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Abstract

Background: Large language models (LLMs) have the potential to enhance clinical flow and improve medical education, but
they encounter challenges related to specialized knowledge in ophthalmology.

Objective: This study aims to enhance ophthalmic knowledge by refining a general LLM into an ophthalmology-specialized
assistant for patient inquiries and medical education.

Methods: We transformed Llama2 into an ophthalmology-specialized LLM, termed EyeGPT, through the following 3 strategies:
prompt engineering for role-playing, fine-tuning with publicly available data sets filtered for eye-specific terminology (83,919
samples), and retrieval-augmented generation leveraging a medical database and 14 ophthalmology textbooks. The efficacy of
various EyeGPT variants was evaluated by 4 board-certified ophthalmologists through comprehensive use of 120 diverse category
questions in both simple and complex question-answering scenarios. The performance of the best EyeGPT model was then
compared with that of the unassisted human physician group and the EyeGPT+human group. We proposed 4 metrics for assessment:
accuracy, understandability, trustworthiness, and empathy. The proportion of hallucinations was also reported.

Results: The best fine-tuned model significantly outperformed the original Llama2 model at providing informed advice (mean
9.30, SD 4.42 vs mean 13.79, SD 5.70; P<.001) and mitigating hallucinations (97/120, 80.8% vs 53/120, 44.2%, P<.001).
Incorporating information retrieval from reliable sources, particularly ophthalmology textbooks, further improved the model's
response compared with solely the best fine-tuned model (mean 13.08, SD 5.43 vs mean 15.14, SD 4.64; P=.001) and reduced
hallucinations (71/120, 59.2% vs 57/120, 47.4%, P=.02). Subgroup analysis revealed that EyeGPT showed robustness across
common diseases, with consistent performance across different users and domains. Among the variants, the model integrating
fine-tuning and book retrieval ranked highest, closely followed by the combination of fine-tuning and the manual database,
standalone fine-tuning, and pure role-playing methods. EyeGPT demonstrated competitive capabilities in understandability and
empathy when compared with human ophthalmologists. With the assistance of EyeGPT, the performance of the ophthalmologist
was notably enhanced.
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Conclusions: We pioneered and introduced EyeGPT by refining a general domain LLM and conducted a comprehensive
comparison and evaluation of different strategies to develop an ophthalmology-specific assistant. Our results highlight EyeGPT’s
potential to assist ophthalmologists and patients in medical settings.

(J Med Internet Res 2024;26:e60063) doi: 10.2196/60063

KEYWORDS

large language model; generative pretrained transformer; generative artificial intelligence; ophthalmology; retrieval-augmented
generation; medical assistant; EyeGPT; generative AI

Introduction

Ophthalmic diseases pose significant concerns for public health
[1]. However, shortages of professionals and inefficiencies in
primary eye care systems often funnel patients into overcrowded
tertiary centers. This results in extended wait times and
unaddressed postconsultation questions, frequently requiring
additional face-to-face appointments [2]. These challenges can
be attributed to the limited ophthalmic knowledge among
patients and the limited experience in eye care among primary
health care providers [3]. Therefore, there is a pressing need to
enhance ophthalmic health education for both patients and
primary health care providers. However, relying solely on
manpower to address these issues presents further challenges,
particularly as the rate of population aging continues to outpace
the growth rate of ophthalmologists.

Large language models (LLMs) have recently emerged as
powerful tools to alleviate these burdens and streamline clinical
flow with the capability of understanding and generating
human-like text [4]. In ophthalmology, LLMs show promise
both for ophthalmic certification exams [5] and interpreting
imaging reports across various linguistic environments [6,7].
However, there are several limitations to existing LLMs. First,
there are challenges with addressing specialized ophthalmology
knowledge for general LLMs. Previous research has
demonstrated the suboptimal performance of ChatGPT in
ophthalmology, with only 15.4% of the responses graded as
completely accurate in vitreoretinal disease [8]. Even with
GPT-4, which currently exhibits the greatest capability,
nonnegligible instances of misinformation occur, with only
30.6%, 21.5%, and 55.6% of responses about ocular multimodal
images considered accurate, highly usable, and harmless,
respectively [9]. A critical factor underlying these shortcomings
is the model’s insufficient grasp of specialized knowledge,
particularly in handling medical abbreviations and jargon within
highly specialized domains [5]. Therefore, there is a need to
design a dedicated model trained on clinically relevant domain
data. Second, it is widely recognized that LLMs occasionally
generate inaccurate and misleading statements (hallucinations),
which can potentially lead to medical errors. Fine-tuning with

professional data can somewhat mitigate hallucinations, but the
model can still produce them when faced with unfamiliar input
[10]. Therefore, additional solutions are required. Third, there
is a noticeable absence of comprehensive evaluations for LLMs
in ophthalmology. Although previous studies have explored the
ophthalmic question-answering (QA) capabilities of LLMs, the
majority have been limited to multiple-choice formats [5,11-13].
Although a few studies have used open-ended questions to
evaluate the performance of LLMs, they lack detailed
categorization of the questions and primarily focus on scattered
aspects such as accuracy, comprehensiveness, or safety [14,15].
Consequently, a comprehensive evaluation framework is
urgently needed to test ophthalmology-related LLMs and
compare their responses with those provided by certified
ophthalmologists.

Recognizing this, we aimed to develop an artificial intelligence
(AI) assistant, namely EyeGPT, to meet the specific
informational needs in ophthalmic clinical and educational
scenarios. By leveraging Llama2, a flexible and scalable
open-source LLM known for its impressive performance in
medicine [16-18], we infused the model with a granular level
of ophthalmic expertise through role-playing, fine-tuning, and
retrieval-augmented generation (RAG). The resultant model,
EyeGPT, was evaluated for its efficacy in patient consultations
and medical education. This work provides valuable insights
into building and evaluating ophthalmic assistants, paving the
way for the next generation of AI-assisted ophthalmic practice.

Methods

Ethical Considerations
The study overview is presented in Figure 1. Our research
protocol adhered to the principles of the Helsinki Declaration.
The study was approved by the Institutional Review Board of
the Hong Kong Polytechnic University (number:
HSEARS20240202004). This research involves publicly
available data. We ensured that the data were deidentified and
all private information was removed. Informed consent was
unnecessary as the publicly available data do not contain
identifiable information.
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Figure 1. Overview of this study. GPT: generative pre-trained transformer; MCQA: multiple-choice question answering; RAG: retrieval-augmented
generation; USMLE=United States Medical Licensing Examination.

Development of EyeGPT

Base Model
We used Meta’s Llama2 as the base model in our study, which
was trained on 2 trillion tokens from publicly accessible data
[19]. We used the Llama2-7b-chat model, which was
additionally fine-tuned on publicly available instruction data
sets and over 1 million human annotations, thus having basic

conversation skills [20]. To inject professional ophthalmic
knowledge into the model, we did experiments successively
under the scenarios described in the following paragraphs.

Role-Playing
In generative AI, the engineering technique known as
“role-playing” involves directing LLMs to “embody” or
“imitate” specific roles for improved results [21]. To enable the
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LLM to generate more relevant and empathetic responses, we
assigned it the role of an “ophthalmologist” and the user the
dual roles of a “patient” and “medical student.” This was
achieved by giving the following instructions: “Suppose you
are an ophthalmologist, and you need to answer the patient’s
question with care/student’s question with patience.”

Fine-Tuning
To inject domain-specific knowledge and make Llama2 more
proficient in capturing ophthalmic terminologies and logical
reasoning, we trained it on domain-specific data sets, including
MedAlpaca [22], GenMedGPT-HealthCareMagic [23],
MedMCQA [24], and the United States Medical Licensing
Examination (USMLE). Processing of the USMLE data
followed the method proposed by Jin et al [25]. The data sets
were filtered to remove conversations of little practical
significance and responses with errors. We used instruction
tuning [26] to align the model with task-specific user objectives,
enhance model controllability, and ensure rapid domain-specific
adaptation. For data sets initially designed for multiple-choice
QA, we automatically added an instruction at the beginning:
“Answer the multiple-choice question.” For our specific task,
we filtered out nonophthalmology data with eye-related
keywords. Multimedia Appendix 1 presents the characteristics
of the filtered data sets, and Multimedia Appendix 2 lists the
keywords we used.

The final data set comprised 83,919 samples, with 81,919 used
for training and 2000 used for validation. We used low-rank
adaptation (LoRA) [27] to fine-tune the Llama2-7B model by
adding a low-rank matrix while keeping the original parameters
frozen, aiming to complement the original weight matrices of
the model. The models were fine-tuned using 3*V100 GPUs
with a batch size of 24, learning rate of 0.00003, maximum
sequence length of 512 tokens, and warm-up ratio of 0.03. For
LoRA-specific hyperparameters, the rank of low-rank
factorization was 8, the scaling factor for the rank was 16, and
the dropout was 0.05. Specifically, we performed 3 types of
fine-tuning: Fine-tune 1 (2000 iterations), Fine-tune 2 (3500
iterations), and Fine-tune 3 (10,000 iterations). The entire
training process took approximately 11 hours to complete.

Retrieval-Augmented Generation
LLMs may produce potential inaccuracies responses
(hallucinations) to questions [28], which is unacceptable in the
medical field. However, the accuracy of these models could be
significantly improved if they could generate responses based
on a reliable knowledge database. Here, to further improve the
performance of EyeGPT, we introduced the external knowledge
corpus of medical books and a manual database.

For the medical books, we used 14 specialized ophthalmology
textbooks that cover a wide range of comprehensive ophthalmic
knowledge, including general ophthalmology, optometry, retinal
diseases, and more [29-31]. Please refer to Multimedia Appendix
3 for the specific textbook list.

We manually built a database (sample shown in Multimedia
Appendix 4) containing information on diseases, symptoms,
medical tests and treatment procedures, and potential
medications. This database, sourced from the open-access web

and research papers, serves as an external and offline knowledge
corpus for EyeGPT. It can be continually updated without model
retraining and may provide more up-to-date information than
textbooks.

To leverage external knowledge, we adopted the LangChain
framework’s information retrieval techniques. The
“all-MiniLM-L6-v2” [32] open-source embedding model was
used to map text into vector space. We used the
“RecursiveCharacterTextSplitter” [33] to segment the text for
efficient retrieval, with a chunk size set to 1024 characters.
Roughly 2 segments are retrieved from the vector storage for
each response. In addition, we constructed a retriever with
Facebook AI Similarity Search (FAISS) [34] based on the
segmented documents and established a conversational retrieval
chain that seamlessly integrated our EyeGPT with the external
database through LangChain.

Evaluation

Overview of the Evaluation
To assess the professional performance of various EyeGPT
variants, namely (1) original (Llama2), (2) role-play (original
plus role-play), (3) fine-tune 1-3 (fine-tuned model versions 1-3
plus role-play), (4) role-play+book (role-play plus book
retrieval), (5) role-play+database (role-play plus manual
database retrieval), (6) best fine-tune+book (the best fine-tuned
model plus book retrieval), (7) best fine-tune+database (the best
fine-tuned model plus manual database retrieval), our
ophthalmology expert panel curated a set of 120 ophthalmic
care-related questions based on their clinical expertise. We
followed the user-centered evaluation approach proposed by
Abbasian et al [35], considering the following 3 key factors:
disease type, character type, and domain type. Disease type
covered a wide range of medical conditions from various
subspecialties, including common, specialty, and rare diseases,
resulting in 12 disease categories such as myopia, retinal
detachment, and Stickler syndrome (refer to Multimedia
Appendix 5 for the detailed disease list). Character types
included patients and medical students representing potential
EyeGPT users. Domain types were divided into 5 topics: disease
description, risk factors, diagnosis, treatment and prevention,
and prognosis. We conducted the evaluations manually,
including an independent evaluation of different EyeGPT
variants, best-ranked comparisons for evaluating
human-machine performance, and error analysis of the machine.

Independent Evaluation
This evaluation was designed to compare the performance of
various optimization strategies of the EyeGPT variants and
identify the best-performing one. Two board-certified
ophthalmologists independently conducted manual assessment
using a 5-point scale to assess the responses of each variant.
The evaluation focused on the following 4 aspects: accuracy,
understandability, trustworthiness, and empathy [35]. The
detailed grading scale is presented in Multimedia Appendix 6.
The scale ranged from 1 (strongly disagree) to 5 (strongly agree),
with the average score from the 2 evaluators recorded as the
score for each response aspect. The maximum score for each
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aspect was 5, and these scores were summed to obtain the final
score for each response, with a maximum possible score of 20.

To evaluate the effectiveness of different optimization strategies
in mitigating hallucinations, we defined answers with accuracy
scores below 4 as containing hallucinations in our study. To
ensure the evaluators could not identify the source of the
responses, all generated responses were formatted as plain text,
concealing any model-specific features. These responses were
then randomly shuffled and mixed before being presented to
the evaluators.

The evaluation was conducted in 2 rounds with a 1-month
washout period to mitigate residual effects [36,37]. In the first
round, we compared models using different fine-tuning
approaches, including original, role-play, and fine-tune 1-3. The
goal was to determine the best fine-tuning model for the
subsequent RAG. In the second round, we compared models
using different RAG strategies based on the best-performing
fine-tuned model selected from the first round. These models
included best fine-tune (the best fine-tuned model from round
1), role-play+database, best fine-tune+database, role-play+book,
and best fine-tune+book.

Best-Ranked Comparison
After independently evaluating the different EyeGPT variants,
we identified the best-performing system. To assess if EyeGPT
can match ophthalmologists’expertise and offer them assistance,
we conducted a human-machine best-ranked comparison. This
evaluation method, inspired by that of Tu et al [38], aimed to
efficiently assess answers comprehensively, reducing the need
for assessors to delve into every detail and thereby minimizing
subjectivity.

We invited 2 junior ophthalmologists (with 1-3 years of clinical
experience) to answer the 120 questions with and without the
aid of EyeGPT. The answers from different groups (EyeGPT,
unassisted ophthalmologist, and EyeGPT+ophthalmologist)
were evaluated by 2 senior ophthalmologists (with over 3 years
of clinical experience) who were unaware of the sources, and
the presentation order was randomized. Raters were asked to
rank the 3 answers based on their clinical judgment across 4
dimensions, without the option of declaring a tie. In cases of
disagreement, an ophthalmology expert (with over 10 years of
clinical experience) reviewed the case until consensus was
reached. The final result was recorded as the proportion of
responses from different sources ranked as the best.

Error Analysis
To further investigate the quality of EyeGPT answers and
identify areas for improvement, we conducted an error analysis
on the best-performing EyeGPT model. The quality of the
EyeGPT-generated QA pairs was evaluated by 2 board-certified
ophthalmologists based on their expert judgment. The analysis
focused on identifying occurrences of unrelated information,
factual errors, incomplete information, and faulty logic [39].

Statistical Analysis
Statistical analyses were conducted using R (Version 4.3.1).
The Mann-Whitney U test was used to compare the scores of

the 2 models in the independent evaluation. When creating the
bar chart, we compared the performance of the base model
(Llama 2 or best fine-tune) with the most competitive
optimization model in the same round to display statistically
significant differences on the chart. The score for each answer
in the independent evaluation was based on the average score
from 2 raters. The scoring criteria used in the bar chart were as
follows: strongly disagree (1 to <2), agree (2 to <3), neutral (3
to <4), approve (4 to <5), strongly agree (5). For subgroup
analysis based on different confounding variables, the
Kruskal-Wallis test and Mann-Whitney U test were used,
depending on the number of comparison groups. Cohen kappa
was calculated to determine the agreement among raters [40].
P values <.05 were considered statistically significant.

Results

Comparative Study of Model Construction Strategies

Overall Performance
In the first round of evaluation, the total scores for the original,
role-play, and fine-tune 1-3 models were 9.30, 12.79, 12.95,
12.83, and 13.79, respectively. All optimized models
significantly outperformed the original model in accuracy,
understandability, trustworthiness, and empathy, with fine-tune
3 performing the best. For the different fine-tuning variants, we
observed that, as the number of iterations increased, the
evaluation loss on the test data decreased (refer to Multimedia
Appendix 7) and the model performance improved. In the
subsequent comparison of RAG strategies, the best
fine-tune+book model scored the highest, at 15.14,
outperforming other strategies, as elaborated in Multimedia
Appendix 8. To ensure reliability, we compared the scores of
fine-tune 3 (named best fine-tune in round 2) across 2 rounds.
We found no statistically significant difference between the
scores of the 2 rounds (P=.11). Inter-rater reliability in 2 rounds
of independent evaluation was confirmed, with kappa values
ranging from 0.611 to 0.872, indicating substantial agreement
among raters (Multimedia Appendix 9). For illustrative
examples of the varied grades of responses from the independent
evaluation, see Multimedia Appendix 10.

Figure 2 demonstrates that more than one-half (accuracy:
67/120, 55.8%; understandability: 74/120, 61.7%;
trustworthiness: 75/120, 62.5%; empathy: 74/120, 61.7%) of
responses from the best fine-tune model were considered “good”
responses (rated 4 or above) across all 4 dimensions. Compared
with the original model (with an 80.8% [97/120] hallucination
rate), the role-play and best fine-tune models mitigated
hallucinations, by 30% (36/120) and 36.7% (44/120),
respectively. Figure 3 shows that the best fine-tune+book model
further enhanced the proportion of “good” responses to the
maximum. We compared the performance of the best model in
round 1 (fine-tune 3) with the most competitive modified model
to check for statistically significant differences. The scores and
scoring criteria are the same as in Figure 2. Compared with the
best fine-tune model, the best fine-tune+database and best
fine-tune+book models further reduced hallucinations by 3.3%
(4/120) and 11.7% (14/120), respectively.
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Figure 2. Performance in terms of (A) accuracy, (B) understandability, (C) trustworthiness, and (D) empathy of the different models in round 1 of the
human evaluation, with the percentage of good responses (strongly agree and agree) indicated by the black numbers, the percentage of hallucinations
indicated by the blue numbers, and significance determined using Mann-Whitney U tests.
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Figure 3. Performance in terms of (A) accuracy, (B) understandability, (C) trustworthiness, and (D) empathy of the different models in round 2 of the
human evaluation, with the percentage of good responses (strongly agree and agree) indicated by the black numbers, the percentage of hallucinations
indicated by the blue numbers, and significance determined using Mann-Whitney U tests.

Subgroup Analysis
We also performed subgroup analysis to further evaluate the
model performance under different confounding factors,
including subspecialty questions of varying difficulty levels,
questions raised by different characters, and question domains.

Different Subspecialties

Across all RAG strategies, the models scored higher for common
diseases than for specialty and rare conditions (Table 1). For
common ophthalmic conditions, the RAG models delivered
more precise and contextually relevant information. For more
specialized conditions like central serous chorioretinopathy, the
best fine-tune model provided general information about its
treatment options, while the RAG models offered more
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specialized responses concerning laser treatment and
photodynamic therapy depending on the specific circumstances.
For rare conditions like morning glory syndrome, although the
best fine-tune model could not generate responses as it
mistakenly identified it as “bilateral posterior superior temporal
arcade spikes,” the RAG model was able to retrieve relevant

information from the external knowledge database and make
accurate responses. The best fine-tune model accurately
recognized 43% (13/30) of ophthalmic abbreviations. RAG
strategies improved this recognition rate, ranging from 60%
(18/30) to 83% (25/30) for different models.

Table 1. Subgroup analysis of the performance of EyeGPT by subspecialty.

P valueRare diseases, mean (SD)aSpecialty diseases, mean (SD)aCommon diseases, mean (SD)aEyeGPT model

<.00110.33 (5.31)13.11 (5.40)15.79 (4.15)Best fine-tuneb

.0112.18 (4.88)14.18 (5.11)15.28 (5.17)Role-play+databasec

.0112.17 (4.58)14.29 (4.89)15.45 (4.57)Best fine-tune+databased

.0214.66 (4.53)12.89 (5.32)15.70 (3.94)Role-play+booke

.00314.23 (4.42)14.08 (5.49)17.24 (3.02)Best fine-tune+bookf

aOverall response score (the sum of 4 rating dimensions, with a maximum score of 20 representing the best performance).
bThe fine-tuned model with 10,000 iterations.
cRole-play plus manual database retrieval.
dThe best fine-tuned model plus manual database retrieval.
eRole-play plus book retrieval.
fThe best fine-tuned model plus book retrieval.

Different Role-Play Characters

When comparing the influence of the questioner’s assumed
identity—patient versus medical student—on model
performance, responses to patients consistently scored higher
than those of medical students (Table 2). This difference reached

statistical significance in the best fine-tune and
role-play+database models. However, no significant differences
were observed with the best fine-tune+database, role-play+book,
and best fine-tune+book models, suggesting that these adjusted
models can answer both general patient questions and more
specialized queries from medical students.

Table 2. Subgroup analysis of the performance of EyeGPT by role-play character.

P valueMedical students, mean (SD)aPatients, mean (SD)aEyeGPT model

.0310.99 (6.32)13.45 (5.79)Best fine-tuneb

.0311.62 (6.55)14.67 (5.07)Role-play+databasec

.0812.84 (5.34)14.52 (4.99)Best fine-tune+databased

.0612.65 (5.85)14.85 (4.78)Role-play+booke

.0713.38 (5.83)14.44 (6.13)Best fine-tune+bookf

aOverall response score (the sum of 4 rating dimensions, with a maximum score of 20 representing the best performance).
bThe fine-tuned model with 10,000 iterations.
cRole-play plus manual database retrieval.
dThe best fine-tuned model plus manual database retrieval.
eRole-play plus book retrieval.
fThe best fine-tuned model plus book retrieval.

Different Domains

In the subgroup analysis of EyeGPT’s performance across
different domains, there were no statistically significant

differences in the scores of disease description, risk factors,
diagnosis, treatment and prevention, and prognosis across all
models (Table 3).
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Table 3. Subgroup analysis of the performance of EyeGPT by domain.

P valuePrognosis, mean

(SD)a
Treatment and preven-

tion, mean (SD)a
Diagnosis, mean

(SD)a
Risk factors, mean

(SD)a
Disease description,

mean (SD)a
EyeGPT model

.359.90 (6.60)13.21 (5.12)11.81 (6.45)12.67 (5.38)12.92 (6.51)Best fine-tuneb

.4911.48 (6.26)13.53 (4.55)13.73 (5.38)12.73 (6.00)12.98 (6.57)Role-play+databasec

.0611.17 (6.10)12.78 (4.82)14.70 (2.98)12.08 (5.64)15.14 (4.76)Best fine-

tune+databased

.8013.00 (5.18)14.60 (3.31)13.91 (5.92)13.78 (5.61)12.19 (6.15)Role-play+booke

.3612.17 (6.14)13.64 (5.79)15.15 (4.64)13.33 (6.53)11.70 (7.46)Best fine-tune+bookf

aOverall response score (the sum of 4 rating dimensions, with a maximum score of 20 representing the best performance).
bThe fine-tuned model with 10,000 iterations.
cRole-play plus manual database retrieval.
dThe best fine-tuned model plus manual database retrieval.
eRole-play plus book retrieval.
fThe best fine-tuned model plus book retrieval.

Performance Comparison: AI Model Versus Human
Ophthalmologists
In the human-machine best-ranked comparison, EyeGPT showed
competitive capabilities, particularly in understandability and
empathy. With the assistance of EyeGPT, human
ophthalmologists’ performance was notably improved. Figure
4 summarizes the frequencies of answers generated by EyeGPT,
unassisted ophthalmologists, or EyeGPT-assisted
ophthalmologists, ranked as the best among the 3 candidate
answers across 4 dimensions. Regarding understandability and
empathy, the EyeGPT answers ranked best for 23 (19.2%) and
41 (34.2%) of the 120 questions, respectively, which were higher
than those of ophthalmologists, which ranked best for 12 (10%)

and 8 (6.7%) of the 120 questions. The answers provided by
EyeGPT-assisted ophthalmologists were most frequently ranked
as the best, at 85 (85/120, 70.8%) and 71 (71/120, 59.2%) for
understandability and empathy, respectively; however, the
accuracy and trustworthiness of EyeGPT answers were slightly
lower than those by the ophthalmologists (accuracy: 12/120,
10% vs 14/120, 11.7%; trustworthiness: 12/120, 10% vs 15/120,
12.5%), highlighting areas for improvement. With the assistance
of EyeGPT, the answers provided by the ophthalmologists
excelled, ranking highest in accuracy and trustworthiness in 94
(78.3%) and 93 (77.5%) of the 120 questions, respectively. For
illustrative examples of the best-ranked comparison, see
Multimedia Appendix 11.

Figure 4. Percentage of answers ranked best by EyeGPT answers and ophthalmologists’ answers. EyeGPT(best): best fine-tune+book model.

Error Analysis: Areas for Improvement
The results of the error analysis are shown in Multimedia
Appendix 12. Rater 1 identified 5 (5/120, 4.2%) QA pairs as

containing unrelated information, 35 (35/120, 29.2%) as
containing apparent factual errors, 23 (23/120, 19.2%) as having
incomplete information, and 6 (6/120, 5%) exhibiting faulty
logic. Rater 2 found 6 (6/120, 5%) QA pairs with unrelated

J Med Internet Res 2024 | vol. 26 | e60063 | p. 9https://www.jmir.org/2024/1/e60063
(page number not for citation purposes)

Chen et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


information, 30 (30/120, 25%) with factual errors, 22 (22/120,
18.3%) with incomplete information, and 4 (4/120, 3.3%)
demonstrating faulty logic. The inter-rater reliability, assessed
using kappa values, was 0.905, 0.895, 0.699, and 0.792,
respectively.

Discussion

Principal Findings
In this study, we integrated specialized ophthalmic knowledge
into a general LLM using role-play, fine-tuning, and RAG
methods, resulting in the development of EyeGPT for
ophthalmology. In terms of accuracy, understandability,
trustworthiness, and empathy, all fine-tuned models showcased
remarkable improvements compared with the original model.
Among them, the best fine-tune model exhibited the highest
efficacy. Among the RAG strategies, the best fine-tune+book
model emerged as the most capable. Subgroup analysis revealed
that EyeGPT performed well in the category of common diseases
and showed consistent performance across different users and
domains. EyeGPT demonstrated competitive capabilities in
understandability and empathy when compared with a human
ophthalmologist. With the assistance of EyeGPT, the
performance of the ophthalmologists was notably enhanced.

Comparison With Prior Work
LLMs in health care raise concerns about inaccurate
recommendations and fabricated information (hallucinations),
which could lead to severe consequences. Previous studies have
assessed the QA capabilities of existing LLMs in ophthalmology
[11-13,15], highlighting the significance of augmenting LLMs
with ophthalmic expertise. Our study achieved this by using 3
optimization methods: role-play, fine-tuning, and RAG.
Role-playing helped position EyeGPT as an ophthalmologist,
resulting in more professional responses, evidenced by the
significantly increased accuracy, understandability, and
trustworthiness. By setting the input role as the patient or
student, the LLM’s response tended to be more compassionate
and preaching, as reflected in the higher empathy scores than
those with the original model. “To Cure Sometimes, To Relieve
Often, To Comfort Always” is a well-known saying in medicine
reminding us that providing care involves not only treating
ailments but also offering relief and comfort to patients.
Similarly, AI models should also embody empathy when
assisting users, underscoring the importance of role-playing in
developing medical AI assistants. Fine-tuning with publicly
available real-world patient-doctor interactions further enhanced
EyeGPT’s knowledge and performance. In addition, we
observed that the reduction in evaluation loss with the validation
set was consistent with the improvement in the model’s
performance as evaluated by ophthalmologists. RAG is another
way to make the LLM knowledgeable, particularly to reduce
hallucinations. In previous studies, Zakka et al [10] developed
Almanac, an LLM framework augmented with retrieval
capabilities from curated medical resources for medical
guidelines and treatment recommendations. In ophthalmology,
Singer et al [41] used verified ophthalmology textbooks as
source material, providing citations to address the
trustworthiness and accuracy gaps in LLM responses to

Ophthalmic Knowledge Assessment Program style queries. In
this study, hallucination mitigation was also observed in the
model enhanced by the manual database or books, reducing it
by over 3.4% compared with the best fine-tune model. Among
them, the best fine-tune+book model demonstrated the highest
proportion of mitigating hallucinations and outperformed best
fine-tune+database in all 4 aspects, which could potentially be
attributed to the fact that the books surpassed the self-manual
database regarding content richness and reference value.

Interestingly, we found no significant difference in performance
between RAG and fine-tuned models. Fine-tuning is a popular
approach but has limitations. One limitation is its dependence
on specific formats of medical dialogue data, which are scarce
and require validation and curation by medical professionals
[2]. RAG overcomes these issues by directly leveraging
authoritative external resources like textbooks, medical
literature, or professional websites [42]. However, it is important
to note that these optimization methods are not mutually
exclusive. Our results demonstrated the combined effectiveness
of fine-tuning and RAG, with the best-performing EyeGPT
model obtained through integration. Furthermore, the data used
for fine-tuning are publicly available and reliable, and the
enhanced ophthalmic books are also openly accessible, rendering
these strategies valuable references for future specific LLMs.

The health care environment is complex; therefore, it is essential
to assess the performance of health care AI models in different
scenarios [28]. Current research has primarily focused on
evaluation for general questions [15], with limited studies on
specific and rare diseases. Our study validated EyeGPT by
analyzing its performance across various disease categories,
demonstrating strong performance in common diseases but
indicating room for improvement in special and rare diseases.
Future improvements can be achieved by using high-quality
data sets, specialized external knowledge resources, and
exploring low-shot or few-shot learning. Additionally, we found
that solely fine-tuned and RAG models were less informative
for specialized medical student inquiries than simpler patient
inquiries. The best-performing EyeGPT performed equally well
for patient and student inquiries, suggesting that combining
fine-tuning and RAG enhances LLM’s expertise in meeting the
needs of both groups. Importantly, our evaluation set covers a
wide range of question categories, from common diseases to
rare diseases, and user roles encompassing patients and medical
students, including disease descriptions, examinations,
treatments, and more. By establishing multiple evaluation
dimensions, including accuracy, understandability,
trustworthiness, empathy, and hallucination, we aimed to
provide a comprehensive reference framework for future
ophthalmic specialized models.

Despite a growing global ophthalmologist workforce,
limited-resource countries face a severe shortage of specialists
[43]. EyeGPT has the potential to address this gap. Although
its accuracy and trustworthiness are lower than those of human
ophthalmologists, our findings show competitive capabilities
in terms of understandability and empathy. This finding aligns
with another study demonstrating the potential advantages of
LLMs at enhancing efficiency and empathy in outpatient
environments [44]. We attribute this to EyeGPT’s ability to
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patiently process large amounts of information and initiate and
conclude conversations with consistent courtesy, unaffected by
fatigue, emotions, or other factors. Although this may not be
genuine in the human sense in high-demand scenarios, EyeGPT
received higher empathy scores than human doctors who may,
at times, provide brief responses or use complex medical jargon
due to their level of medical knowledge, potentially leading to
issues with poor understandability and empathy. However, the
LLMs’ simplified expressions may overlook certain nuanced
yet crucial medical information, leading to decreased accuracy
and trustworthiness. The error analysis revealed that the main
gap lies in factual inaccuracies and incomplete responses,
highlighting the need to integrate more ophthalmic knowledge
into the model and combine it with the professional expertise
and experience of human doctors for comprehensive
decision-making. Although LLMs cannot replace human
professionals, they could serve as an auxiliary tool to enhance
physicians' performance. In our ideal scenario, EyeGPT acts as
a continuous, personalized assistant, providing guidance and
clarification to patients throughout their care journey, without
relying on physical queues or multiple face-to-face interactions
with health care personnel. Additionally, EyeGPT can serve as
an educational tool for medical students seeking immediate
clarification on complex subjects. For example, EyeGPT may
help primary doctors improve their decision-making ability and
reduce diagnosis time.

Limitations
Our study has several limitations. First, the current version of
the model focuses on augmenting ophthalmic knowledge at the
textual level. Future iterations should prioritize enhancing the
model’s image interpretation capabilities [7,39,45], crucial for
ophthalmology given its heavy reliance on multimodal imaging.
Second, assessing the appropriateness of medical advice may
be subjective and biased by grader opinion. More efforts could
be achieved in the future, for example, by incorporating a
broader spectrum of ophthalmic data and real-world feedback
from users including medical students and patients. Last, a more
secure application at this stage is using LLMs to assist
physicians in their face-to-face consultations. This pilot study
has initially validated its potential, and forthcoming research
should aim to disseminate the findings more widely among the
population.

Conclusions
In conclusion, through role-playing, fine-tuning, and RAG,
EyeGPT can potentially improve accuracy and efficiency in
patient consultation and medical education. It may also be
expected to increase access to high-quality medical
consultations, especially for patients in underprivileged regions.
We hope our study can make a good contribution to the current
literature on ophthalmic AI assistants to provide an effective
tool for enhancing health care.
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