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Abstract

Some models for mental disorders or behaviors (eg, suicide) have been successfully developed, allowing predictions at the
population level. However, current demographic and clinical variables are neither sensitive nor specific enough for making
individual actionable clinical predictions. A major hope of the “Decade of the Brain” was that biological measures (biomarkers)
would solve these issues and lead to precision psychiatry. However, as models are based on sociodemographic and clinical data,
even when these biomarkers differ significantly between groups of patients and control participants, they are still neither sensitive
nor specific enough to be applied to individual patients. Technological advances over the past decade offer a promising approach
based on new measures that may be essential for understanding mental disorders and predicting their trajectories. Several new
tools allow us to continuously monitor objective behavioral measures (eg, hours of sleep) and densely sample subjective measures
(eg, mood). The promise of this approach, referred to as digital phenotyping, was recognized almost a decade ago, with its potential
impact on psychiatry being compared to the impact of the microscope on biological sciences. However, despite the intuitive belief
that collecting densely sampled data (big data) improves clinical outcomes, recent clinical trials have not shown that incorporating
digital phenotyping improves clinical outcomes. This viewpoint provides a stepwise development and implementation approach,
similar to the one that has been successful in the prediction and prevention of cardiovascular disease, to achieve clinically actionable
predictions in psychiatry.
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“It is difficult to make predictions, especially about the future”
[1], as Yogi Berra stated.

Thirty years after the US National Institute of Mental Health
(NIMH) declared the final decade of the 20th century to be “the
Decade of the Brain,” Tom Insel, the NIMH director at that time
acknowledged,

I spent 13 years at NIMH really pushing on the
neuroscience and genetics of mental disorders, and
when I look back on that I realize that while I think I
succeeded at getting lots of really cool papers

published by cool scientists at fairly large costs—I
think $20 billion—I don’t think we moved the needle
in reducing suicide, reducing hospitalizations,
improving recovery for the tens of millions of people
who have mental illness. [2]

A challenge contributing to this issue is that day-to-day clinical
interactions and decision-making processes in psychiatry remain
fundamentally the same as they were 50 years ago.
Decision-making is still based on binary (present/absent)
diagnoses inferred from clinical symptoms assessed during an
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interview at a single time point. Once a diagnosis has been
made, treatment focuses on managing acute symptoms, with
simple long-term strategies (eg, “what gets you well, keeps you
well”) and reactive handling of adverse outcomes (eg,
readmission following a suicide attempt). Moreover, despite
extraordinary empirical advances in psychopharmacology [3-5],
all psychotropic medications help a subset of patients. Thus,
most psychiatrists still follow a trial-and-error approach, which
can take an inordinate amount of time [6]. Once patients are
stable, the traditional model of clinical monitoring typically
involves monthly visits that are either too infrequent or too
frequent given the labile nature of mental disorders.

Some models for mental disorders or behaviors (eg, suicide)
have been successfully developed and they allow predictions
at the population level [7,8]. However, current demographic
and clinical variables are neither sensitive nor specific enough
for making individual actionable clinical predictions. Using
suicide as an example, a recent meta-analysis concluded that
predictive ability has not improved across 50 years of research
[9]. This is in part because these predictive models are still
solely based on sociodemographic and static descriptive clinical
variables. For instance, an older, White man, with depression
and alcohol use may have a 100-fold higher likelihood of killing
himself during the next year than somebody in the general
population. Unfortunately, this astounding relative risk (100)
means that the likelihood that this single patient kills himself
during the next year is 10/1000 (1%) rather than 10/100,000.
Psychiatrists cannot hospitalize 100 patients for one year to
save one life. Using larger datasets with more demographic and
clinical variables may improve the precision of these
population-based models, but they are unlikely to impact
individual clinical outcomes.

A major hope of the “Decade of the Brain” was that biological
measures (biomarkers) would solve these issues [10,11] and
lead to precision psychiatry [12]. A variety of biomarkers have
now been reliably associated with mental disorders and their
outcomes [13]. However, as models based on sociodemographic
and clinical data, even when these biomarkers differ significantly
between groups of patients and control participants, they are
neither sensitive nor specific enough to be applied to individual
patients [14-16]. Typically, a quarter to a third of the patients
have normal values and a quarter to a third of the controls have
pathologic values [17]. New models that will integrate
sociodemographic, clinical, and biological data are being
developed, but they have not yet been shown to improve clinical
outcomes [15,16,18,19]. The field of preventive psychiatry still
lacks an understanding of the complex mechanisms underlying
mental disorders and their treatment, in contrast to the
well-established pathophysiologic models in cardiology or
oncology, which link risk factors to outcomes and have led to
reductions in mortality related to heart disease, stroke, or cancer
[20,21].

Looking back, we believe that our inability over two or three
“decades of the brain” to bridge the gap between biology and
clinical symptoms is due to the lack of an intermediate level of
description. In the field of artificial intelligence (AI), the early
attempts to create neural networks had to be abandoned because
the early 2-layer networks could not process information

usefully (eg, interpret images or translate languages). It took
more than 30 years to understand that neural networks needed
an intermediate layer to process information usefully and to
implement this intermediate layer [22,23]. The Research Domain
Criteria initiative of the NIMH has attempted to bridge this gap
with limited success to date [24]. Technological advances over
the past decade offer a promising approach based on new
measures that may be essential for understanding mental
disorders and predicting their trajectories. Several new tools
allow us to continuously monitor objective behavioral measures
(eg, hours of sleep) and densely sample subjective measures
(eg, mood). The promise of this approach, referred to as digital
phenotyping was recognized almost a decade ago [25], with its
potential impact on psychiatry being compared to the impact
of the microscope on biological sciences [26].

However, simply gathering a large amount of informative data
about a single patient is not helpful by itself. Just as a clinician
struggles to synthesize the information from over 100 clinical
notes and dozens of laboratory reports available in an electronic
health record, the massive amount of data provided by digital
phenotyping is useless unless these data can be properly
analyzed in a clinical context and with the proper statistical
tools. Machine learning, by extracting complex patterns from
multiple sources of high-dimensional time-varying data [27],
is an ideal tool to address this problem [28-30]. Nonetheless,
some challenges with machine learning still need to be addressed
before it can be used to make actionable predictions in
psychiatry. These challenges include unreliable inherent
assumptions [31,32], model instability [33], and lack of
interpretability [34] or explainability [35] of results (the black
box problem).

Despite the intuitive belief that collecting densely sampled data
(big data) improves clinical outcomes, recent clinical trials have
not shown that incorporating digital phenotyping improves
clinical outcomes [36-40]. This is an example of the so-called
“AI chasm,” which refers to the gap between developing
algorithms and their actual real-world implementation and
clinical impact [41]. As discussed above, some reasons for this
chasm include the disconnect between building good individual
predictive models for the broader population and making
individual inferences [42]. Bayesian procedures offer a potential
solution to link inferences and predictions [43]. Other simpler
reasons to address include the lack of expertise needed to
implement tools into clinical practice [44], poor data quality
compromising the reliability and accuracy of models [45-47],
and a lack of standardization [38].

During the next decade, achieving clinically actionable
predictions in psychiatry will require a stepwise development
and implementation approach [12], similar to the successful
methods used in other medical fields, such as predicting and
preventing cardiovascular disease [48]. The first step will be to
identify individual digital measures of objective behaviors and
subjective mental states (digital markers) that can be integrated
with sociodemographic data, clinical characteristics, and
biomarkers to create multimodal signatures that predict clinical
outcomes (akin to risk scores in other medical fields). These
multimodal signatures will need to be reliably and accurately
associated with individual clinical states and trajectories.
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Validation studies will require cohort studies with adequate
sample sizes and sufficient duration to generate enough
analyzable clinical events [49]. We foresee that different
multimodal signatures will be used for detection (diagnosis)
and prediction (prognosis). Once the reliability, specificity, and
sensitivity of these multimodal signatures are established,
prospective randomized clinical trials (RCTs), with adequate
sample sizes, complemented with real-world observation studies,
will need to demonstrate that they can be used to tailor the
treatment of individual patients and improve outcomes. Albeit
costly, these RCTs are needed to fulfill the promise of clinically
actionable predictions leading to individualized, timely
treatment. We are also mindful of a recent review [50] that
emphasized methodological challenges in RCTs investigating
smartphone-based treatment interventions for mental disorders,
including lack of trial registrations, inappropriate comparators,
lack of blinding, selection bias, and lack of generalizability.

In parallel, the incorporation of digital phenotyping, first in
RCTs and later in clinical practice, will require addressing
complex ethical issues raised by the intense monitoring of
behavior and mental state, which some people may consider
too invasive regardless of its potential benefits [51]. This work
can be informed by lessons learned from other fields [52]. To
prepare for the deployment of the new decision-making tools
we foresee and to understand their potential and pitfalls [53],
we will need to start training in medical schools and continue
training throughout our professional life [54].

In conclusion, we believe that technological advances, in the
context of a more holistic approach that considers all
determinants of health, will allow us to create individual
multimodal signatures for early detection and personalized
intervention for mental disorders. However, this potential
transformation in psychiatry will require another decade of
investment and effort to become a reality.
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