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Abstract

Background: The performance of a classification algorithm eventually reaches a point of diminishing returns, where the
additional sample added does not improve the results. Thus, there is a need to determine an optimal sample size that maximizes
performance while accounting for computational burden or budgetary concerns.

Objective: This study aimed to determine optimal sample sizes and the relationships between sample size and dataset-level
characteristics over a variety of binary classification algorithms.

Methods: A total of 16 large open-source datasets were collected, each containing a binary clinical outcome. Furthermore, 4
machine learning algorithms were assessed: XGBoost (XGB), random forest (RF), logistic regression (LR), and neural networks
(NNs). For each dataset, the cross-validated area under the curve (AUC) was calculated at increasing sample sizes, and learning
curves were fit. Sample sizes needed to reach the observed full–dataset AUC minus 2 points (0.02) were calculated from the
fitted learning curves and compared across the datasets and algorithms. Dataset–level characteristics, minority class proportion,
full–dataset AUC, number of features, type of features, and degree of nonlinearity were examined. Negative binomial regression
models were used to quantify relationships between these characteristics and expected sample sizes within each algorithm. A
total of 4 multivariable models were constructed, which selected the best-fitting combination of dataset–level characteristics.

Results: Among the 16 datasets (full-dataset sample sizes ranging from 70,000-1,000,000), median sample sizes were 9960
(XGB), 3404 (RF), 696 (LR), and 12,298 (NN) to reach AUC stability. For all 4 algorithms, more balanced classes (multiplier:
0.93-0.96 for a 1% increase in minority class proportion) were associated with decreased sample size. Other characteristics varied
in importance across algorithms—in general, more features, weaker features, and more complex relationships between the
predictors and the response increased expected sample sizes. In multivariable analysis, the top selected predictors were minority
class proportion among all 4 algorithms assessed, full–dataset AUC (XGB, RF, and NN), and dataset nonlinearity (XGB, RF,
and NN). For LR, the top predictors were minority class proportion, percentage of strong linear features, and number of features.
Final multivariable sample size models had high goodness-of-fit, with dataset–level predictors explaining a majority (66.5%-84.5%)
of the total deviance in the data among all 4 models.

Conclusions: The sample sizes needed to reach AUC stability among 4 popular classification algorithms vary by dataset and
method and are associated with dataset–level characteristics that can be influenced or estimated before the start of a research
study.

(J Med Internet Res 2024;26:e60231) doi: 10.2196/60231
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Introduction

Background
Machine learning (ML) is becoming increasingly popular within
the domain of health care data analysis and clinical
decision-making [1]. The lack of a fixed model specification
and distributional assumptions allows for these methods to learn
complex relationships that are not necessarily linear in nature,
such as high-order interactions and polynomial effects. Due to
this, most popular machine-learning algorithms require much
larger sample sizes than traditional statistical methods [2].
However, exact amounts are not clear, and there are many
different ML algorithms, each containing its own limitations
and properties [3]. Furthermore, in traditional statistical analysis,
we can often analytically derive equations that measure how
the sample size needed to detect a certain prespecified effect
will behave under certain assumptions [4]. Due to the
data-driven and algorithmic nature of ML methods, which rely
on computational approaches rather than statistical theory to
capture relationships, an empirical approach is necessary in
order to understand the behavior of these methods under varying
conditions.

It is known that, for any given dataset, there is a point where
adding additional samples will not increase the performance
metrics of the model considerably [5]. Thus, it becomes
important to collect enough data to optimize these metrics while
also accounting for this performance ceiling and the budgetary
or computational concerns that may arise when collecting
substantial amounts of unnecessary data.

Another reason for the difficulty in selecting a proper sample
size when applying ML is the lack of a true end point or
common metric of interest. As discussed previously, the
traditional target for sample size determination methods is the
statistical power to detect a certain effect size [4]. In ML, since
predictive performance rather than parameter estimation is
usually of interest, this end point becomes unclear. A commonly
used metric of predictive performance is prediction accuracy,
defined as the proportion of correct classifications made [6].
However, the prediction accuracy is related to the distribution
of the outcome; for a rare event, accuracy can be high even with
a completely noninformative model [7]. As a result, a fairer
performance metric is the area under the receiver operating
characteristic curve (area under the curve [AUC]), which
evaluates model predictions over a range of probability
thresholds from 0 to 1 [8]. AUC is widely used to evaluate the
performance of an ML algorithm and has several desirable
properties. First is interpretability—a higher AUC indicates a
higher degree of separability, and an AUC of 0.5 implies a
completely random prediction, while an AUC of 1.0 indicates
perfect classification. A second desirable property of AUC is
insensitivity to the proportion of cases versus controls in the
dataset [9]; because the entire range of probability thresholds
is considered, AUC can also be considered the “average”
sensitivity (true-positive rate) over all possible values of
specificity (true-negative rate). While the AUC is commonly
used to evaluate the initial performance of an ML algorithm,
other metrics, such as calibration [10], may also be preferred

once modeling reaches later stages. However, it is necessary to
ensure that a trained ML model can first make stable predictions
before assessing further metrics such as calibration or
threshold-selection.

Related Works
The concept of empirically estimating the performance of a
classification algorithm as the training set size increases has
been widely explored in a variety of different settings. This is
typically done by creating a “learning curve,” measuring a
metric (such as classification accuracy) as a function of sample
size [11]. Perlich et al [12] compared logistic regression (LR)
approaches versus decision-tree–based approaches,
demonstrating that LR often outperforms tree induction in small
samples, but decision trees excel as the sample size becomes
large. Mukherjee et al [13] developed a method to assess the
error rate of a classifier as a function of sample size using an
inverse power-law model. Their method was introduced in the
context of DNA microarray data, which often contains a large
amount of features and limited access to samples due to cost
restraints. Figueroa et al [14] modified the original learning
curve fitting process by using nonlinear weighted least squares
to favor future predictions, using 3 moderately sized datasets
to demonstrate their algorithm. Provost et al [15] used learning
curves and efficient progressive sampling to show that
classification algorithms eventually converge to a stable
accuracy with increasing sample size, mainly focusing on the
methodology of the sampling scheme. More recently, van der
Ploeg et al [16] used several clinical datasets and a
simulation-based approach to show that modern classification
algorithms such as neural networks (NNs) and random forest
(RF) require at least 200 events per variable to reach a stable
AUC. Richter and Khoshgoftaar [17] experimented with learning
curves on biomedical big data with limited labels and heavy
class imbalance, using 1% of the full dataset AUC as their
stopping rule. Because the cost of labeling certain types of data
is expensive, it is important to maximize the quality of the data
while minimizing costs. They found that a semisupervised
approach and pseudolabeled data generated from a small amount
of actual data could accurately predict future performance.

Study Aim
Previous contributions have focused on the methodology of
learning curve fitting or estimating future performance from an
already-collected sample. In those that have examined similar
end points (ie, AUC plateau or stability over a variety of
algorithms), the number of real-world datasets included was
small, modern gradient boosting techniques (XGBoost [XGB],
etc) were not examined because they had not yet been
developed, and the impact of dataset–level characteristics on
sample sizes was not extensively studied [15,16]. Previous
literature has also mostly used small datasets in the context of
-omics type data. In general, a focused clinical study often
contains fewer features, a wide variety of variable types (ie,
numeric, categorical, ordinal, etc), and fewer correlated features
than -omics data [18]. This study aims to develop
algorithm-specific sample size guidelines using dataset–level
variables that can be estimated or manipulated by researchers
before any data has been collected, analogous to a sample size
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calculation performed in a traditional power analysis. The focus
of these guidelines was on the stable internal validity of each
method, which is typically the first benchmark used to assess
performance when attempting to develop a predictive model.
We examined 4 popular binary classification algorithms in the
context of clinical research, where the aim is to predict a
health-related outcome such as a disease state or event. The
contributions of this study include a learning curve analysis of
16 real-world datasets, an examination of modern
gradient-boosting methods (XGB) within this analysis, and
concrete sample size guidelines based on dataset-level
characteristics.

Methods

Dataset Description
We have collected 16 public-access clinical datasets ranging
from sample sizes of 70,000-1,000,000. A detailed description
of dataset sources, variables included, and outcomes can be
found in Multimedia Appendix 1. It should be noted that 8 of
these 16 datasets were artificially created from smaller real-life
datasets using Bayesian Network Generation, and their details
have been previously discussed [19]. All datasets contained a
single binary outcome, such as a disease state, with a
combination of continuous numeric, discrete numeric, or binary
predictors. Continuous numeric features were considered to
have at least 10 unique values.

A detailed description of specific data preprocessing steps can
be found in Multimedia Appendix 1. In summary, nominal
variables were converted to binary variables based on arbitrary
binning rules, and variables containing text values (ie, “gender”:
male vs female) were also converted to binary variables. Missing
data was present in 3 datasets only (CDC Heart Disease [2022],
Diabetes130, and COVID-19), although the amount of
missingness was quite low among these sets (1.3%, <1%, and
<1%, respectively). Without knowing additional information
regarding the nature of these missing values, we considered
them missing completely at random (MCAR) and performed
mean imputation [20].

Classification Algorithms
We examined the following binary classifiers on each dataset:
Logistic Regression (LR) [21], Random Forest (RF) [22],
XGBoost (XGB) [23], and Neural Networks (NNs) [24]. These
algorithms were selected due to their widespread and popular
use in clinical data analysis [25]. We performed LR by fitting
a multivariable model using all predictors without any variable
selection or regularization methods. For the RF and XGB
algorithms, hyperparameters were left at their default values,
which can be found in the R documentation [22,23]. For NNs,
we used the R (R Foundation for Statistical Computing) package
h2o [26] to perform our analyses; we considered one hidden
layer with 20 units and 10 epochs of data training. The type of
NN used by “h2o” is a multilayer feedforward artificial NN,
also known as multilayer perceptron (MLP). The activation
function used in the hidden layers was the default linear rectifier,
with softmax activation in the final output nodes for probability
estimation and classification. Other NN hyperparameters were

again left at their default values, which can be found in the
documentation [26].

Learning Curve Approach
From the 16 datasets studied, we evaluated the cross-validated
area under the curve (CV-AUC) as a function of increasing
sample size. Cross-validation is a method of assessing the
internal validity of a classifier; it works by splitting the entire
training dataset into k folds and fitting k models, with a single
fold left out for evaluation in each model [27]. The final
cross-validated metric (in our case, AUC) is calculated by taking
the average performance over all k of the held-out folds. As a
result, the entire training dataset is used to generate an estimate
of out-of-sample performance. The learning curve approach is
detailed below:

1. Create a list of proposed training set sizes.
2. At each point in the sample size interval, randomly sample

10 subdatasets of size n from the full dataset.
3. In each of the 10 subdatasets, estimate the (5-fold,

outcome-stratified) CV-AUC on the proposed algorithm of
choice. Average the ten CV-AUC values to generate an
estimate of out-of-sample performance at a given n.

4. Repeat at the next n in the list.

For the first step, the training set size list usually consisted of
10 evenly spaced points ranging from n=500 to n=50,000, but
if stability was not reached by n=50,000, the end point was
extended. For LR, the final n was lower, as the AUC from these
models typically became stable much earlier than more complex
ML algorithms. A full description of the sample size intervals
used for each dataset and each algorithm can be found in
Multimedia Appendix 1 (Table S1). Stability was defined as
the smallest n where the CV-AUC was within 2 points (0.02)
of the observed full–dataset AUC. For example, if the
full–dataset AUC was 0.85, we would obtain the smallest n
where a CV-AUC of 0.83 was first surpassed. The full–dataset
AUC for each classification algorithm was calculated using
5-fold stratified cross-validation (CV) on the entire dataset. We
chose this stopping point of 0.02 because, although arbitrary,
we believed that it provided the most reasonable trade-off
between high performance and computational burden.
Specifically, as can be seen visually from figures in the Learning
Curve Results section, this stopping point typically marks the
beginning of the “point of diminishing returns,” where the power
law curves begin to plateau, and the amount of additional sample
needed to make further improvements increases exponentially.
It is important to note that once the learning curve equations
are estimated, this choice of stopping point can be freely altered.
Therefore, although we report 0.02 in this study as our stopping
rule of interest, the final equations derived below can be
re-estimated with any user-specified stopping point (for
example, 0.01 or 0.05). We present sample size results using
alternative thresholds of 0.01 and 0.05 AUC points from the
full–dataset AUC in Multimedia Appendix 1.

Once the raw data was generated, estimated learning curves
were fit using nonlinear least squares optimization [28],

following the power law equation: AUC(n) = anb+c, where a
and b were estimated, and c was either fixed to be the
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full–dataset AUC or was also estimated, depending on the
quality of the fit. For some datasets and algorithms, the power
law function did not fit the data well. These were typically
scenarios where the dataset required a relatively larger sample
size to become stable. In these scenarios, we instead fit the
learning curves using a logarithmic function,
AUC(n)=β0+β1*log(n), where β0 and β1 were estimated using
ordinary least-squares [29].

Sample Size Determination and Guidelines
Following the learning curve analysis of the 4 selected
algorithms on our datasets, we examined the effects of 6
dataset–level factors on the sample sizes needed for AUC
stability. These included minority class proportion (maximum
value of 50%, indicating no class imbalance), separability
(defined as the full–dataset AUC itself), the total number of
features, the percentage of features that were continuous (versus
binary or discrete numeric), the percentage of “core linear”
features, and “dataset nonlinearity.” Core linear features were
determined by adding an L1 (LASSO [least absolute shrinkage
and selection operator]) penalty to the LR model for each full
dataset [30]. The percentage of variables that did not shrink to
zero when this penalty was added were defined as core linear
features. Dataset nonlinearity was a rough measure of the degree
of nonlinear or interactive relationships between the predictors
and the outcomes that were present in the data. This was defined
as the point difference in the full–dataset AUC when using a
complex algorithm (XGB) compared with LR. For example, if
LR yielded a full–dataset AUC of 0.90 and XGB yielded a
full–dataset AUC of 0.95, the dataset nonlinearity would be
calculated as 5.0. For the purpose of calculating these values,
XGB hyperparameters were left at their default values [26].

Within the context of each algorithm, the relationship between
these dataset–level variables and the n required for AUC stability
was examined. Since the estimated sample sizes were discrete

and right-skewed numeric values, we used negative binomial
regression models [31] to quantify the strength and significance
of each dataset characteristic on predicted sample sizes, which
produce coefficients in terms of log-expected counts. Then, in
multivariable negative binomial regression models for each
algorithm, we selected up to 3 dataset–level predictors that
together minimized the Akaike Information Criterion, which
evaluates how well the model fits the data while penalizing for
the number of parameters estimated [32]. A maximum of 3
predictors per model were considered in order to avoid potential
overfitting.

We also calculated adjusted deviance-based pseudo-R2 statistics
[33,34], which further quantified each model’s goodness-of-fit
and proportion of deviance explained by the predictors. The
final model equations were reported and discussed for each
algorithm, and visualizations of the model predictions at varying
levels of each dataset-level characteristic were generated.
Statistical significance was set to α=.05 for all hypothesis tests
considered, and RStudio (version 4.2.3; R Foundation for
Statistical Computing) was used for all analyses.

Results

A workflow and overview of the study’s aims and end points
can be seen in Figure 1.

We gathered 16 datasets with sample sizes ranging from 70,000
to 1,000,000 (Table 1). Out of the 4 classification algorithms
examined, XGB performed the best or tied for the best
performance on 14/16 (87.5%) datasets, while RF performed
the best on two. Full dataset AUCs (separability) ranged from
0.608-0.979 (XGB), 0.609-0.976 (RF), 0.596-0.949 (LR), and
0.603-0.974 (NN; Table 2). As expected, LR models generally
performed the worst, with full–dataset AUCs that were 0.028
points lower on average compared with XGB.
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Figure 1. Flowchart of study aims and deliverables. AUC: area under the curve.

Table 1. Dataset–level characteristics.

NonlinearityContinuous fea-
tures (%)

Core linear fea-
tures (%)

Features, nMinority class
proportion (%)

Full dataset size, nSourceDataset name

1.845.5100115070,000OpenMLCardio

0.82045.73546.1101,766OpenMLDiabetes130

1.212.525820.2110,527OpenMLNoShow

9.533.344.4934.6116,640OpenMLBreastTumor

0.71985.72113.9253,680UCIDiabetes

2.26.2537.51639263,007OpenMLCOVID-19

1.927.336.4112.1318,438OpenMLLOS

0.523.576.5174.4319,795KaggleCDC Heart Disease (2020)

0.615.459398.6394,509KaggleCDC Heart Disease (2022)

1.646.292.31344.41,000,000OpenMLHeart

4.031.694.71920.81,000,000OpenMLHepatitis

2.35.683.31845.71,000,000OpenMLLymph

1.518.272.21125.61,000,000OpenMLPharynx

6.730.861.51316.51,000,000OpenMLCholesterol

3.6384.83313.21,000,000OpenMLDermatology

6.255.683.31817.81,000,000OpenMLPBC
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Table 2. Full–dataset AUC (separability) for each algorithm.

NNdLRcRFbXGBaDataset name

0.7950.7840.7960.802Cardio

0.6610.6540.6610.662Diabetes130

0.6030.5960.6090.608NoShow

0.7300.6820.7800.777BreastTumor

0.8260.8220.8220.829Diabetes

0.6610.6420.6610.664COVID-19

0.9010.8980.9150.917LOS

0.8090.8100.8100.815CDC Heart Disease (2020)

0.8010.8090.8010.815CDC Heart Disease (2022)

0.9620.9490.9630.965Heart

0.9740.9390.9760.979Hepatitis

0.9560.9340.9570.957Lymph

0.8560.8430.8580.858Pharynx

0.7140.6690.7280.736Cholesterol

0.8520.8230.8570.859Dermatology

0.8230.7880.8500.850PBC

aXGB: XGBoost.
bRF: random forest.
cLR: logistic regression.
dNN: neural network.

Learning Curve Results
Learning curves were fit to the 16 collected datasets. Table 3
and Figure 2 contain a full summary and visualization of
estimated sample sizes across each classification algorithm and
dataset. NNs required the largest sample sizes to reach stability
and also had the most variability among the datasets (median
12,298, range 1824-180,835). LR required the smallest sample

size to reach stability and also was the least variable (median
696, range 204-6798). XGB required approximately 3 times the
sample size compared with RF, but the range of estimated
sample sizes generated from RF models was nearly twice as
wide (Table 2). Figure 3 shows the fitted learning curves for
each algorithm generated within each dataset, with a marker
indicating the earliest sample size where the CV-AUC was
within 2 points of the full–dataset AUC.
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Table 3. Sample sizes are needed to reach AUC stability from the learning curve analysis.

NNdLRcRFbXGBaDataset name

434936314764341Cardio, n

16,823182235449623Diabetes130, n

8084742224112,114NoShow, n

28,42455817,38319,668BreastTumor, n

8556114022619306Diabetes, n

424154347507026COVID-19, n

14,085255515,38118,239LOS, n

10,5102243499515,177CDC Heart Disease (2020), n

25,120676816,35530,534CDC Heart Disease (2022), n

1824204250960Heart, n

15,30242532653513Hepatitis, n

447027619921409Lymph, n

5260317248810,296Pharynx, n

180,8351368140,49965,556Cholesterol, n

47,489169631037979Dermatology, n

53,45365071,19431,897PBC, n

12,298 (1824-180,835)696 (204-6798)3404 (250-140,499)9960 (960-65,556)Median (Range)

9.47 (1.17)6.75 (0.96)8.57 (1.55)9.16 (1.11)Mean (SD), Log-Transform

aXGB: XGBoost.
bRF: random forest.
cLR: logistic regression.
dNN: neural network.

Figure 2. Visualization of expected sample sizes calculated from the learning-curve analysis of 16 data sets. LR: Logistic Regression. NN: Neural
Networks. RF: Random Forest. XGB: XGBoost.
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Figure 3. Fitted learning curves for 16 data sets across 4 classification algorithms. Different colors were chosen for different algorithms Each black
"X" represents the point where the AUC at size n first comes within 2-points (or, 0.02) of the asymptotic (ie full-data set) AUC. LR: Logistic Regression.
NN: Neural Networks. RF: Random Forest. XGB: XGBoost. AUC: Area-under the receiver operating characteristic curve.

Dataset–Level Characteristics
Dataset–level characteristics were examined (Table 1). The
average minority class percentage was 25.18% (SD 15.93%),
and the average number of features was 18 (SD 9). The average
percentage of continuous numeric features was 24.6% (SD
15.31%), and the average percentage of core linear features was
67.69% (SD 23.73%). The median dataset nonlinearity was 1.85
(range 0.50-9.50). Most datasets (13/16, 81.3%) had nonlinearity
values under 5.0. Thus, for the purpose of model fitting, this
was converted into a binary variable indicating either "high"
(≥) or "low" (<5) nonlinearity. Scatterplots examining the visual
relationships between log-expected sample sizes and each
dataset–level characteristic can be found in Figure 4.

Negative binomial regression models were fitted, examining
the individual associations between each of the dataset–level
characteristics and predicted sample sizes (Table 4). In these
models, separability (full–dataset AUC) was multiplied by 100
for easier interpretation. For example, an AUC of 0.80 was
entered as 80.0 in the models. For XGB, minority class
proportion and separability were both inversely related to sample
size; for every 1-unit increase in separability (where 50.0 was
the baseline value), estimated sample sizes were affected by a
multiplier of 0.955 (P=.02). For every 1% increase in minority
class proportion, estimated sample sizes were affected by a

multiplier of 0.959 (P<.001). In datasets with high (≥5.0) values
of nonlinearity, estimated sample sizes were affected by a
multiplier of 3.888 (P=.005). In the RF analyses, results were
similar for minority class proportion (0.931× multiplier for 1%
increase, P<.001), separability (0.939× multiplier for each 1-unit
increase over 50.0, P=.047), and nonlinearity (15.984×
multiplier for those with high values, P<.001). However, the
percentage of continuous numeric features (1.065× multiplier
for every 1% increase, P=.003) was also individually statistically
significant. For LR, minority class proportion (0.963× multiplier
for every 1% increase, P=.001), the number of features (1.056×
multiplier for each additional feature, P=.006), the percentage
of core features (0.982× multiplier for 1% increase, P=.046),
and the percentage of continuous numeric features (0.971×
multiplier for 1% increase, P=.04) were significantly associated
with sample size. Again, a more balanced ratio of classes
reduced the needed sample size, while more features increased
the sample size. However, a higher percentage of core linear
features and a higher percentage of continuous numeric features
lowered the sample size. Finally, for NNs, results were similar
to XGB; minority class proportion (0.953× multiplier for 1%
increase, P=.003), full–dataset AUC (0.950× multiplier for each
1% increase over 50.0, P=.03), and nonlinearity (6.85×
multiplier for high values, P<.001) were all individually
statistically significant.
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Figure 4. Relationships between each data set–level characteristic and expected sample sizes. The y-axis represents the natural-log transformed sample
size values, while each x-axis represents varying levels of each data set–level characteristic. Separability multiplied by 100. All values representing
proportions were multiplied by 100 so that 0 indicates 0% and 100 indicates 100%. Nonlinearity “low”: <5, “high”: ≥5. LR: Logistic Regression. NN:
Neural Networks. RF: Random Forest. XGB: XGBoost.

Table 4. Univariable association of each dataset–level characteristics with predicted sample size.

NNdLRcRFbXGBaVariable

P

value

Estimate (95% Con-
fidence Interval)

P

value

Estimate (95% Con-
fidence Interval)

P

value

Estimate (95% Con-
fidence Interval)

P

value

Estimate (95% Con-
fidence Interval)

.0030.953 (0.921-0.990).0010.963 (0.945-0.983)<.0010.931 (0.891-0.977)<.0010.959 (0.934-0.985)Minority class propor-
tion

.030.950 (0.898-1.007).980.999 (0.946-1.051).0470.939 (0.861-1.028).020.955 (0.903-1.000)Separability

.981.001 (0.947-1.071).0061.056 (1.021-1.097).350.966 (0.904-1.059).991.000 (0.958-1.053)Number of features

.041.019 (0.982-1.059).040.971 (0.942-1.006).0031.065 (1.013-1.121).211.019 (0.986-1.057)Continuous features
(%)

.610.994 (0.960-1.028).0460.982 (0.959-1.004).410.988 (0.941-1.034).070.983 (0.958-1.001)Core linear Features
(%)

<.0016.853 (2.763-
20.947)

.350.585 (0.211-2.112)<.00115.985 (5.914-
55.754)

.0053.889 (1.631-
11.209)

Dataset nonlinearity

aXGB: XGBoost.
bRF: random forest.
cLR: logistic regression.
dNN: neural network.

In multivariable models for each algorithm, we selected the set
of 3 predictors that minimized the AIC. The equation below,
as well as Table 5, presents a summary of each
algorithm-specific model, which shows the adjusted contribution
of each predictor to the expected sample size.

Equation 1: Empirically derived sample size equations for XGB,
RF, LR, and NN algorithms.

1.

2.

3.

4.
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Table 5. Multivariable negative binomial regression—data-level characteristics effect on predicted sample size.

NNdLRcRFbXGBaVariable

P valueEstimate (95%
Confidence In-
terval)

P valueEstimate (95%
Confidence In-
terval)

P valueEstimate (95%
Confidence In-
terval)

P valueEstimate (95%
Confidence In-
terval)

<.00136,819 (18,691-
76,970)

<.0011801 (904-
3,809)

<.00126,872 (8118-
92,378)

<.001121,967
(57,883-
262,108)

Intercept

.020.976 (0.957-
0.996)

<.0010.968 (0.957-
0.979)

<.0010.957 (0.940-
0.975)

<.0010.956 (0.946-
0.967)

Minority class proportion

————e.070.975 (0.947-
1.004)

<.0010.952 (0.934-
0.970)

Separability

——<.0011.054 (1.034-
1.076)

————Number of features

.020.973 (0.950-
0.997)

——————Continuous features (%)

——.0050.988 (0.980-
0.996)

————Core linear features (%)

<.00110.209 (4.274-
26.569)

——<.00112.298 (5.826-
28.791),

<.0013.091 (2.011-
4.922)

Dataset nonlinearity

aXGB: XGBoost; adjusted pseudo-R2=0.845.
bRF: random forest; adjusted pseudo-R2=0.808.
cLR: logistic regression; adjusted pseudo-R2=0.798.
dNN: neural network; adjusted pseudo-R2=0.665.
eNot available.

For XGB and RF, minority class proportion, separability, and
nonlinearity were the top 3 variables selected. For LR, minority
class proportion, number of features, and percentage of core
features were the top 3 variables. For NN, the top 3 variables
were minority class proportion, number of features, and
nonlinearity. The direction and magnitude of coefficient
estimates from multivariable models were similar to those
obtained from univariable models (Table 5). Deviance-based

R2 statistics, adjusted for the number of predictors added, were

0.845 (XGB), 0.808 (RF), 0.798 (LR), and 0.665 (NN; Table
5). This indicated that the dataset–level predictors explained a
majority (66.5%-84.5%) of the total deviance in the data among
all 4 models, although the NN model was weaker than the other
3. Figure 5 shows the predicted sample sizes estimated from
each algorithm-specific model at a variety of levels for each
predictor. As can be seen, for all 4 classification algorithms, a
balanced class ratio (50% cases versus 50% controls) resulted
in the lowest predicted sample sizes.
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Figure 5. Fitted values derived from the 4 final negative binomial regression models for each classification algorithm. Shaded lines represent 95% CI.
Imbalance = minority class proportion × 100. Separability = Full–data set AUC × 100. Nonlinearity “low”: <5, “high”: ≥5. LR: Logistic Regression.
NN: Neural Networks. RF: Random Forest. XGB: XGBoost.

Discussion

Conclusions
In this study, we performed a learning curve analysis of 16
datasets over 4 different classification algorithms. From this,
we identified the expected samples needed to reach AUCs within
2 points of those measured in the full dataset. We then examined
the effects of dataset–level characteristics on expected sample
sizes and provided formulas that can be used to predict the
necessary sample size in a new dataset. We found that LR
required the smallest sample size (median 696, range 204-6798)
but performed slightly worse, on average, compared with more
complicated algorithms. RF (median 3404, range 250-140,499)
and XGB algorithms (median 9960, range 960-65,556) required
larger sample sizes, as expected. NNs required the largest sample
size (median 12,998, IQR 1824-180,835) and also had the most
variability over the 16 datasets. This was an interesting finding,
as our implementation of a deep learning approach was a basic
architecture including only one hidden layer and 20 nodes. The
fact that NNs required the largest median sample size of >12,000
and were the most variable in terms of expected sample size
demonstrates that implementation of deep learning
methods—especially more complex deep-learning schemes than
what we have provided—should probably be reserved for
extremely large datasets for optimal performance and adequate
discriminative stability. In addition, NNs had a weaker
performance than XGB in every dataset. However, it is possible
that a more expressive deep learning approach may yield higher
AUCs compared with the best-performing ML solutions
considered in this study, although to the best of our knowledge,
no other studies have provided deep learning results that

outperform ML approaches in these specific datasets. These
results support current literature that suggests deep learning
may not be optimal for tabular data analysis compared with
tree-based methods [35] when weighing accuracy trade-offs
versus computational burden.

Our results are consistent with Perlich et al [12], which showed
that LR might be optimal in small samples, but tree-based
methods eventually provide the best performance in large
datasets. Van der Ploeg et al [16] determined that LR required
a much lower number of events-per-variable for AUC stability,
defined as CV-AUC within 0.01 of the full–dataset performance
compared to RF and NN, which required >200
events-per-variable. We can convert our expected sample sizes
to events-per-variable by taking the predicted n, multiplying it
by the minority class proportion of the dataset, and then dividing
it by the number of features. In our study, LR required an
average of 11 events-per-variable, XGB: 205, RF: 231, and NN:
342, which supports this notion that modern modeling
techniques are “data-hungry” [16].

In summary, this study provides a simple framework for
determining sample size in the context of 4 popular ML
algorithms. Dataset–level variables that altered expected sample
sizes varied by algorithm, but the class imbalance of the
outcome, the strength and number of features, and the
nonlinearity of the predictors were among the most influential
characteristics. Most of these dataset–level characteristics can
be reasonably guessed or influenced before the study begins.
For example, researchers can examine previous studies in their
field of interest to determine a reasonable range for separability
and minority class proportion. For minority class proportion,
which was a key selected feature for all 4 models, we observed
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that an optimal class balance (50% cases, 50% controls) led to
the lowest predicted sample sizes, with each additional
percentage point of balance decreasing the needed n by a
multiplier of 0.96-0.98.

In addition, researchers can use feature engineering to control
the quality and overall number of predictors included in their
models. As we have determined in this study, a smaller number
of strong predictors will generally require less sample size than
a large and noisy predictor set, supporting the idea that more
features are not always ideal [36]. Dataset nonlinearity is less
intuitive to guess before data collection. In general, we found
that datasets with nonlinearity values of at least 5.0 required
approximately 3-12 times the amount of sample to reach
stability, depending on the algorithm. However, in this study,
13/16 (81.3%) of the datasets had values under 5.0, which means
that high values of dataset nonlinearity may be uncommon.
Again, previous studies where both simple (LR) and complex
(NN, RF, and XGB) methods are compared can help researchers
determine if this value will be high. As a last resort, researchers
can simply calculate expected sample sizes for both scenarios
(<5.0 and ≥5.0) using the model equations presented in this
study and discuss the implications. It is also important to note
that the effect of nonlinearity (and other dataset–level
characteristics) on estimated sample sizes is diminished when
the class imbalance is optimized. This is due to the multiplicative
nature of the negative binomial regression models, which is
illustrated in Figure 5. Thus, first and foremost, it is critical that
researchers aim to collect a sample with the most balance
between cases and controls.

To our knowledge, no previous study has presented specific
formulas for calculating sample size within the context of ML
using multiple dataset–level characteristics. Although other
studies have provided estimates of the needed sample size (or
number of events per variable) to reach performance stability
over a variety of classification algorithms, these works used
simulation approaches or a limited number of real-life datasets
and did not consider multiple specific dataset–level
characteristics in calculation of these estimates [15,16].

Limitations and Future Work
One limitation of our study was the relatively small sample size
of only 16 datasets to develop our final models. Although this
number is a relatively large amount in this area of
research—similar learning curve analyses have typically
examined less than 10 [14,16,17]—assessment of more would
strengthen these models and provide clearer insight into
dataset–level effects on expected sample size. However, the
fact that we still observed many statistically significant
relationships even with this small effective sample size is a
strength of the study. In addition, the datasets we examined
were all tabular in nature and had relatively low (<50) numbers
of features—generalization of the formulas presented in this
study may not extrapolate to datasets with larger amounts of
features or data arising from medical imaging or nontabular
sources. Finally, it is important to note that ML, specifically
algorithms like RF and XGB, can still outperform traditional
parametric methods even if the sample size is limited (ie, under
n=5000) and when hyperparameter tuning is implemented
[37,38]. Therefore, these guidelines should serve as a
supplement to be used in the first stage of predictive modeling,
giving a general idea of how much sample is expected to reach
a point of “diminishing returns,” where large amounts of
additional data will only increase the AUC marginally.

Future research in this area could examine different outcome
types, such as regression, multiclass, or survival end points—or
different performance metrics, such as area under the
precision-recall curve or Brier score for probability calibration
[10]. In addition, a more in-depth examination of XGB, RF,
and NN hyperparameters would be impactful, as all of the
equations developed in this study considered only the default
hyperparameter values, which could limit the generalizability
of the results. However, in practice, it would be extremely
difficult to guess plausible values of hyperparameters before
data collection, so examination of different configurations would
mostly be educational in nature and impractical to incorporate
in sample size equations before any data collection. Finally,
stacked ML methods [39], or different gradient-boosted tree
algorithms such as CatBoost [40] or LightGBM [41] could be
investigated.

Data Availability
The datasets generated during and/or analyzed during this study are publicly available and can be accessed using links found in
Multimedia Appendix 1. In addition, the datasets generated during and/or analyzed during this study are available from the
corresponding author on reasonable request. An RShiny app is publicly available where researchers can calculate the expected
sample size based on our formulas with user-input dataset-level characteristics and can be found at [42].

Conflicts of Interest
None declared.

Multimedia Appendix 1
Additional information: data processing steps and additional tables and figures.
[DOCX File , 35 KB-Multimedia Appendix 1]

References

J Med Internet Res 2024 | vol. 26 | e60231 | p. 12https://www.jmir.org/2024/1/e60231
(page number not for citation purposes)

Silvey & LiuJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v26i1e60231_app1.docx&filename=c4dbbf5e695a5059f0d252019d99326c.docx
https://jmir.org/api/download?alt_name=jmir_v26i1e60231_app1.docx&filename=c4dbbf5e695a5059f0d252019d99326c.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/


1. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke
Vasc Neurol. 2017;2(4):230-243. [FREE Full text] [doi: 10.1136/svn-2017-000101] [Medline: 29507784]

2. Cho H, She J, De Marchi D, El-Zaatari H, Barnes EL, Kahkoska AR, et al. Machine learning and health science research:
tutorial. J Med Internet Res. 2024;26:e50890. [FREE Full text] [doi: 10.2196/50890] [Medline: 38289657]

3. Bonaccorso G. Machine Learning Algorithms : Popular Algorithms for Data Science and Machine Learning. Birmingham.
Packt Publishing; 2018.

4. Dorey FJ. Statistics in brief: statistical power: what is it and when should it be used? Clin Orthop Relat Res.
2011;469(2):619-620. [FREE Full text] [doi: 10.1007/s11999-010-1435-0] [Medline: 20585913]

5. Devijver P, Kittler J. Pattern Recognition: A Statistical Approach. New Jersey, United States. Prentice-Hall; 1982.
6. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New

York. Springer; 2009.
7. He H, Garcia EA. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009;21(9):1263-1284. [doi:

10.1109/tkde.2008.239]
8. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology.

1982;143(1):29-36. [doi: 10.1148/radiology.143.1.7063747] [Medline: 7063747]
9. Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition.

1997;30(7):1145-1159. [doi: 10.1016/s0031-3203(96)00142-2]
10. Huang Y, Li W, Macheret F, Gabriel RA, Ohno-Machado L. A tutorial on calibration measurements and calibration models

for clinical prediction models. J Am Med Inform Assoc. 2020;27(4):621-633. [FREE Full text] [doi: 10.1093/jamia/ocz228]
[Medline: 32106284]

11. Webb GI, Sammut C, Perlich C, Horváth T, Wrobel S, Korb KB. Learning curves in machine learning. Encyclopedia of
Machine Learning. 2011:577-580. [doi: 10.1007/978-0-387-30164-8_452]

12. Perlich C, Provost F, Simonoff JS. Tree induction vs. logistic regression: a learning-curve analysis. Journal of Machine
Learning Research. 2003:211-255. [FREE Full text]

13. Mukherjee S, Tamayo P, Rogers S, Rifkin R, Engle A, Campbell C, et al. Estimating dataset size requirements for classifying
DNA microarray data. J Comput Biol. 2003;10(2):119-142. [doi: 10.1089/106652703321825928] [Medline: 12804087]

14. Figueroa RL, Zeng-Treitler Q, Kandula S, Ngo LH. Predicting sample size required for classification performance. BMC
Med Inform Decis Mak. 2012;12(1):8. [FREE Full text] [doi: 10.1186/1472-6947-12-8] [Medline: 22336388]

15. Provost F, Jensen D, Oates T. Efficient progressive sampling. URL: https://dl.acm.org/doi/pdf/10.1145/312129.312188
[accessed 2024-11-19]

16. van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting
dichotomous endpoints. BMC Med Res Methodol. 2014;14:137. [FREE Full text] [doi: 10.1186/1471-2288-14-137]
[Medline: 25532820]

17. Richter AN, Khoshgoftaar TM. Sample size determination for biomedical big data with limited labels. Netw Model Anal
Health Inform Bioinforma. 2020;9(1). [doi: 10.1007/s13721-020-0218-0]

18. Micheel CM, Nass SJ, Omenn GS. Evolution of Translational Omics Lessons Learned and the Path Forward. Washington,
DC. National Academies Press; 2012.

19. Rijn JN, Holmes G, Bernhard P, Vanschoren J. Algorithm selection on data streams. Lecture Notes in Computer Science.
2014:325-336. [doi: 10.1007/978-3-319-11812-3_28]

20. Little RJA, Rubin DB. Statistical Analysis with Missing Data. Hoboken, Nj. John Wiley & Sons, Inc; 2020.
21. Cramer J. The origins of logistic regression. SSRN Electronic Journal. 2003:16. [doi: 10.2139/ssrn.360300]
22. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. 2016. Presented at: Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining - KDD-16; August 13-17, 2016:785-794; San Francisco,
California, USA. [doi: 10.1145/2939672.2939785]

23. Wright MN, Ziegler A. Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat.
Soft. 2017;77(1):1-17. [doi: 10.18637/jss.v077.i01]

24. Mall PK, Singh PK, Srivastav S, Narayan V, Paprzycki M, Jaworska T, et al. A comprehensive review of deep neural
networks for medical image processing: recent developments and future opportunities. Healthcare Analytics. 2023;4:100216.
[doi: 10.1016/j.health.2023.100216]

25. Nwanosike EM, Conway BR, Merchant HA, Hasan SS. Potential applications and performance of machine learning
techniques and algorithms in clinical practice: a systematic review. Int J Med Inform. 2022;159:104679. [doi:
10.1016/j.ijmedinf.2021.104679] [Medline: 34990939]

26. Foundation for Open Access Statistics. Fast scalable R with H20. 2015. URL: https://h2o.ai/ [accessed 2024-11-25]
27. Berrar D. Cross-validation. Encyclopedia of Bioinformatics and Computational Biology. 2019;1:542-545. [doi:

10.1016/b978-0-12-809633-8.20349-x]
28. Bates DM, Watts DG. Nonlinear Regression Analysis and Its Applications. Hoboken, New Jersey. Wiley-Interscience;

2007.
29. Kutner M, Nachtsheim C, Neter J. Applied Linear Regression Models. London. Mcgraw-Hill Education - Europe; 2004.

J Med Internet Res 2024 | vol. 26 | e60231 | p. 13https://www.jmir.org/2024/1/e60231
(page number not for citation purposes)

Silvey & LiuJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://svn.bmj.com/lookup/pmidlookup?view=long&pmid=29507784
http://dx.doi.org/10.1136/svn-2017-000101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29507784&dopt=Abstract
https://www.jmir.org/2024//e50890/
http://dx.doi.org/10.2196/50890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38289657&dopt=Abstract
https://europepmc.org/abstract/MED/20585913
http://dx.doi.org/10.1007/s11999-010-1435-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20585913&dopt=Abstract
http://dx.doi.org/10.1109/tkde.2008.239
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7063747&dopt=Abstract
http://dx.doi.org/10.1016/s0031-3203(96)00142-2
https://europepmc.org/abstract/MED/32106284
http://dx.doi.org/10.1093/jamia/ocz228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32106284&dopt=Abstract
http://dx.doi.org/10.1007/978-0-387-30164-8_452
https://www.jmlr.org/papers/volume4/perlich03a/perlich03a.pdf
http://dx.doi.org/10.1089/106652703321825928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12804087&dopt=Abstract
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/1472-6947-12-8
http://dx.doi.org/10.1186/1472-6947-12-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22336388&dopt=Abstract
https://dl.acm.org/doi/pdf/10.1145/312129.312188
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-14-137
http://dx.doi.org/10.1186/1471-2288-14-137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25532820&dopt=Abstract
http://dx.doi.org/10.1007/s13721-020-0218-0
http://dx.doi.org/10.1007/978-3-319-11812-3_28
http://dx.doi.org/10.2139/ssrn.360300
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.18637/jss.v077.i01
http://dx.doi.org/10.1016/j.health.2023.100216
http://dx.doi.org/10.1016/j.ijmedinf.2021.104679
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34990939&dopt=Abstract
https://h2o.ai/
http://dx.doi.org/10.1016/b978-0-12-809633-8.20349-x
http://www.w3.org/Style/XSL
http://www.renderx.com/


30. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw.
2010;33(1):1-22. [FREE Full text] [Medline: 20808728]

31. Hilbe J. Negative Binomial Regression. Cambridge, England. Cambridge University Press; 2007.
32. Bozdogan H. Model selection and Akaike's Information Criterion (AIC): the general theory and its analytical extensions.

Psychometrika. 1987;52(3):345-370. [doi: 10.1007/bf02294361]
33. Vanegas L, Rondón L, Paula G. _glmtoolbox: Set of tools to data analysis using generalized linear models_. 2024. URL:

https://CRAN.R-project.org/package=glmtoolbox [accessed 2024-11-19]
34. Veall MR, Zimmermann KF. Pseudo-R2 measures for some common limited dependent variable models. Journal of

Economic Surveys. 2006;10(3):241-259. [doi: 10.1111/j.1467-6419.1996.tb00013.x]
35. Shwartz-Ziv R, Armon A. Tabular data: deep learning is not all you need. arXiv. 2021. [FREE Full text] [doi:

10.1016/j.inffus.2021.11.011]
36. Berisha V, Krantsevich C, Hahn PR, Hahn S, Dasarathy G, Turaga P, et al. Digital medicine and the curse of dimensionality.

NPJ Digit Med. 2021;4(1):153. [FREE Full text] [doi: 10.1038/s41746-021-00521-5] [Medline: 34711924]
37. Papini S, Norman SB, Campbell-Sills L, Sun X, He F, Kessler RC, et al. Development and validation of a machine learning

prediction model of posttraumatic stress disorder after military deployment. JAMA Netw Open. 2023;6(6):e2321273.
[FREE Full text] [doi: 10.1001/jamanetworkopen.2023.21273] [Medline: 37389870]

38. Abe D, Inaji M, Hase T, Takahashi S, Sakai R, Ayabe F, et al. A prehospital triage system to detect traumatic intracranial
hemorrhage using machine learning algorithms. JAMA Netw Open. 2022;5(6):e2216393. [FREE Full text] [doi:
10.1001/jamanetworkopen.2022.16393] [Medline: 35687335]

39. van der Laan MJ, Polley EC, Hubbard AE. Super learner. Stat Appl Genet Mol Biol. 2007;6:Article25. [doi:
10.2202/1544-6115.1309] [Medline: 17910531]

40. Liudmila OP, Gleb G, Aleksandr V, Anna VD, Andrey G. CatBoost: unbiased boosting with categorical features. arXiv
(Cornell University). 2021. [FREE Full text]

41. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. LightGBM: a highly efficient gradient boosting decision tree.
Advances in Neural Information Processing Systems. 2017;30:3146-3154. [FREE Full text]

42. RShiny app. URL: https://silveys.shinyapps.io/shiny_app_aim_1/ [accessed 2024-11-25]

Abbreviations
AUC: area under the curve
CV: cross-validation
CV-AUC: cross-validated area under the curve
LASSO: least absolute shrinkage and selection operator
LR: logistic regression
MCAR: missing completely at random
ML: machine learning
MLP: multilayer perceptron
NN: neural network
RF: random forest
XGB: XGBoost

Edited by G Tsafnat; submitted 06.05.24; peer-reviewed by R Figueroa, AG Gad, MR Hasan; comments to author 27.07.24; revised
version received 20.09.24; accepted 20.10.24; published 17.12.24

Please cite as:
Silvey S, Liu J
Sample Size Requirements for Popular Classification Algorithms in Tabular Clinical Data: Empirical Study
J Med Internet Res 2024;26:e60231
URL: https://www.jmir.org/2024/1/e60231
doi: 10.2196/60231
PMID:

©Scott Silvey, Jinze Liu. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 17.12.2024.
This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in the Journal of Medical Internet Research (ISSN 1438-8871), is properly cited. The

J Med Internet Res 2024 | vol. 26 | e60231 | p. 14https://www.jmir.org/2024/1/e60231
(page number not for citation purposes)

Silvey & LiuJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/20808728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20808728&dopt=Abstract
http://dx.doi.org/10.1007/bf02294361
https://CRAN.R-project.org/package=glmtoolbox
http://dx.doi.org/10.1111/j.1467-6419.1996.tb00013.x
https://arxiv.org/abs/2106.03253
http://dx.doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.1038/s41746-021-00521-5
http://dx.doi.org/10.1038/s41746-021-00521-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34711924&dopt=Abstract
https://europepmc.org/abstract/MED/37389870
http://dx.doi.org/10.1001/jamanetworkopen.2023.21273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37389870&dopt=Abstract
https://europepmc.org/abstract/MED/35687335
http://dx.doi.org/10.1001/jamanetworkopen.2022.16393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35687335&dopt=Abstract
http://dx.doi.org/10.2202/1544-6115.1309
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17910531&dopt=Abstract
https://arxiv.org/abs/1706.09516
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://silveys.shinyapps.io/shiny_app_aim_1/
https://www.jmir.org/2024/1/e60231
http://dx.doi.org/10.2196/60231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and
license information must be included.

J Med Internet Res 2024 | vol. 26 | e60231 | p. 15https://www.jmir.org/2024/1/e60231
(page number not for citation purposes)

Silvey & LiuJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

