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Abstract

Background: Prompt engineering, focusing on crafting effective prompts to large language models (LLMs), has garnered
attention for its capabilities at harnessing the potential of LLMs. This is even more crucial in the medical domain due to its
specialized terminology and language technicity. Clinical natural language processing applications must navigate complex
language and ensure privacy compliance. Prompt engineering offers a novel approach by designing tailored prompts to guide
models in exploiting clinically relevant information from complex medical texts. Despite its promise, the efficacy of prompt
engineering in the medical domain remains to be fully explored.

Objective: The aim of the study is to review research efforts and technical approaches in prompt engineering for medical
applications as well as provide an overview of opportunities and challenges for clinical practice.

Methods: Databases indexing the fields of medicine, computer science, and medical informatics were queried in order to identify
relevant published papers. Since prompt engineering is an emerging field, preprint databases were also considered. Multiple data
were extracted, such as the prompt paradigm, the involved LLMs, the languages of the study, the domain of the topic, the baselines,
and several learning, design, and architecture strategies specific to prompt engineering. We include studies that apply prompt
engineering–based methods to the medical domain, published between 2022 and 2024, and covering multiple prompt paradigms
such as prompt learning (PL), prompt tuning (PT), and prompt design (PD).

Results: We included 114 recent prompt engineering studies. Among the 3 prompt paradigms, we have observed that PD is the
most prevalent (78 papers). In 12 papers, PD, PL, and PT terms were used interchangeably. While ChatGPT is the most commonly
used LLM, we have identified 7 studies using this LLM on a sensitive clinical data set. Chain-of-thought, present in 17 studies,
emerges as the most frequent PD technique. While PL and PT papers typically provide a baseline for evaluating prompt-based
approaches, 61% (48/78) of the PD studies do not report any nonprompt-related baseline. Finally, we individually examine each
of the key prompt engineering–specific information reported across papers and find that many studies neglect to explicitly mention
them, posing a challenge for advancing prompt engineering research.

Conclusions: In addition to reporting on trends and the scientific landscape of prompt engineering, we provide reporting
guidelines for future studies to help advance research in the medical field. We also disclose tables and figures summarizing
medical prompt engineering papers available and hope that future contributions will leverage these existing works to better
advance the field.
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Introduction

In recent years, the development of large language models
(LLMs) such as GPT-3 has disrupted the field of natural
language processing (NLP). LLMs have demonstrated
capabilities in processing and generating human-like text, with
applications ranging from text generation and translation to
question answering and summarization [1]. However, harnessing
the full potential of LLMs requires careful consideration of how
input prompts are formulated and optimized [2].

Input prompts denote a set of instructions provided to the LLM
to execute a task. Prompt engineering, a term coined to describe
the strategic design and optimization of prompts for LLMs, has
emerged as a crucial aspect of leveraging these models. By
crafting prompts that effectively convey tasks or queries,
researchers and practitioners can guide LLMs to improve the
accuracy and pertinence of responses. The literature defines
prompt engineering in various ways: it can be regarded as a
prompt structuring process that enhances the efficiency of an
LLM to achieve a specific objective [3] or as the mechanism
through which LLMs are programmed by prompts [4]. Prompt
engineering encompasses a plethora of techniques, often
separated into distinct categories such as output customization
and prompt improvement [4]. Existing prompt paradigms are
presented in more detail in the Methods section.

In the realm of medical NLP, significant advancements have
been made, such as the release of LLMs specialized in medical
language and the availability of public medical data sets,
including in languages other than English [5]. The unique
intricacies of medical language, characterized by its
terminological precision, context sensitivity, and
domain-specific nuances, demand a dedicated focus and
exploration of NLP in health care research. Despite these
imperatives, to our knowledge, there is currently no systematic
review analyzing prompt engineering applied to the medical
domain.

The aim of this scoping review is to shed light on prompt
engineering, as it is developed and used in the medical field,
by systematically analyzing the literature in the field.
Specifically, we examine the definitions, methodologies,
techniques, and outcomes of prompt engineering across various
NLP tasks. Methodological strengths, weaknesses, and
limitations of the current wave of experimentation are discussed.
Finally, we provide guidelines for comprehensive reporting of
prompt engineering–related studies to improve clarity and
facilitate further research in the field. We aspire to furnish
insights that will inform both researchers and users about the
pivotal role of prompt engineering in optimizing the efficacy

of LLMs. By gaining a thorough understanding of the current
landscape of prompt engineering research, we can pinpoint areas
warranting further investigation and development, thereby
propelling the field of medical NLP forward.

Methods

Study Design
Our scoping review was conducted following the PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) guidelines for
scoping reviews (available in Multimedia Appendix 1). In this
review, we use terminology to denote emerging technical
concepts that lack consensus definitions. We propose the
following definitions based on previous use in the literature:

• LLM: Object that models language and can be used to
generate text by receiving large-scale language modeling
pretraining (Luccioni and Rogers [6] define an arbitrary
threshold at 1 billion tokens of training data). An LLM can
be adapted to downstream tasks through transfer learning
approaches such as fine-tuning or prompt-based techniques.
Following the study of Thirunavukarasu et al [7] of models
for the medical field, we include Bidirectional Encoder
Representations From Transformers (BERT)–based and
GPT-based models in this definition, although Zhao et al
[8] place BERT models in a separate category.

• Fine-tuning: Approach in which the weights of the
pretrained LLM are retrained on new samples. The
additional data can be labeled and designed to adapt the
LLM to a new downstream task.

• Prompt design (PD) [1,2]: Manually building a prompt
(named manual prompt or hard prompt), tailored to guide
the LLM toward resolving the task by simply predicting
the most probable continuity of the prompt. The prompt is
usually a set of task-specific instructions, occasionally
featuring a few demonstrations of the task.

• Prompt learning (PL) [3]: Manually building a prompt and
passing it to an LLM, trained via the masked language
modeling (MLM) objective, to predict masked tokens. The
prompt often features masked tokens, over which the LLM
makes predictions. Those are then projected as predictions
for a new downstream task. This approach is also referred
to as prompt-based learning.

• Prompt tuning (PT) [9]: Refers to the LLM prompting where
part or all the prompt is a trainable vectorial representation
(known as continuous prompt or soft prompt) that is
optimized with respect to the annotated instances.

Figure 1 illustrates the 4 approaches described above.
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Figure 1. Illustration of traditional fine-tuning and the 3 prompt-based paradigms (the fire logo represents trainable parameters, and the flake logo
illustrates frozen parameters). LLM: large language model.

Inclusion and Exclusion Criteria
Studies were included if they met the following criteria: focus
on prompt engineering, involvement of at least 1 LLM,
relevance to the medical field (biomedical or clinical), pertaining
to text-based generation (excluding vision-related prompts),
and not focusing on prompting for academic writing purposes.
Furthermore, as most of the first studies about prompt
engineering emerged in 2022 [2], we added the following
constraint: the publication date should be later than 2021.

Screening Process
The initial set of papers retrieved from the searches underwent
screening based on titles, abstracts, and keywords. The search
strategy is described in Multimedia Appendix 2. Screening was
performed by 2 reviewers (JZ and MN), working in a
double-blind process. Interannotator agreement was calculated,
with conflicts resolved through discussion.

Data Synthesis
We extracted information on prompt paradigms (PD, PL, and
PT), involved LLMs, data sets used, studied language, domain
(biomedical or clinical), medical subfield (if any), mentioned
prompt engineering techniques, computational complexity,

baselines, relative performances, and key findings. Additionally,
we extracted journal information and noted instances of PD or
PL or PT terminology misuse. Details are available in
Multimedia Appendix 3. Finally, we compile a list of
recommendations based on the positive or negative trends we
identify from the selected papers.

Results

Screening Results
The systematic search across sources yielded 398 papers.
Following the removal of duplicates, 251 papers underwent
screening based on title, abstract, and keywords, leading to the
exclusion of 94 studies. During this first screening step, 33
conflicts were identified and resolved among the annotators,
resulting in an interannotator agreement of 86.8% (n=218).
Subsequently, 157 studies remained, and full-text copies were
retrieved and thoroughly screened. This process culminated in
the inclusion of a total of 114 papers in this scoping review.
The detailed process of study selection is shown in Figure 2.
Among the selected papers, 13 are from clinical venues, 33 are
from medical informatics sources, 31 are from computer science
publications, and 4 are from other sources. Notably, 33 of them
are preprints.
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Figure 2. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for the review process.

Prompt Paradigms and Medical Subfields
Table 1 depicts the number of papers identified within each
prompt paradigm along with their associated medical subfields.
Some papers may simultaneously involve several (up to 2 in
this review) prompt paradigms. Notably, PD emerged as the
predominant category, with a total of 78 papers. These papers
spanned across various medical fields, with a greater emphasis

on clinical (including specialties) rather than biomedical
disciplines. The screening yields 29 PL papers and 19 PT papers,
with both paradigms maintaining a balanced distribution
between biomedical and clinical domains. However, it is
noteworthy that unlike PL and PT, PD encompassed a much
broader spectrum of clinical specialties, with a particular interest
in psychiatry.
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Table 1. Paper distribution by prompt category and medical subfield, with corresponding references.

ReferencesPrompt paradigm and domain of the topic

Prompt design (78)

[10-26]Biomedical (17)

[27-38]Medical licensing examination (12)

[39-53]Clinical (general) (15)

[28,54-62]Psychiatry (10)

[63-67]Oncology (5)

[68-71]Cardiology (4)

[72-74]Ophthalmology (3)

[69,75,76]Neurology (3)

[77,78]Orthopedics (2)

[79,80]Clinical trials (2)

[69,81]Intensive care (2)

[75,76]Geriatrics (2)

[31,82]Radiology (2)

[29]Nuclear medicine (1)

[83]Hepatology (1)

[84]Endocrinology (1)

[85]Plastic surgery (1)

[32]Gastroenterology (1)

[86]Genetics (1)

[87]Nursing (1)

Prompt learning (29)

[88-100]Biomedical (13)

[41,47,101-113]Clinical (general) (15)

[114]Psychiatry (1)

Prompt tuning (19)

[16,20,26,90,91,95,98,115,116]Biomedical (9)

[101,105,110,117-119]Clinical (general) (6)

[120,121]Oncology (2)

[122]Psychiatry (1)

[123]Medical insurance (1)

Terminology Use
In our review, the consistency of terminology use around prompt
engineering was investigated, particularly concerning its 3
paradigms: PD, PL, and PT. Across the papers, we meticulously
tracked instances where the terminology was applied differently
to the definitions used in the literature and described in the
introduction. Notably, PL was used to refer to PD 4 times
[12,13,67,86] and PT once [119], while PT was used 5 times
to describe PL [88,96,97,99,114] and twice for PD [23,43].
Terminology inconsistencies were identified in only 12 studies.
Consequently, while there remains some degree of
inconsistency, a significant majority of 102 papers adhered to
the definitions identified as commonly used terminology.

Language of Study
Considering the latest developments in NLP research
encompassing languages beyond English [124], reporting the
language of study is crucial. Several papers do not explicitly
state the language of study. In some cases, the language can be
inferred from prompt illustrations or examples. In the least
informative cases, only the data set of the study is disclosed,
indirectly hinting at the language.

Table 2 illustrates the language distribution among the selected
papers, noting whether languages are explicitly mentioned,
implicitly inferred from prompt illustrations, or simply not stated
but implied from the used data set. The language used in 2
papers [60,68] remains unknown.
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Table 2. Frequency distribution of papers across various languages. The table also depicts the frequency distribution across venues for papers studying
English (N=114).

Total, n (%)Not statedc, n (%)Inferredb, n (%)Stateda, n (%)Language and type of venue

English

96 (84.2)11 (9.6)48 (42.1)37 (32.5)All

27 (23.7)2 (1.8)9 (7.9)16 (14)Medical informatics

27 (23.7)1 (0.9)18 (15.8)8 (7)Computer science

26 (22.8)5 (4.4)12 (10.5)9 (7.9)Preprint

12 (10.5)3 (2.6)8 (7)1 (0.9)Clinical

4 (3.5)0 (0)1 (0.9)3 (2.6)Other

Chinese

18 (15.8)0 (0)0 (0)18 (15.8)All

French

3 (2.6)0 (0)0 (0)3 (2.6)All

Dutch

3 (2.6)0 (0)0 (0)3 (2.6)All

Japanese

2 (1.8)0 (0)0 (0)2 (1.8)All

Portuguese

2 (1.8)0 (0)0 (0)2 (1.8)All

Italian

2 (1.8)0 (0)0 (0)2 (1.8)All

Spanish

2 (1.8)0 (0)0 (0)2 (1.8)All

Korean

1 (0.9)1 (0.9)0 (0)0 (0)All

Basque

1 (0.9)0 (0)0 (0)1 (0.9)All

German

1 (0.9)0 (0)0 (0)1 (0.9)All

Swedish

1 (0.9)0 (0)0 (0)1 (0.9)All

Polish

1 (0.9)0 (0)0 (0)1 (0.9)All

Vietnamese

1 (0.9)0 (0)0 (0)1 (0.9)All

Unknown

2 (1.8)2 (1.8)0 (0)0 (0)All

aStated in the paper.
bInferred from prompt figures and examples.
cInferred from the data set.

Notably, English dominates with 84.2% (n=96) of the selected
papers, followed by Chinese at 15.7% (n=18). Then, the other
languages are relatively rare, often appearing in studies featuring
multiple languages. It is worth mentioning that languages

besides English are usually explicitly stated, with the exception
of a paper studying Korean [63]. In total, the language had to
be inferred from prompt figures and examples in 48 papers, all
in English.
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Choice of LLMs
Given the diverse array of LLMs available, spanning general
or medical, open-source or proprietary, and monolingual or
multilingual models, alongside various architectural
configurations (encoder, decoder, or both), our study investigates
LLM selection across prompt paradigms.

Figure 3 outlines prevalent LLMs categorized by prompt
paradigms, though it is not exhaustive and only includes
commonly encountered architectures. For example, while
encoder-decoder models are absent in PT in Figure 3, there are
a few instances where they are used [95,110].

ChatGPT’s popularity in PD is unsurprising, given its
accessibility. Models from Google, PaLM, and Bard
(subsequently rebranded Gemini), all falling under closed
models, are also prominent. Among open-source instruct-based
LLMs, fewer are used, notably those based on LLaMA-2 with
7 occurrences.

In PL, encoder models, those following the BERT architecture,
dominate, covering both general and specialized variants. There
are occasional uses of decoder models like GPT-2 in PL-based
tasks [103,105]. PT involves all model types, with a preference
toward encoders. Further details on the models used are
available in Multimedia Appendix 3.

Figure 3. Involved large language models in the prompt engineering studies, covering all prompt paradigms. The number of studies that fit in a node
is shown in parentheses. BERT: Bidirectional Encoder Representations From Transformers; RoBERTa: Robustly Optimized BERT Pre-training
Approach; T5: Text-to-Text Transfer Transformer.
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Topic Domain and NLP Task Trends
Figure 4 [16,20,26,41,47,88-123] illustrates the target tasks
used in the PL and PT papers. PL-focused papers predominantly
address classification-based tasks such as text classification,
named entity recognition, and relation extraction, with text
classification being particularly prominent. This aligns with the
nature of PL, which centers around an MLM objective. Among
other tasks, a study based on text generation [111] makes use
of PL to predict masked tokens from partial patient records,
aiming to generate synthetic electronic health records.
Conversely, PT papers tend to exhibit a slightly broader range
of tasks.

Figure 5 [10-87] presents the same analysis for PD-based papers.
Unlike PL and PT, a prominent trend observed is that several
studies focus on real-world board examinations. Notably, these
studies predominantly center around tasks involving answering
multiple-choice questions (MCQs). It is worth noting that
although MCQs might be cast as a classification task, in practice,
it is cast as a generation task using causal LLMs. It is interesting
to note that none of the selected PD papers propose the task of
entity linking, despite the clear opportunity of leveraging LLMs’
in-context learning ability for medical entity linking.

Figure 4. Overview of selected prompt learning and prompt tuning papers, showcasing natural language processing tasks alongside their topic domain
(it includes tasks, such as text simplification, where none of the selected papers specifically focused on these tasks). Numbers within square brackets
are reference citations.
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Figure 5. Overview of selected prompt design papers, showcasing natural language processing tasks alongside their topic domain. Numbers within
square brackets are reference citations.

Prompt Engineering Techniques
We extensively investigated the used prompt techniques: among
PD papers, 49 studies used zero-shot prompting, 23 used
few-shot prompting, and 10 used one-shot prompting. Few shot
tends to outperform in MCQs, but its advantage over zero shot
is inconsistent in other NLP tasks. We propose a comprehensive
summary of the existing techniques in Table 3.

As shown in Table 3, chain-of-thought (CoT) prompting [2]
stands as the most common technique, followed by the persona
pattern. In medical MCQs, various attempts with CoT can lead
to different reasoning pathways and answers. Hence, to improve
accuracy, 2 studies [19,20] used self-consistency, a method
involving using multiple CoT prompts and selecting the most
frequently occurring answer through voting.

Flipped interaction was used for simulation tasks, such as
doctor-patient engagement [60] or to provide clinical training
to medical students [81]. Emotion enhancement was applied in
mental health contexts [58,60], allowing the LLM to produce
emotional statements.

More innovative prompt engineering techniques include
k-nearest neighbor few-shot prompting [19] and
pseudoclassification prompting [78]. The former uses the
k-nearest neighbor algorithm to select the k-closest examples
in a large annotated data set based on the input before using
them in the prompt, and the latter presents to the LLMs all
possible labels, asking the model to respond with a binary output
for each provided label. Despite its potential, tree-of-thoughts
pattern use was limited, with only 1 instance found among the
papers [77].
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Table 3. Most recurrent prompt techniques found, with the corresponding description, template, and references.

ReferencesCount papersPrompt template examplesDescriptionPrompt techniques

[11,19,20,27,29,32,33,35,39,
51,58,67,75,77,82,83,85]

17Asking the large language model
(LLM) to provide the reasoning
before answering.

Chain-of-thought
(CoT)

• Basic CoT: “<Prompt>. Think
step by step.”

• Another example of CoT: “Solve
this math problem. E.g.: You
have 3 apples and buy 2 more,
how many apples do you have?
Solution: Start with 3 apples.
Buy 2 more apples. Total apples
is 3 + 2 = 5. New problem: You
have 5 oranges and give away 2,
how many oranges do you have
left?”

[32,49,55,56,59-61,82,84,85]10Assigning the LLM a particular
role to accomplish a task related
to that role.

Persona (role-defin-
ing)

• “Act as X (e.g. Act as a Physi-
cian, Act as a Psychiatrist, etc).”

[19,20,39,52]4Using multiple independent
prompts to answer the same
question. The final output is de-
cided by majority vote.

Ensemble prompting • “Prompt1, Output1, Prompt2,
Output2, […], Promptk, Out-
putk” Final output: Vote

[18,49,61]3Simulating a scene related to the
addressed task.

Scene-defining • “you are in a hospital, in front
of a patient ...”

[37,80,84]3Separating a task into multiple
subtasks, each resolved with a
prompt.

Prompt-chaining • “Prompt1->Output1, Out-
put1+Prompt2 ->Output2, [...]
Outputk-1+Promptk-> Outputk”

[60,81]2Making the LLM take the lead
(eg, asking questions) and the
user interacting with it passively.

Flipped interaction • “I would like you to ask me
questions to achieve X. You
should ask questions until <con-
dition/goal> is met.”

[58,60]2Making the LLM more or less
expressing human-like emotions.

Emotion enhance-
ment

• “You can have emotional fluctu-
ations during the conversation.”

[37,48]2Using the LLM to refine the
prompt such as translating the
prompt or rephrasing it.

Prompt refinement • “Please translate in English /
rephrase this prompt: <P>.”

[18,54]2Combining an information re-
trieval component with a genera-
tive LLM. Snippets extracted
from documents are fed into the
system along with the input
prompt to generate an enriched
output.

Retrieval-augmented
generation

• “<List of relevant Snippets>
<Input Prompt>”

[19,20]2Ensemble prompting each
prompt using CoT. Ideal if a
problem has many possible rea-
soning paths.

Self-consistency
(CoT ensembling)

• “CoT_Pr1, Output1, CoT_Pr2,
Output2, ..., CoT_Prk, Outputk”
Final output: Vote

Emerging Trends
Figure 6 illustrates a chronological polar pie chart of selected
papers and their citation connections, identifying five highly
cited papers: (1) Agrawal et al [40] demonstrate GPT-3’s clinical
task performance, especially in named entity recognition and
relation extraction through thorough PD. (2) Kung et al [36]
evaluate ChatGPT’s (GPT-3.5) ability for the United States
Medical Licensing Examination, shortly after the public release
of ChatGPT. (3) Singhal et al [20] introduce MultiMedQA and
HealthSearchQA benchmarks. The paper also presents

instruction PT for domain alignment, a novel paradigm that
entails learning a soft prompt prior to the LLM general
instruction, which is usually written as a hard prompt. Using
this approach on FlanPaLM led to the development of
Med-PaLM, improving question answering over FlanPaLM.
(4) Nori et al [27] evaluate GPT-4 on the United States Medical
Licensing Examination and MultiMedQA, surpassing previous
state-of-the-art results, including GPT-3.5 and Med-PaLM. (5)
Luo et al [26] release BioGPT, a fine-tuned variant of GPT-2
for biomedical tasks, achieving state-of-the-art results on 6
biomedical NLP tasks with suffix-based PT.
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Figure 6. A chronological chart showing the selected papers across the 3 prompt-based paradigms. Papers are classified by different colors according
to the venues in which they were published. Different shapes illustrate whether the LLM is fine-tuned, frozen, or both. Solid or striped color indicates
whether authors used a nonprompt baseline (including humans) for evaluation. Arrows connecting 2 papers denote direct citations. The nodes in the
border of PD, PL, or PT are studies proposing the 2 involved prompt engineering paradigms. Numbers within square brackets are reference citations.
LLM: large language model; PD: prompt design; PL: prompt learning; PT: prompt tuning.

Trends in PD
As shown in Figure 6, the PD paradigm presents multiple trends:
all papers disseminated in clinical-based venues, and 27 of 33
(82%) of the encountered preprints adhere to this paradigm.
Furthermore, we observed a significant focus on work involving
frozen LLMs within the PD domain. This trend is likely due to
the frequent use of ChatGPT in 74 instances, as depicted in
Figure 3, despite OpenAI offering fine-tuning capabilities for
the model. It is worth mentioning that 46 of 78 (59%) PD papers

do not include any baseline, including human comparison. This
gap will be further explored in a subsequent section.

Trends in PL and PT
Among PL and PT papers, computer science and medical
informatics are the most prevalent venues. Although PL has
drawn attention to the idea of adapting the MLM objective to
downstream tasks without needing to further update the LLM
weights, many studies still opt to fine-tune their LLMs, with a
nonnegligible amount of them evaluating in few-shot settings
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[89,92,93,112]. Unlike PD, PL and PT usually include a
baseline, with it often being a traditional fine-tuning version of
the evaluated model [92,93,95] to compare it against novel
prompt-based paradigms. These studies came to a common
conclusion, being that PL is a promising alternative to traditional
fine-tuning in few-shot scenarios.

There are 2 ways for conducting PL: one involves filling in the
blanks within a text, known as cloze prompts, while the other
consists in predicting masked tokens at the end of the sequence,
referred to as prefix prompts. A distinct advantage of the latter
approach is its compatibility with autoregressive models, as
they exclusively predict the appended masks. Among the 29
PL papers, 21 (72%) of them propose cloze prompts, while 15
(52%) use prefix prompting. The involved NLP tasks are
well-distributed across these 2 prompt patterns. Another crucial
component of PL is the verbalizer. As PL revolves around
predicting masked tokens, classification-based tasks require
mapping manually selected relevant tokens to each class (manual
verbalizer). Alternatively, some studies propose a soft verbalizer,
akin to soft prompts, which automatically determines the most
relevant token embedding for each label through training. Of
the 29 PL papers selected, 16 (55%) studies explicitly mention
the use of a manual verbalizer, while 2 explored both verbalizers
to assess performance [101,110]. Only 1 exclusively used a soft
verbalizer [89]. Another study does not use any verbalizer, as
it focuses on generating synthetic data by filling the blanks
[111]. Notably, 8 (28%) studies did not report any mention
regarding the verbalizer methodology.

Hard prompts, which are related to PD and PL, involve manually
crafted prompts. Regarding PT, optimal prompts are attainable
through soft prompting (ie, prompts that are trained on a training

data set), yet, determining the appropriate soft prompt length
remains obscure. In total, 5 of 19 (26%) PT studies tried various
soft prompt lengths and reported their corresponding
performances [26,105,118,119,122]. While there is no definitive
optimal prompt length, a trend emerges: optimal soft prompt
length typically exceeds 10 tokens. Surprisingly, 8 (42%) papers
omit reporting the soft prompt length. Regarding the placement
of soft prompts in relation to the input and the mask, consensus
is lacking. A total of 5 (26%) papers prepend the soft prompt
at the input’s outset, while 4 (21%) append it as a suffix. One
paper uses both strategies in a single prompt template [95].
Some innovative methods involve inserting a single soft prompt
for each entity that needs to be identified in entity-linking tasks
or using token-wise soft prompts, where each token in the textual
input is accompanied by a distinct soft prompt. The position of
soft prompts remains unreported in 5 (26%) studies. Finally,
according to the 6 (32%) studies that used mixed prompts
[90,91,95,101,105,110] (a combination of hard and soft
prompts), it has consistently been reported that mixed prompts
lead to a better performance than hard prompts alone.

Baseline Comparison
Only 62 of the screened papers reported comparisons to
established baselines. These include traditional deep learning
approaches (eg, fine-tuning approach), classical machine
learning algorithms (eg, logistic regression), naive systems (eg,
majority class), or human annotation. The remaining papers
solely explored prompt-related solutions, without including
baseline comparisons. Tables 4-6 traces the presence of a
nonprompt baseline among different prompt categories (Table
4), papers sources (Table 5), and NLP tasks addressed (Table
6).

Table 4. Baseline reports among prompt categories (N=114)a.

Total, n (%)Lower, n (%)Similar, n (%)Higher, n (%)No baseline, n (%)Prompt category

78 (68.4)13 (11.4)4 (3.5)13 (11.4)48 (42.1)Prompt design

29 (25.4)2 (1.8)3 (2.6)19 (16.7)5 (4.4)Prompt learning

19 (16.7)3 (2.6)2 (1.8)11 (9.6)3 (2.6)Prompt tuning

aHigher or lower indicates that the performance of the proposed prompt-based approach is higher or lower than the baseline.

Table 5. Baseline reports among venues (N=114)a.

Total, n (%)Lower, n (%)Similar, n (%)Higher, n (%)No baseline, n (%)Type of venue

33 (28.9)2 (1.8)2 (1.8)16 (14)13 (11.4)Medical informatics

31 (27.2)9 (7.9)3 (2.6)12 (10.5)7 (6.1)Computer science

33 (28.9)5 (4.4)1 (0.9)6 (5.3)21 (18.4)Preprint

13 (11.4)0 (0)0 (0)0 (0)13 (11.4)Clinical

4 (3.5)1 (0.9)0 (0)2 (1.8)1 (0.9)Other

aHigher or lower indicates that the performance of the proposed prompt-based approach is higher or lower than the baseline.
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Table 6. Baseline reports among addressed NLPa tasks (N=114)b.

Total, n (%)Lower, n (%)Similar, n (%)Higher, n (%)No baseline, n (%)NLP task

46 (40.4)11 (9.6)4 (3.5)18 (15.8)13 (11.4)Text classification

19 (16.7)2 (1.8)1 (0.9)3 (2.6)13 (11.4)Question answering

16 (14)3 (2.6)0 (0)10 (8.8)3 (2.6)Relation extraction

15 (13.2)2 (1.8)0 (0)3 (2.6)10 (8.8)Information extraction

15 (13.2)1 (0.9)1 (0.9)3 (2.6)10 (8.8)Multiple-choice question

15 (13.2)5 (4.4)1 (0.9)5 (4.4)4 (3.5)Named entity recognition

11 (9.6)1 (0.9)0 (0)3 (2.6)7 (6.1)Text summarization

9 (7.9)1 (0.9)0 (0)3 (2.6)5 (4.4)Reasoning

8 (7)1 (0.9)0 (0)2 (1.8)5 (4.4)Generation

3 (2.6)0 (0)0 (0)3 (2.6)0 (0)Entity linking

3 (2.6)1 (0.9)0 (0)1 (0.9)1 (0.9)Coreference resolution

3 (2.6)1 (0.9)0 (0)0 (0)2 (1.8)Decision support

3 (2.6)0 (0)0 (0)0 (0)3 (2.6)Conversational

2 (1.8)1 (0.9)0 (0)0 (0)1 (0.9)Text simplification

aNLP: natural language processing.
bHigher or lower indicates that the performance of the proposed prompt-based approach is higher or lower than the baseline.

Nonprompt-related baselines are often featured in studies
focused on PL and PT but not PD. Additionally, PL and PT
have a tendency to perform better than their respective reported
baselines, PD tends to report less conclusive results. More
specifically, among the 22 papers using either PL or PT with
an identical fine-tuned model as a baseline, 17 indicate superior
performance with the prompt-based approach, 3 observed
comparable performance, and 2 studies noted inferior
performance.

Significantly, papers from computer science venues tend to
include more state-of-the-art baselines than those from medical
informatics and clinical venues. Specifically, all 13 papers
reviewed from clinical venues did not use any nonprompt
baselines. Furthermore, there appears to be no consistent link
between the type of NLP tasks and the omission of baselines,
indicating that the decision to include baselines is more
influenced by the evaluation methodology than by feasibility.

Prompt Optimization
Numerous studies in the literature highlight the few-shot
learning capabilities of LLMs, often referred to as “few-shot
prompting,” wherein they demonstrate proficiency in executing
tasks with minimal demonstrations provided, typically through
text prompts. However, it is crucial to acknowledge that the
annotation cost associated with such frameworks might extend
beyond the few annotated demonstrations within the prompt.
Many studies claiming to explore few-shot or zero-shot learning
through prompt engineering rely on extensive annotated
validation data sets to refine PD and formulation. This is, for
example, the case in the paper that popularized the term
“few-shot learning” [1]. Among the 45 analyzed papers
concentrating on few-shot or zero-shot learning, 5 explicitly
detail the optimization of prompt formulation using extensive
validation data sets. Conversely, 18 of these papers either do

not engage in prompt optimization or test various prompts and
document all results. Notably, 22 papers present results using
only 1 prompt choice, without clarifying whether this choice
was made thanks to additional validation data sets.

Discussion

Summary of the Findings
This scoping review aimed to map the current landscape of
medical prompt engineering, identifying key themes, gaps, and
trends within the existing literature. The primary findings of
this study reveal a greater prevalence of PD over PL and PT,
with ChatGPT dominating the PD domain. Additionally, many
studies omit nonprompt-based baselines, do not specify the
language of study, or exhibit a lack of consensus in PL (prefix
vs cloze prompt) and PT settings (soft prompt lengths and
positions). English is notably dominant as the language of study.
These findings suggest that while the field is emerging, there
is a pressing need for improved research practices.

Costs, Infrastructure, and LLMs in Clinical Settings
Prompt engineering techniques enable competitive performance
in scenarios with limited or no resources as well as in
environments with low-cost computing infrastructure. As
hospital data and infrastructure are often found in this scenario,
these approaches hold great promise in the clinical field. Figure
6 shows the absence of PL- and PT-related works in clinical
journals. This trend may stem from the widespread accessibility
of ChatGPT, favoring PD-focused investigations. Despite efforts
like OpenPrompt [125] to facilitate PL and PT works, the
programming barrier likely deters clinical practitioners.
Surprisingly, 7 papers use ChatGPT with sensitive clinical data.
Despite the recent availability of ChatGPT Enterprise in GPT-4
for secure data handling, it is apparent that most of these studies
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have not used this feature since they used GPT-3.5. Limited use
of local LLMs, especially LLaMA-based, suggests a need for
their increased adoption in future clinical PD studies. The lack
of local LLMs may be due to clinicians’ limited computational
infrastructure.

Prompt Engineering Techniques Effectiveness in
Medical Research
In documented prompt engineering techniques, the effectiveness
of few-shot prompting compared to zero shot varies by task and
scenario. However, CoT shows superior reasoning performance,
compelling LLMs to present reasoning pathways and
consistently outperforming zero-shot and few-shot methods
across PD studies. Its ensemble-based variant, self-consistency,
consistently outperforms CoT. Despite the persona pattern’s
frequent use, there is a lack of ablation studies on its impact on
medical task performance, with only 1 paper reporting negligible
improvement [61]. Prompt engineering is an emerging field of
study that still needs to prove its efficacy. However, almost half
of the papers focused only on prompt engineering and failed to
report any nonprompt-related baseline performance, despite the
availability of such baselines for the addressed NLP tasks. On
the whole, the results are far from being systematically in favor
of LLM-based methods, greatly attenuating the impression of
a technological breakthrough that is generally commented on.
Selecting a baseline remains a necessary step toward
understanding the actual impact of prompt engineering.

Bender Rule
Regarding the languages, while Table 2 shows the dominance
of English in medical literature, many papers studying English
fail to explicitly mention the language of study. This oversight
is more prevalent in computer science and clinical venues,
whereas medical informatics exhibits a more favorable trend,
as validated by a chi-square test yielding a P value of .02 (Table
S1 in Multimedia Appendix 2). Notably, languages such as
Chinese are consistently mentioned across the 18 selected

papers. However, the Bender rule, namely “always name the
language(s) you are working on,” seems to be well respected
for languages other than English. This finding has already been
documented for NLP research in general [126].

Fine-Tuning Versus Prompt-Based Approaches
While traditional LLM fine-tuning remains a viable method for
various NLP tasks, PL and PT are competitive alternatives to
fine-tuning, particularly in resource-constrained and low
computational scenarios. PL, leveraging predefined prompts to
guide model behavior, offers an efficient approach in low-to-no
resource environments. Conversely, PT emerges as a viable
solution in low computational scenarios, as it requires
substantially fewer trainable parameters compared to traditional
fine-tuning approaches. Since both prompt-based approaches
do not require the LLM to be further trained, they are less prone
to catastrophic forgetting [127].

Recommendations for Future Medical Prompt–Based
Studies
For future research in prompt engineering, we propose several
recommendations aimed at improving research quality,
reporting, and reproducibility. From this review, we identified
several trends such as the computational advantages or the lack
of evaluations on baselines with a lack of ablation studies to
evaluate the performance of the prompting strategies. Some
studies do not clearly mention the prompt engineering choices
they made. For instance, in PL, choices range from using cloze
to prefix prompting and from using manual to soft verbalizer.
Similarly, PT is characterized by configurations of soft prompts,
such as the length and the positions. To clarify these distinctions
and enhance methodological transparency and reproducibility
in future research, we have developed reporting guidelines
available in Textbox 1. Adhering to these reporting guidelines
will contribute to advancing prompt engineering methodologies
and their practical applications in the medical field.

Textbox 1. Detailed reporting guidelines for future prompt engineering studies.

General reporting recommendations

• For sensitive data, local large language models (LLMs) should be preferred to the ones that use an application programming interface or a web
service.

• The language of the study used should be explicitly stated.

• The mention of whether the LLM undergoes fine-tuning should be made explicit.

• The prompt optimization process and results should be documented to ensure transparency, whether it is through different tested manual prompts
or through a validation data set.

• The terms “few-shot,” “one-shot,” and “zero-shot” should not be used in settings where the prompts have been optimized on annotated examples.

• Experiments should include baseline comparisons or at least mention existing results, particularly when data sets originate from previous medical
challenges or benchmarks.

Specific to prompt learning and prompt tuning

• Concepts (such as prompt learning and prompt tuning) should be defined and used consistently with the consensus.

• In prompt learning experiments, the verbalizer used (soft and hard) should be explicitly specified, or a clear justification should be provided if
the verbalizer is omitted. Additionally, whether the prompt template follows the cloze or the prefix format should be mentioned.

• In prompt tuning experiments, authors should provide details on soft prompt positions, length, and any variations tested, such as incorporating
hard or mixed prompts, as part of the ablation study.
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Limitations
A limitation was the large number of papers retrieved during
the initial search, which was addressed by limiting the search
scope to titles, abstracts, and keywords. Furthermore, since
some studies may perform prompt engineering techniques
without mentioning any of the 4 prompt-related expressions
used in the queries, they might be missed by our searches.

Conclusions
Medical prompt engineering is an emerging field with significant
potential for enhancing clinical applications, particularly in

resource-constrained environments. Despite the promising
capabilities demonstrated, there is a pressing need for
standardized research practices and comprehensive reporting
to ensure methodological transparency and reproducibility.
Consistent evaluation against nonprompt-based baselines,
prompt optimization documentation, and prompt settings
reporting will be crucial for advancing the field. We hope that
a better adherence to the recommended guidelines, in Textbox
1, will improve our understanding of prompt engineering and
enhance the capabilities of LLMs in health care.
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