMIC-CXR that includes 2000 instances for
evaluation. MEDIQA-AnS is a collection of 156 consumer
health questions along with passages that contain relevant
information. It supports both single-document and
multiple-document summarization evaluation.

Text Simplification
Biomedical texts are typically laden with intricate terminologies,
which can hinder the understanding of individuals without a
clinical background [41]. In Ascle, the function of text
simplification is to translate complex and technical biomedical
texts into understandable content. This will enhance the
comprehension and involvement of nonclinical individuals,
including patients, enabling them to better engage with the
information and participate in clinical decisions more
effectively.

We finetuned and evaluated widely used pretrained language
models on 3 data sets: eLife, PLOS [42], and MedLane [43].
This included 2 general models, BigBirdPegasus [32] and
BART, as well as a biomedical-specific model, BioBART. The
eLife and PLOS are shared task data released from the

BioLaySumm 2023 Task 1, which contains biomedical journal
articles with expert-written lay summaries. We evaluated the
validation sets for eLife and PLOS, which contain 241 and 1376
examples, respectively. MedLane is a large-scale
human-annotated data set containing professional-to-customer
sentences selected from Medical Information Mart for Intensive
Care III (MIMIC-III). For MedLane, we used the test set for
evaluation, which includes 1016 instances.

Machine Translation
Language barriers pose difficulties for patients to access timely
information and communicate effectively with health care
providers, resulting in low-quality health care services [44].
Our machine translation function aims to translate the text from
a source language into a target language in a clinical scenario.
By fine-tuning pretrained language models on the medical
corpus, Ascle supports machine translation from English (en)
to 8 target languages: Spanish (es), French (fr), Romanian (ro),
Czech (cs), German (de), Hungarian (hu), Polish (pl), and
Swedish (sv). Here, we only emphasize the 8 languages
fine-tuned on medical data, while other languages, such as
English to Chinese, are supported by the pretrained language
models.

We fine-tuned the existing MarianMT [45] and multilingual T5
[46] using UFAL Medical Corpus [47] which includes various
medical text sources, such as titles of medical Wikipedia articles,
medical term pairs, patents, and documents from the European
Medicines Agency. During the preprocessing phase, we
excluded general domain data from UFAL, such as
parliamentary proceedings, and randomly shuffled the medical
domain corpora, splitting them into 2 parts at a ratio of 85%
and 15% for training and testing, respectively. We reported the
results on the test set, the size of which varies from 111,779 to
407,388 depending on the different language pairs. Furthermore,
for each language pair, we used all available parallel data to
maximize the breadth and accuracy of our machine translation
function.

Ethical Considerations
This study used publicly available data sets and a restricted,
deidentified data set. Access to the restricted data set was
granted after the required training and certification, ensuring
compliance with the data use agreement. No additional ethical
review or informed consent was necessary, as human subjects
or identifiable data were not directly involved. Two health care
professionals voluntarily participated in the physician validation
process without compensation. Data privacy and confidentiality
were strictly maintained throughout the research, ensuring the
protection of individual privacy while contributing to the
advancement of the NLP toolkit for medical text generation.

Results

Overall Performance of Generation Tasks
In the question-answering task, we used ROUGE-L [48],
BERTScore [49], MoverScore [50], and BLEURT [51] for a
comprehensive evaluation, and used GPT-4 and LLaMA2-13b
as the vanilla LLMs. As shown in Table 2, our RAG framework
surpasses the zero-shot setting on all evaluation metrics for the
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LiveQA, ExpertQA-Bio, ExpertQA-Med, and MedicationQA
data sets. Among them, the ROUGE-L score has increased by
more than 18% on the ExpertQA-Bio data set.

For the text summarization task, we evaluated 5 pretrained
language models on single-document summarization, as shown
in Table 3. To ensure a fair comparison, we excluded the results
of BioBART and SciFive on PubMed, as they were fine-tuned

on this data set. It is worth noting that BART consistently
demonstrated strong performance across 3 benchmarks, while
BioBART only outperformed BART in 1 of the benchmarks.
In addition, we evaluated the multidocument summarization
task and discussed the differences between abstractive and
extractive methods, as well as the limitations of evaluation
metrics, which can be found in the Discussion section.

Table 2. For the evaluation of the question-answering task, we compared ROUGE-L, BERTScore, MoverScore, and BLEURT on the zero-shot and
retrieval-augmented generation framework.

GPT-4LLaMa2-13b

BLEURTMoverScoreBERTScoreROUGE -LBLEURTMoverScoreBERTScoreROUGE-L

LiveQAa

39.8454.0282.5018.8940.4553.3781.9317.73Z.Sb

40.55d54.11d83.01d19.44d40.59d53.79d82.79d18.83dRAGc

ExpertQAa-Bio

44.5356.1584.5023.0044.6555.5884.3823.26Z.S

45.91d57.11d85.83d27.20d45.20d56.17d85.18d25.79dRAG

ExpertQAa-Med

45.9856.5085.1125.4546.3255.7484.8924.86Z.S

47.00d57.32d86.30d28.08d46.47d56.58d85.80d27.49dRAG

MedicationQAa

37.4152.6282.5514.4138.3051.9681.8113.30Z.S

37.91d53.30d83.59d16.19d38.42d52.59d82.79d14.71dRAG

aQA: question-answering.
bZ.S: zero-shot.
cRAG: retrieval-augmented generation framework.
dThe superior score within the same data set.

Table 3. For the evaluation of the single-document summarization task, we compared ROUGE-1, ROUGE-2, ROUGE-L, and some results are derived
from other papers [52].

MEDIQA-AnS (s)MEDIQA-AnS (p)MIMIC-CXRaPubMed

R-LR-2R-1R-LR-2R-1R-LR-2R-1R-LR-2R-1

16.768.2322.2113.874.8218.2920.3511.5722.4928.2520.1545.97Pegasus

11.153.1314.8910.042.1413.1838.5929.5238.9942.33b20.6546.32BigBird

30.5822.2038.1917.09b7.2024.02b41.16b32.93b41.70b36.9021.43b48.35bBART

14.426.4716.8810.102.1513.0835.0726.4835.41———cSciFive

32.07b24.64b39.40b16.697.49b22.5841.0032.9041.61———BioBART

aMIMIC-CXR: MIMIC Chest X-Ray database.
bThe superior score within the same data set.
cNot applicable.

Regarding the text simplification task, we compared the
performance of fine-tuned models and conducted an analysis
of readability using the Flesch-Kincaid Grade Level (FKGL)
score [53], as indicated in Table 4. For the eLife and PLOS data

sets, the ground truth exhibits FKGL scores of 12 and 15,
respectively. Interestingly, the BioBART model performs
competitively in terms of ROUGE metrics, but fails to
significantly reduce the difficulty of understanding, as evidenced
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by its FKGL score of 17 in both data sets. On the other hand,
the BART model manages to slightly lower the FKGL score to
14 and 16 for eLife and PLOS, respectively. However, in the
case of the MedLane data set, all methods appear to reach a
similar level of complexity as the ground truth. This can be
attributed to the data set’s shorter examples and potentially
smaller vocabulary size, which limits the observed differences.

In the machine translation task, we fine-tuned the models across
8 languages, as illustrated in Table 5. After fine-tuning, the
BLEU scores significantly improved, with the most substantial
improvement observed in the “en-fr” language pair, increasing
by over 61%. This enhancement can be attributed to the larger
amount of training data available for “en-fr” (2,812,305
samples).

Table 4. For evaluation of the text simplification task, we compared ROUGE-1, ROUGE-2, ROUGE-L, and Flesch-Kincaid Grade Level score.

MedLanePLOSeLife

FKGLR-LR-2R-1FKGLR-LR-2R-1FKGLdR-LcR-2bR-1a

13———15———12———eGround Truth

13f74.5665.3774.961712.544.7918.9213f9.163.4214.00BigBirdPegasus

13f82.99f74.50f83.25f16f14.177.2021.091410.19f4.31f16.16fBART

13f82.6574.2682.891715.65f7.83f23.80f179.363.7014.31BioBART

aR-1: ROUGE-1.
bR-2: ROUGE-2.
cR-L: ROUGE-L.
dFKGL: Flesch-Kincaid Grade Level.
eNot applicable.
fThe superior score within the same data set.

Table 5. For the evaluation of the machine translation task, we evaluated the BLEU score on 8 language pairs.

BLEU score

en-svhen-plgen-hufen-deeen-csden-rocen-frben-esa

—————i40.4533.0238.02MarianMT

—————43.8843.7241.64F.T-MarianMT

44.1740.2432.2550.7343.3047.28j53.29j45.88jF.T-mT5

aen-es: English-Spanish.
ben-fr: English-French.
cen-ro: English-Romanian.
den-cs: English-Czech.
een-de: English-German.
fen-hu: English-Hungarian.
gen-pl: English-Polish.
hen-sv: English-Swedish.
iNot applicable.
jThe superior score within the same data set.

Physician Validation
The results verified by the physicians are shown in Figure 2A.
Detailed evaluation criteria can be found in Multimedia
Appendix 5. The generated answers have good readability and
relatively good relevancy, with scores of 4.95 and 4.43,
respectively. In contrast, the completeness score is relatively
lower (3.31). Figure 2B shows 2 cases. In the first case,
compared with the ground truth, the generated answer does not
point out that Zolmitriptan is used for treating acute migraines,

nor does it indicate that it cannot be used to prevent migraine
attacks or to reduce the frequency of headaches. In the second
case, the generated answer does not mention that a gluten-free
diet is the main treatment for celiac disease. We provide 2
additional cases in Multimedia Appendix 6.

In addition, we calculated the interevaluator agreement using
percentage agreement for each criterion. A total of 2 health care
professionals demonstrated a high level of consistency across
all criteria, with the percentage agreement consistently
exceeding 0.65.
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Figure 2. (A) Physician validation (readability, relevancy, accuracy, and completeness) for 50 question-answer pairs. (B) Two examples of generated
answers with ground truth.

Discussion

In-Depth Analysis of the Text Summarization Task
In the multidocument summarization task, we included models
based on traditional methods, such as TextRank [54], as well
as pretrained language models, such as BART, Pegasus,
PRIMERA, and BioBART. We evaluated their performance

using ROUGE scores on the MEDIQA-AnS data set, which
consists of 156 examples, and the results are shown in Table 6.
However, it is noteworthy that although TextRank outperforms
almost all generative models in ROUGE scores, this does not
necessarily indicate superior performance. As ROUGE scores
are calculated based on the overlap between the generated
content and reference summaries, and TextRank is an extractive
summarization model, it tends to score higher by this measure.

Table 6. Evaluation for the multidocument summarization task.

MEDIQA-AnS (s)MEDIQA-AnS (p)

ROUGE-LROUGE-2ROUGE-1ROUGE-LROUGE-2ROUGE-1

30.5226.8043.7717.0110.2329.88TextRanka

24.03b15.4232.32b17.18b7.56b24.56bBART

14.937.4619.5413.445.3617.44Pegasus

16.859.7721.7812.684.8916.66PRIMERA

23.6615.91b30.8716.477.4723.16BioBART

aTextRank is only used as a reference for extractive summarization, so its scores are not compared with those of generative models.
bThe superior score within the same data set.

While generative models possess semantic comprehension
abilities, enabling them to distill complex information into an
easy-to-understand format. As shown in Textbox 1, the
summarizations generated by BART display well-structured
patient information, with a brief description of events and
corresponding conditions of the current patient (highlighted in
blue), exhibiting high readability. In contrast, the

summarizations produced by TextRank are less readable and
include noise (highlighted in orange); the generated content is
often a literal collage of text fragments. Despite TextRank
achieving higher ROUGE scores, it lacks the ability to discern
information and integrate it into coherent and readable content,
showing significant limitations for practical use.
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Textbox 1. Two MIMIC-III (parts) examples of the text summarization task, generated by BART and TextRank, respectively (we eliminated sensitive
information).

BART

• The patient is an XXX-year-old man with a history of a question of coronary artery disease, borderline diabetes mellitus. He was in his usual
state of health until 11 p.m. last night when he experienced chest pain with radiation to his back, positive shortness of breath, positive diaphoresis,
no vomiting, no lightheadedness. The patient had had a similar episode of chest pain and was taken to an XXX. He had successful angioplasty
and stent of LAD and CX. He is a middle aged XXX man in no acute hypertensive distress. He has had anginal chest pain, which is similar to
his presenting complaint, but without radiations to his Back. His blood pressure was 105/73, pulse 84, respiratory 21, O2 saturation 92% on 2
liters. His CPK was 594, The index was 7.7, and he was admitted to the hospital with a high blood pressure. His condition was described as
“stable” and “normal” by the doctor. The doctor referred the patient to a cardiologist for further treatment. The cardiologist said the patient was
in good condition and should be discharged in a few days.

• Patient has CABG complicated by postop bleed and pleural effusion with discharge to [**Hospital1 **] Rehabilitation presents with abdominal
pain. Zosyn was given in the ED. Patient was otherwise doing well and was to go back to rehab to finish his course of Cipro and Flagyl on
[**5-17**]. Patient was last seen normal sometime last evening. He woke up and noticed that the left side of his body felt “numb”. He was not
aware of any other

neurological weakness, and mostly complained of being very tired. He denied any new vision problems, did not have a headache. He sounded
somewhat slurred but did not feel as if his speech was changed significantly. He felt sleepy but able to sustain attention, currently apparently in
no distress. He was on standing. Plavix and [**State **] which had been held for the last few days (at least since the 14), since he had the
percutaneous drainage. He did not. feel that the weakness had progress and reported that he felt the sense of numbness was starting to improve
and had some difficulty squeezing an examiners hand. He is a retired postal worker. He lives with wife and son who is a chiropractor.

TextRank

• Admission Date: XXX Discharge Date: XXX Date of Birth: Sex: M Service: CCU-6HISTORY OF PRESENT ILLNESS: The patient is a
XXX-year-old man with a history of a question of coronary artery disease, status post myocardial infarction in [**December 2175**], hypertension,
borderline diabetes mellitus who was in his usual state of health until 11 p.m. last night when, while [**4-12**] midsternal pressure like chest
pain with radiation to back, positive shortness of breath, positive diaphoresis, positive nausea, no vomiting, no lightheadedness. Mucous membranes
moist. Oropharynx clear. NECK:  No jugular venous distention, no carotid bruits. CARDIOVASCULAR:  Regular rate, S1, S2, artificial S1
gallop and balloon pump, no murmurs or rubs. LUNGS: Bibasilar rales, left greater than right. ABDOMEN:  Normoactive bowel sounds,
nontender, nondistended. EXTREMITIES:  No cyanosis, clubbing or edema. NEUROLOGIC:  Alert and oriented x3.LABS AT OUTSIDE
HOSPITAL:  CPK was 304, troponin 1.75.Electrocardiogram at 1:23 a.m. was normal sinus rhythm at101, normal axis deviation, 2 to [**Street
Address(2) 1755**] elevation V1 to V5,Q V3, AVF.LABS AT [**Hospital6 **] AT 8 A.M.:  CBC- white blood cells 11.2, hemoglobin 13.0,
hematocrit 36.7,platelets 232. CARDIOVASCULAR: Coronary artery disease: Three vessel disease with successful intervention on LAD and
left circumflex, but RCA not done secondary to good collateral. The patient was continued on aspirin 325 qd.

• Of note he was on standing Plavix and [**State **] which had been held for the last few days (atleast since the 14), since he had the percutaneous
drainage. The patient was otherwise doing well and was to go back to rehab to finish his course of Cipro and Flagyl on [**5-17**].Past Medical
History: coronary artery disease s/p right coronary artery stent x2([**10-3**], [**3-4**]), hypertension, hyperlipidemia, chronic obstructive
pulmonary disease, asbestos exposure, chronic back pain, insomnia and obstructive sleep apnea (untreated)PSH:[**2144-4-21**]Endoscopic,
minimally invasive, off pump coronary artery bypass graft x1 with left internal mammary artery to left anterior descending
artery.[**2144-4-21**]Re-exploration for bleeding, post coronary artery bypass grafting. Social History: Lives with wife. Exposure to asbestos.
Defers all medical decisions to son who is a chiropractor. Occupation: retired postal worker. Tobacco: 3 PPD x 30 years, quit 45 years ago ETOH:
None Family History: Non-contributory to cholecystitis. Physical Exam: Physical Exam: Vitals: T: 97.9  P:75  R: 16  BP:128/73  SaO2:96
General: Awake, felt sleepy but able to sustain attention, poor historian currently.

System Usage
Ascle provides an easy-to-use approach for biomedical
researchers and clinical staff. Users can efficiently use it by

merely inputting text and calling the required functions. Figure
3 illustrates 2 use cases.
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Figure 3. Demonstration of system usage. We show two use cases: Text Simplification and Machine Translation.

Estimated Inference Time and Computational
Resources
As shown in Table 7, we list the estimated inference time and
computational resources required for the 4 generative tasks in
Ascle. It is worth noting that the inference time is specific to
our experimental settings, and the actual inference time for users

may vary depending on the length of the input text and the
computational resources used. For the question-answering task,
GPT’s response time is faster compared with LLaMA2-13b.
However, it is important to mention that LLaMA2-13b was not
deployed with quantization, and with quantization, the required
inference time and computational resource requirements would
be reduced.
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Table 7. Estimated inference time and computational resources required for the generative tasks in Ascle.

Computational resourceEstimated inference timeTasks

Question Answering •• LLaMA2-13b: 4 * NVIDIA A100 GPULLaMA2-13b: <60 s/itema

• GPT4: OpenAI APIb• GPT4: <15 s/item

1 * NVIDIA V100 GPU<2 s/itemText Summarization

1 * NVIDIA V100 GPU<2 s/itemText Simplification

1 * NVIDIA V100 GPU<2 s/itemMachine translation

as/item: seconds per item.
bAPI: application programming interface.

Clinicians’ Use of Ascle
To evaluate the ease of usability of Ascle for clinicians, we
report the time required for 2 clinicians with different
backgrounds to use the package after receiving guidance. The
backgrounds of the clinicians are as follows: (1) physician 1:
Singapore General Hospital, senior resident, 7 years of working
experience, has a basic level of programming knowledge, and
is able to perform basic statistical analyses; and (2) physician
2: SengKang General Hospital, senior consultant, 15 years of
working experience, and has no programming knowledge.

Both clinicians received guidance on using Ascle, including
setting up a virtual environment and accessing models from
Hugging Face. The entire guidance process took about 10
minutes, after which both clinicians could independently and
easily use Ascle and experiment with various generative
functions without any issues. The main difficulty for the
clinicians was setting up the virtual environment, as they lacked
AI-specific knowledge. In response, Ascle provided a very
simple virtual environment setup guideline. The clinicians’
experience further confirms the user-friendliness of Ascle.

Limitations
In the case of generation tasks, we primarily chose automatic
metrics for evaluation, such as ROUGE and BLEU scores.
However, these metrics cannot effectively assess factual
correctness [55] and may not align with human preference [56].
While human evaluation serves as an invaluable aspect in

assessing the performance of the model, its incorporation may
pose certain challenges due to various factors, including budget
constraints.

Future Work
Recent LLMs have shown great potential in generative
applications especially its superior zero- and few-shot
performance [13,57,58]. Despite this, the generated content can
be unfaithful, inconsistent, and biased [21,55,59,60]. We plan
to thoroughly evaluate LLMs and extend to Ascle in the future.
Meanwhile, we will strengthen the ethical review of these
generative AI techniques to ensure their application truly and
responsibly benefits biomedical researchers and health care
professionals [61,62].

Conclusions
We introduce Ascle, a comprehensive NLP toolkit designed
specifically for medical text generation. For the first time, it
integrates 4 challenging generative functions, including
question-answering, text summarization, text simplification,
and machine translation. Our research fills the gap of existing
toolkits for generative tasks, which holds significant implications
for the entire medical domain. Ascle boasts remarkable
flexibility, allowing users to access a variety of cutting-edge
pretrained language models. Meanwhile, it stands as a
user-friendly toolkit, ensuring ease of use even for clinical staff
without a technical background. We will continue to maintain
and extend Ascle.
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