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Abstract

Background: Stroke is a leading cause of death and disability worldwide. Rapid and accurate diagnosis is crucial for minimizing
brain damage and optimizing treatment plans.

Objective: This review aims to summarize the methods of artificial intelligence (AI)–assisted stroke diagnosis over the past 25
years, providing an overview of performance metrics and algorithm development trends. It also delves into existing issues and
future prospects, intending to offer a comprehensive reference for clinical practice.

Methods: A total of 50 representative articles published between 1999 and 2024 on using AI technology for stroke prevention
and diagnosis were systematically selected and analyzed in detail.

Results: AI-assisted stroke diagnosis has made significant advances in stroke lesion segmentation and classification, stroke risk
prediction, and stroke prognosis. Before 2012, research mainly focused on segmentation using traditional thresholding and
heuristic techniques. From 2012 to 2016, the focus shifted to machine learning (ML)–based approaches. After 2016, the emphasis
moved to deep learning (DL), which brought significant improvements in accuracy. In stroke lesion segmentation and classification
as well as stroke risk prediction, DL has shown superiority over ML. In stroke prognosis, both DL and ML have shown good
performance.

Conclusions: Over the past 25 years, AI technology has shown promising performance in stroke diagnosis.

(J Med Internet Res 2024;26:e59711) doi: 10.2196/59711
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Introduction

Background
Stroke is a global public health issue, ranking as the second
leading cause of death and the third leading cause of disability
and death. One in every 4 people aged >25 years will experience
a stroke in their lifetime. Stroke is responsible for 11.6% of
deaths, and its incidence, mortality, and disability rates are on
the rise [1-3].

Acute stroke refers to the clinical pathological state caused by
the acute disruption of cerebral blood vessels. It can result in
either the interruption of blood supply to the brain or the rupture

of brain vessels, leading to damage to brain tissue. Ischemic
strokes account for approximately 80% of all strokes, while
hemorrhagic strokes make up approximately 20% [4]. Ischemic
stroke is caused by reduced blood flow or blockage in the
cerebral vessels, leading to oxygen and blood deprivation in
brain tissue. Hemorrhagic stroke results from bleeding due to
the rupture of cerebral vessels, with symptoms typically
appearing within minutes and potentially leading to severe
neurological deficits [5].

Over the past 25 years, artificial intelligence (AI) technology
has achieved remarkable progress across various domains,
notably in medical diagnostics [6]. Early AI applications
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primarily used rule-based systems and machine learning (ML)
models to analyze medical data and predict outcomes. With the
advent of deep learning (DL), AI’s ability to handle complex
medical imaging data improved significantly. DL models, such
as convolutional neural networks (CNNs), have been particularly
effective in automatically identifying stroke lesions and
detecting stroke risk factors in medical images. These models
use large data sets to learn intricate patterns and features,
improving diagnostic accuracy and efficiency. In addition, by
integrating vast amounts of clinical data with imaging data, AI
can now predict patient prognosis, assess functional recovery,
and forecast treatment outcomes with greater precision [7]
(Figure 1).

The swift and precise analysis of imaging data by AI offers
detailed insights into the patient’s condition, significantly
supporting physicians in diagnostic decision-making and
treatment planning. These AI models promote a deeper
understanding of disease progression, enabling the development
of personalized rehabilitation plans and thereby improving
long-term patient outcomes [8].

Computed tomography (CT) and magnetic resonance imaging
(MRI) are the most commonly recommended imaging methods
for the clinical diagnosis of acute stroke. MRI has higher clarity
and clinical sensitivity, offering better soft tissue contrast [9].
MRI imaging techniques used for brain examinations include
T1-weighted imaging (T1WI), T2-weighted imaging (T2WI),
fluid-attenuated inversion recovery (FLAIR), and

diffusion-weighted imaging (DWI). T1WI provides excellent
anatomical detail, but it is not very sensitive to early changes
in acute stroke. T2WI can highlight increased water content in
brain tissue and is commonly used for evaluating the subacute
and chronic stages of stroke, although the images may be blurry
and have artifacts. FLAIR can suppress cerebrospinal fluid
signals, making it suitable for detecting white matter lesions
and identifying lesions near the cerebrospinal fluid pathways.
However, it has longer scanning times and is not sensitive
enough for detecting small infarcts. DWI is highly sensitive to
early acute cerebral ischemia, but DWI images have lower
resolution and are not sufficiently sensitive to small infarcts
[10]. Compared to MRI imaging, CT is faster and commonly
used for detecting early signs of infarction. CT angiography
(CTA) can provide information about vascular occlusion to
guide treatment decisions, while CT perfusion (CTP) imaging
can assess the extent of ischemic core and penumbra areas [11].
The 2018 American Heart Association and American Stroke
Association guidelines indicate that noncontrast CT (NCCT)
and CTA are recommended within 6 hours of acute stroke onset,
while MRI and CTP are recommended for the 6- to 24-hour
window [12,13] (Figure 2).

Ultrasound examination, with its advantages of fast imaging
speed, lack of radiation, and lower cost, is commonly used in
clinical practice for cardiac and carotid artery assessments
[14,15] (Figure 3). For cerebral small vessel evaluation, T2WI
and FLAIR-weighted MRI are commonly used in clinical
settings [16].

Figure 1. Artificial intelligence used for acute stroke diagnosis over the past 25 years. CNN: convolutional neural network; kNN: k-nearest neighbors;
NB: naive Bayes; ResNet: residual network; RF: random forest; SAM: Segment Anything Model; SVM: support vector machine.
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Figure 2. Stroke lesions identified using different imaging modalities. (A) Noncontrast computed tomography (NCCT). (B) CT perfusion (CTP). (C)
T1-weighted imaging (T1WI). (D) T2-weighted imaging (T2WI). (E) Fluid-attenuated inversion recovery (FLAIR). (F) Diffusion-weighted imaging
(DWI). (G) NCCT (annotated). (H) CTP (annotated). (I) T1WI (annotated). (J) T2WI (annotated). (K) FLAIR (annotated). (L) DWI (annotated). Stroke
lesion areas are marked in blue, and the images are not paired.

Figure 3. Cardiac ultrasound (US) and carotid US. (A) Cardiac US (2 heart chambers). (B) Cardiac US (4 heart chambers). (C) 3D carotid US. (D) 2D
carotid US.

Main Contributions of This Review
The main contributions of this review are as follows: first, it
provides a comprehensive summary of the common applications
of AI in the diagnosis of acute stroke. Second, it outlines the
development trends of AI algorithms for stroke lesion
segmentation and classification, stroke risk prediction, and
stroke prognosis from 1999 to 2024. This includes an analysis
of data sources, types of algorithms, outcome metrics, and
qualitative results described in each included article. Third, it
discusses the clinical significance of the findings, existing
challenges, and future research directions in this rapidly
advancing field. The review aims to provide researchers and
clinicians with insights into the current state of acute stroke
diagnosis based on DL, offering a comprehensive reference for
clinical practice.

Methods

Overview
For this systematic review, we adhered to the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) 2020 guidelines [17]. We conducted a
comprehensive literature search from January 1999 to February
2024 across the Google Scholar, PubMed, IEEE Xplore, Web

of Science, and SpringerLink databases. The Boolean search
string used was as follows: (ABSTRACT (“artificial
intelligence” OR “AI” OR “machine learning” OR “deep
learning” OR “CNN”) AND ABSTRACT (“ischemic stroke”
OR “hemorrhagic stroke” OR “acute stroke” OR “stroke”) AND
ABSTRACT (“magnetic resonance imaging” OR “MRI” OR
“Computed Tomography” OR “CT” OR “Ultrasound” OR
“US”)).

Evaluation Metrics
To assist readers in gaining a clearer understanding of these
articles, we will define the model evaluation metrics featured
in this review (Textbox 1). Common metrics include the Dice
similarity coefficient (DSC) [18], Hausdorff distance [19], area
under the curve (AUC) [20], accuracy [21], positive predictive
value [22], recall [22], and specificity [22]. For image
segmentation tasks, the main focus is on the DSC and Hausdorff
distance metrics. For image classification tasks and prediction
tasks, the main focus is on the accuracy, positive predictive
value, recall, specificity, and AUC metrics (Table 1).

In this review, we also examine the statistical measures of
significance and uncertainty, robustness or sensitivity analysis,
methods for explainability or interpretability, and their validation
(including validation or testing on external data), if reported in
the studies [23].
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Textbox 1. Acronyms with their definitions.

Acronyms and definitions

• AF: atrial fibrillation

• AI: artificial intelligence

• ASPECTS: Alberta Stroke Program Early CT Score

• AUC: area under the curve

• CAS: carotid artery stenosis

• CE: cardioembolism

• CNN: convolutional neural network

• CSVD: cerebral small vessel disease

• CT: computed tomography

• CTA: computed tomography angiography

• CTP: computed tomography perfusion

• DL: deep learning

• DNN: deep neural network

• DSC: Dice similarity coefficient

• DT: decision tree

• DWI: diffusion-weighted imaging

• FCN: fully convolutional network

• FLAIR: fluid-attenuated inversion recovery

• GRU: gated recurrent unit

• HD: Hausdorff distance

• kNN: k-nearest neighbors

• LA: left atrium

• LAA: large artery atherosclerosis

• LLM: large language model

• MHCA: multihead cross-attention

• ML: machine learning

• MRF: Markov random field

• MRI: magnetic resonance imaging

• NB: naive Bayes

• NCCT: noncontrast computed tomography

• PCA: principal component analysis

• PPV: positive predictive value

• RBF: radial basis function

• RBM: restricted Boltzmann machine

• RF: random forest

• ROI: region of interest

• SAM: Segment Anything Model

• SAO: small artery occlusion

• SE: squeeze and excitation

• STRIVE-1: Standards for Reporting Vascular Changes on Neuroimaging-1

• SVM: support vector machine

• T1WI: T1-weighted imaging
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T2WI: T2-weighted imaging•

• US: ultrasound

• VIT: vision transformer

• VMamba: Vision Mamba

• WMH: white matter hyperintensities

Table 1. Equations and significance for evaluation metrics.

SignificanceEquationMetric

Segmentation metrics

The overlap between segmentation results and labels; X and Y represent the segmentation result and
label, respectively

DSCa [18]

The maximum boundary distance between results and labels; denotes the directed Hausdorff
distance from set A to set B

HDb [19]

Classification and prediction metrics

Threshold-independent classification performance—dAUCc [20]

The proportion of correct predictions among all cases; TP represents true positive, TN represents true
negative, FP represents false positive, and FN represents false negative

Accuracy [21]

The proportion of TPs among predicted positivesPPVe [22]

The proportion of TPs among all actual positivesRecallf [22]

The proportion of TNs among all actual negativesSpecificity [22]

aDSC: Dice similarity coefficient.
bHD: Hausdorff distance.
cAUC: area under the curve.
dNot applicable.
ePPV: positive predictive value (can also be referred to as precision).
fRecall can also be referred to as sensitivity.

Results

Literature Search Results

Overview
In the initial identification phase of the PRISMA flowchart
(Figure 4), we identified 219 articles. During the screening
phase, we reviewed the titles and abstracts of these publications
to remove duplicates. We also excluded articles involving
animals, other lesion types (eg, skin and lung), other stroke
types (eg, perinatal stroke and chronic stroke), and other imaging
modalities (eg, digital subtraction angiography). In addition,
books, theses, review articles, and studies that did not propose
an automated method based on ML or DL were excluded.

In the final inclusion phase, of the initial 219 articles, we
retained 50 (22.8%) unique articles. These articles were

thoroughly read to assess their eligibility for inclusion in this
review. Articles were selected if they (1) relied on ML-based
or DL-based automated methods and (2) included clinical
records or medical images.

Segmentation and Classification of Stroke Lesions

Overview

Imaging examinations are typically included in the admission
tests for patients with acute stroke [24,25]. Segmentation of
stroke lesions can determine lesion volume and lesion location
[26]. Classification of stroke lesions allows for the rapid
identification of stroke type, aiding in patient triage [27]. This
supports disease diagnosis, assists physicians in formulating
treatment plans based on the patient’s clinical presentation, and
provides guidance for surgical or pharmacological interventions
(Table 2).
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Figure 4. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart for systematic filtering and selection of articles.
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Table 2. Methods and performance of stroke lesion segmentation and classification.

MeritsPerformanceMethodsData
set, n

Image typeStudy, year

Machine learning (MRIa)

Uses SVM to extract local featuresDSCc: 0.74SVMb36Multimodal MRIMaier et al [28],
2014

Multistage algorithm; fuses T1WIf,

T2WIg, FLAIRh, and DWIi

DSC: mean 0.39 (SD 0.22)B-MRFd, RFe36Multimodal MRIMitra et al [29],
2014

Uses extra trees for voxel-level classi-
fication; incorporates intensity-de-
rived image features

DSC: 0.65; HDj: 28.61
mm

RF37Multimodal MRIMaier et al [30],
2015

Combines RF with multiresolution
neighborhood data analysis

DSC: mean 0.696, SD
0.16; HD: mean 17.9, SD
9.8 mm

RF105T1WIPustina et al [31],
2016

Incorporates probabilistic tissue seg-
mentation; incorporates image algebra

DSC: 0.66GNBk30T1WIGriffis et al [32],
2016

Deep learning (CTl)

Integrates UNet and T-Net (a varia-
tion of the UNet architecture); incor-
porates residual blocks

DSC: mean 0.53, SD 0.01;
HD: mean 23.29, SD 0.02
mm

UNet156CTPmGoncharov et al
[33], 2018

Uses symmetric modality augmenta-
tion; applies uncertainty filtering

DSC: mean 0.49, SD 0.31;
HD: mean 11.3, SD 31.6
mm

CNNn156CTPClèrigues et al [34],
2019

Uses an innovative loss function; ex-

tracts features from CTAo images,
synthesized pseudo-DWI

DSC: mean 0.51, SD 0.31;
HD: mean 0.55, SD 0.34
mm

CNN156Multimodal CTWang et al [35],
2020

Combines CNN and classification

network; introduces the ASPECTSq

scale

DSC: 0.448CNN230NCCTpKuang et al [36],
2021

Uses multiscale convolutional blocks,
incorporates contralateral CT images;
uses time-to-maximum heat maps

DSC: 0.69UNet156CTPSoltanpour et al
[37], 2021

Combines ResNet-50 and trans-
former; introduces multihead cross-
attention module

DSC: 0.7358Transformer,

ResNetr-50

293NCCTLuo et al [38], 2021

Incorporates symmetry-aware spa-
tiotemporal convolutional structure;

DSC: 0.564UNet156CTPDe Vries et al [39],
2023

uses the dynamics of cerebral microp-
erfusion; incorporates attention in
skip connections

Introduces hybrid CNN transformer;
introduces bilateral difference learn-
ing

DSC 0.5407Transformer, CNN482NCCTKuang et al [40],
2024

Deep learning (MRI)

Multistage algorithm; introduces
multiscale concept

DSC: 0.67CNN741DWIChen et al [41],
2017

Combines dense connections and
multiscale context

DSC: 0.7913DenseNet242DWIZhang et al [42],
2018

Uses leaky rectified linear unit in last
2 layers

DSC: 0.70FCNs28Multimodal MRIKarthik et al [43],
2019

Uses symmetric modality enhance-
ment; uses dynamic weighted loss
functions

DSC: 0.59, SD 0.31; HD:
0.84, SD 0.10 mm

UNet236Multimodal MRIClèrigues et al [44],
2020

Uses point-wise rendering to compute
boundary

DSC: 0.7258Transformer490Multimodal MRIWu et al [45], 2023
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MeritsPerformanceMethodsData
set, n

Image typeStudy, year

Multistage algorithm; proposes 2 edge
enhancement modules

DSC: 0.7368Transformer, CNN490Multimodal MRIWu et al [46], 2023

Comprises 2 parallel pipelinesDSC: 0.737Transformer, UNet239T1WISoh et al [47], 2023

Stroke classification

Compares kNNv and DTAUCu: 0.994; recall: 0.987DTt, CNN400NCCTAdam et al [48],
2016

Uses multifocus image fusion prepro-
cessing

ACC: 98.33CNN900NCCTGautam and Raman
[49], 2021

Uses hyperparameter optimization;
uses transfer learning; compares opti-
mized CNN and ResNet-50

Recall: 0.99CNN400NCCTChen et al [50],
2022

aMRI: magnetic resonance imaging.
bSVM: support vector machine.
cDSC: Dice similarity coefficient.
dB-MRF: Bayesian-Markov random field.
eRF: random forest.
fT1WI: T1-weighted imaging.
gT2WI: T2-weighted imaging.
hFLAIR: fluid-attenuated inversion recovery.
iDWI: diffusion-weighted imaging.
jHD: Hausdorff distance.
kGNB: Gaussian naive Bayes.
lCT: computed tomography.
mCTP: computed tomography perfusion.
nCNN: convolutional neural network.
oCTA: computed tomography angiography.
pNCCT: noncontrast computed tomography.
qASPECTS: Alberta Stroke Program Early Computed Tomography Score.
rResNet: residual network.
sFCN: fully convolutional network.
tDT: decision tree.
uAUC: area under the curve.
vkNN: k-nearest neighbors.

Stroke Lesion Segmentation Based on ML
Stroke lesion segmentation is a challenging task due to the
blurred boundaries between stroke lesions and normal tissues,
particularly in hemorrhagic strokes. MRI images offer greater
contrast and clarity compared to CT scans, allowing for more
clearly delineated observation of stroke lesion boundaries [51].

Traditional thresholding and heuristic algorithms are inadequate
for accurately segmenting stroke lesions. Before 2012, there
was limited research on stroke lesion segmentation [52,53].

From 2012 to 2016, stroke lesion segmentation algorithms were
primarily based on ML algorithms, with common segmentation
methods mainly involving support vector machines (SVMs)
[54], random forests (RFs) [55], and naive Bayes [56]. Due to
the limited feature extraction capabilities of ML segmentation
algorithms during this period, these algorithms primarily used
MRI images.

In 2014, Maier et al [28] proposed an image segmentation
method for ischemic stroke lesions based on SVMs using
multimodal MRI images. The authors used SVMs to extract
local features from the multimodal MRI data [28]. In the same
year, Mitra et al [29] used a Bayesian-Markov random field for
preliminary FLAIR image classification, then analyzed
multimodal MRI data (T1WI, T2WI, FLAIR, and DWI) and
contextually relevant features using an RF to identify likely
lesion areas.

One year later, Maier et al [30] proposed another method for
segmenting ischemic stroke lesions in multimodal MRI images
using extra tree forests. This approach involved using extra trees
for voxel-level classification and incorporated intensity-derived
image features [30].

In 2016, Pustina et al [31] proposed an automatic segmentation
algorithm for stroke lesions in T1WI images, combining RFs
with multiresolution neighborhood data analysis to enhance
efficiency and reduce observer dependency. In the same year,
Griffis et al [32] used a stroke lesion segmentation method based
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on the Gaussian naive Bayes classifier. By using probabilistic
tissue segmentation and image algebra to create feature maps,
the authors encoded information about missing and abnormal
tissues and used the leave-one-out method for cross-validation
[32].

Stroke Lesion Segmentation Based on DL
After 2016, there was a leap in the capabilities of DL for medical
segmentation and feature extraction. DL has since outperformed
ML as the main force in stroke image segmentation [57]. Due
to the improved feature extraction capabilities of DL, algorithms
for stroke lesion segmentation based on CT scans have emerged.

In 2018, Goncharov et al [33] proposed a CNN framework
integrating UNet and T-Net (a variation of the UNet
architecture). In each network, convolutional layers were
replaced with residual blocks, and an initial convolution layer
was added to enhance the learnability of the deep network [33].

In 2019, Clèrigues et al [34] proposed a 3D CTP segmentation
method based on a 2D asymmetrical residual CNN. This method
addresses issues such as small sample size, class imbalance,
and overfitting by enhancing training, using symmetric modality
augmentation, and applying uncertainty filtering, thereby
improving performance and achieving fast inference [34].

In 2020, Wang et al [35] proposed a multimodal 3D CTP
segmentation method based on CNNs. The authors extracted
features from CTA images, synthesized pseudo-DWI, and used
an innovative loss function to focus on lesion areas, thereby
improving segmentation accuracy [35].

In 2021, Kuang et al [36] proposed a DL approach named
EIS-Net, which combines a 3D triple CNN and a multiregion
classification network for automatic segmentation of early
ischemic stroke and Alberta Stroke Program Early CT Score
scoring on NCCT in patients with acute ischemic stroke. In the
same year, Soltanpour et al [37] proposed an improved version
of the UNet network called MultiResUNet for the automatic
segmentation of ischemic stroke lesions in CTP images. The
algorithm uses multiscale convolutional blocks and incorporates
contralateral CT images as references, estimating lesion
locations using time-to-maximum heat maps [37]. Luo et al [38]
proposed an ischemic stroke lesion segmentation method called
UCATR for NCCT images. This method combines residual
network (ResNet)-50 (a CNN that is 50 layers deep) and
transformer encoders and introduces a multihead cross-attention
module in the decoder to improve the accuracy of spatial
information recovery [38].

In 2023, de Vries et al [39] proposed a model called Perf-UNet
for segmenting the infarct core area from CTP source data. The
model uses a symmetry-aware spatiotemporal convolutional
structure, leveraging the dynamics of cerebral microperfusion,
and incorporates attention modules in the skip connections [39].

In 2024, Kuang et al [40] proposed a hybrid CNN-transformer
network based on circular feature interactions and bilateral
difference learning. This network introduces a hybrid
CNN-transformer in the encoder, a recurrent feature interaction
module, and a shared CNN decoder with bilateral difference
learning modules [40].

Compared to CT-based stroke lesion segmentation, MRI-based
stroke lesion segmentation achieves higher segmentation
accuracy.

In 2017, Chen et al [41] proposed a CNN network composed
of a deconvolutional network for initial segmentation and a
multiscale convolutional label evaluation network for
eliminating false positives in small lesions.

In 2018, Zhang et al [42] proposed FC-DenseNet for segmenting
acute stroke lesions in DWI medical images. This model
combines dense connections and multiscale context on top of
a 3D CNN to address common issues in DWI, such as noise,
artifacts, and variations in lesion size and location [42].

In 2019, Karthik et al [43] proposed an improved fully
convolutional network that applies leaky rectified linear unit
activation in the last 2 layers of the UNet architecture. This
approach precisely reconstructs ischemic lesions and allows the
network to learn additional features not considered in the
original UNet architecture [43].

In 2020, Clèrigues et al [44] addressed class imbalance issues
by using symmetric modality enhancement, balanced training
sample strategies, and dynamic weighted loss functions in the
UNet architecture.

In 2023, Wu et al [45] introduced a lesion boundary–rendering
method named TransRender. This method uses transformers to
capture global information during the encoding phase and uses
multiple renderings to effectively map encoding features of
different levels to the original spatial resolution. The method
adaptively selects points to compute boundary features based
on point-wise rendering, supervising the rendering module to
generate points and continuously refine uncertain regions [45].
In the same year, Wu et al [46] proposed a 2-phase brain
multimodal MRI lesion segmentation method named W-Net.
This method uses a CNN and a transformer as backbone
networks, introduces a boundary deformation module and a
boundary constraint module to address boundary ambiguity,
and designs a multitask learning loss function to optimize W-Net
from both regional and boundary perspectives [46]. Soh et al
[47] proposed an algorithm named hybrid UNet transformer.
This algorithm comprises 2 parallel pipelines, where the
transformer-based pipeline uses feature maps from the
intermediate layers of the UNet-based pipeline to enhance
feature extraction capabilities [47].

Stroke Classification
The admission evaluation for patients with acute stroke typically
includes stroke classification. Patients with acute ischemic stroke
who are eligible for thrombolytic therapy should be referred to
a thrombolytic center for treatment. For patients who are not
suitable for thrombolytic therapy, conservative treatment should
be provided upon admission. Patients with hemorrhagic stroke
require rapid intervention to minimize brain damage and
improve survival chances [24].

Acute ischemic stroke classification is typically based on CT
imaging [58]. In CT images, ischemic stroke lesions appear as
low-density regions (dark areas), while hemorrhagic stroke
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lesions appear as high-density regions (white areas; Figure 5)
[48-50].

Adam et al [48] proposed a stroke lesion classification model
based on decision tree and k-nearest neighbors (kNN)
algorithms. The study found that the decision tree algorithm
outperformed kNN in classification [48].

Gautam and Raman [49] proposed a CNN model for classifying
stroke CT images. The authors improved the quality of CT
images by using multifocus image fusion preprocessing and

then inputted the processed images into a 13-layer CNN
architecture for classification [49].

Chen et al [50] used hyperparameter optimization and transfer
learning to identify stroke conditions in brain CT images. The
optimized CNN and ResNet-50 models demonstrated high
accuracy in distinguishing between normal, hemorrhagic stroke,
ischemic stroke, and other lesions. Although ResNet-50
exhibited the highest accuracy, it required more processing time
[50].

Figure 5. Ischemic stroke and hemorrhagic stroke. (A) Ischemic stroke. (B) Ischemic stroke (annotated). (C) Hemorrhagic stroke. (D) Hemorrhagic
stroke (annotated). Stroke lesion areas are marked in blue.

In-Depth Analysis of Stroke Lesion Segmentation and
Classification
In clinical practice, the choice between using MRI and CT
depends on the specific condition of the patient. CT has lower
sensitivity in identifying early changes of acute ischemic stroke
but demonstrates higher sensitivity in detecting characteristic
high-density lesions of hemorrhagic stroke [59]. Compared to
CT, MRI has higher contrast and a stronger ability to
differentiate between brain tissues. The DWI sequence can
detect minor changes in brain tissue just minutes after ischemia
occurs. MRI also provides clearer identification of small
hemorrhages and better differentiation between hemorrhagic
and ischemic areas, along with detailed information on the extent
and type of brain tissue damage after a stroke [60].

Before 2012, brain segmentation algorithms were primarily
based on traditional methods for brain white matter
segmentation. There are few studies focusing on the
segmentation of stroke lesions in this period [52,53]. Between
2012 and 2016, segmentation algorithms for ischemic stroke
lesions were primarily based on ML. Due to the blurred
boundaries between stroke lesions and surrounding normal
tissue in CT images, algorithms from this period mainly focused
on MRI imaging. The accuracy of segmentation algorithms
during this time generally did not exceed 0.75. These algorithms
were complex, had weak generalization capabilities, and could
not achieve the level of accuracy of manual segmentation. After
2016, with the development of UNet, DL has shown superior
performance in the segmentation of stroke lesions [57]. As DL
enables more in-depth feature extraction from medical images,
significantly enhancing the extraction of effective features, an
increasing number of researchers have started focusing on the
segmentation of ischemic stroke lesions in CT images. However,
the accuracy of these segmentation algorithms based on CT

commonly did not surpass 0.75. Algorithms for segmenting
ischemic stroke lesions based on MRI have shown better
accuracy, enough to be comparable to manual segmentation.
Some algorithms have achieved accuracies of up to 0.85. To
facilitate the triage of patients with acute stroke, due to the
urgency of the condition, the classification of stroke types
primarily relies on CT images [58]. Current algorithms have
achieved high accuracies, generally exceeding 0.90, indicating
promising application prospects.

Data preprocessing is important for medical image segmentation.
Preprocessing aims to standardize image quality, enhance
valuable features, and reduce segmentation difficulties.
Clèrigues et al [34] and Clèrigues et al [44] used
symmetry-enhanced modalities, leveraging the high bilateral
symmetry exhibited by the human brain in its natural state. This
approach provides clearer and more accurate information for
subsequent steps such as feature extraction, lesion detection,
and image segmentation. For complex segmentation tasks such
as stroke lesion segmentation, the introduction of multimodal
approaches can significantly enhance algorithm performance
by extracting complementary information from different imaging
techniques. The studies by Mitra et al [29] and Wang et al [35]
are particularly representative. Mitra et al [29] used multimodal
MRI data, including T1WI, T2WI, FLAIR, and DWI, along
with context-aware features. Wang et al [35] extracted features
from CTA images, synthesized pseudo-DWI, for use in CTP
segmentation methods.

In addition, some studies used multistage algorithms, combining
coarse and fine-grained approaches to achieve better
segmentation performance; for instance, Mitra et al [29] used
a Bayesian-Markov random field model for preliminary
classification of FLAIR images and used RFs for multimodal
MRI segmentation. Chen et al [41] used a deconvolutional
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network for initial segmentation and used a multiscale
convolutional label evaluation network to evaluate and eliminate
false positives of small lesions, achieving promising results on
large data sets and demonstrating the algorithm’s generalization
ability.

Since 2021, various attention mechanisms and transformers
have been widely applied in the field of medical image
segmentation, leading to further improvements in the
performance of stroke lesion segmentation algorithms.
Transformers leverage self-attention mechanisms, enabling
neural networks to capture global information and exhibit
excellent performance when processing long sequence data
[61]. De Vries et al [39] introduced attention mechanisms on
the skip connections between the encoder and decoder, reducing
the time dimension and only propagating the most informative
features. Luo et al [38], Kuang et al [40], Wu et al [45], Wu et
al [46], and Soh et al [47] all incorporated the concept of
transformers, leading to significant improvements in algorithm
performance.

Stroke Risk Prediction

Overview
Clinical methods for stroke risk prediction include clinical risk
scores (eg, Framingham Stroke Risk Profile [62]), genetic risk
analysis [63], serum biomarker detection [64], and imaging
analysis [65]. Compared to other methods, imaging analysis
provides direct anatomical and functional information, allowing
clinicians to observe pathological conditions directly. In
addition, imaging data can quantify stroke risk factors such as
atrial fibrillation (AF), carotid artery stenosis (CAS), and
cerebral small vessel disease, which are crucial for stroke risk
prediction [66]. Furthermore, imaging techniques can monitor
disease progression and treatment effects in real time, enabling
clinicians to adjust treatment strategies promptly. Due to these
advantages of imaging techniques, AI-based stroke risk
prediction using medical imaging has become a major focus of
research (Table 3).
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Table 3. Methods and performance of stroke prediction.

MeritsPerformanceMethodsData set, nImage typeStudy, year

AI a-assisted detection of CASb

Combines fuzzy c-means clustering;
incorporates noise-handling methods

Accuracy: 0.982RBFd200UScAlam et al [67], 2015

Uses spatial domain filteringAccuracy: 0.9428SVMe407USAraki et al [68], 2017

Introduces edge operatorsDSCf: 0.7423Encoder-decoder100USAl-Mohannadi et al
[69], 2021

A 3-branch network design; uses prior
knowledge of the carotid artery

DSC: 0.780UNet430USMi et al [70], 2021

Compares multiple DLg and MLh

models

Accuracy: 0.967CapsuleNet361USLatha et al [71], 2022

Introduces the concept of centerline
extraction

DSC: mean 0.927, SD 0.054CNNi244USJiang et al [72], 2023

AI-assisted detection of AFj and LAk enlargement

Introduces shape priors; introduces ad-
versarial learning

DSC: mean 0.75, SD 0.17;

HDl: mean 4.46, SD 2.73 mm

CNN161USDegel et al [73], 2018

Combines a pyramid network with
UNet; uses the Niblack global thresh-
olding method

DSC: mean 0.945, SD 0.12;
HD: mean 1.62, SD 0.05 mm

UNet1137USMoradi et al [74],
2019

Cascaded network; presents a novel
attention mechanism

HD: mean 5.9, SD 3.6 mmUNet2000USLeclerc et al [75],
2020

Proposes a pyramid local attention
module; proposes a label coherence
learning mechanism

DSC: 0.949; HD: 4.33 mmUNet3500USLiu et al [76], 2021

Introduces residual and branched net-
works; introduces dilated convolutions;

DSC: mean 0.959, SD 0.002;
HD: mean 0.422, SD 0.314
mm

ResNetm1764USLi et al [77], 2023

incorporates multiscale concepts in the
decoder

AI-assisted detection of WMHn

Cascaded network; uses dense blocks
and dilated blocks; uses multiscale
processing

DSC: 93.49CNN75MRIoLiu et al [78], 2020

Incorporates an auxiliary classifier;
applies the highlight foreground
method; uses multimodal MRI images

DSC: mean 0.8107, SD
0.0203

UNet170MRIPark et al [79], 2021

Introduces squeeze-and-excitation
blocks and dense connection

DSC: mean 0.736, SD 0.074UNet40MRILi et al [80], 2021

Proposes the LSLossp loss functionDSC: mean 0.81, SD 0.06VNet455MRIHuang et al [81], 2023

Incorporates consecutive self-attention
encoders

DSC: 0.8559UNet430MRIFarkhani et al [82],
2024

aAI: artificial intelligence.
bCAS: carotid artery stenosis.
cUS: ultrasound.
dRBF: radial basis function.
eSVM: support vector machine.
fDSC: Dice similarity coefficient.
gDL: deep learning.
hML: machine learning.
iCNN: convolutional neural network.
jAF: atrial fibrillation.
kLA: left atrium.
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lHD: Hausdorff distance.
mResNet: residual network.
nWMH: white matter hyperintensities.
oMRI: magnetic resonance imaging.
pLSLoss: level set loss.

Risk Factors of Stroke
Stroke can be divided into 3 distinct subtypes with well-defined
etiologies: large artery atherosclerosis, cardioembolism, and
small artery occlusion (Figure 6) [66].

Large artery atherosclerosis-type stroke is typically caused by
atherosclerotic stenosis in the carotid and intracranial large
arteries. For patients with mild stenosis, conservative treatment
is recommended. For those with severe stenosis, carotid
endarterectomy surgery is performed to prevent the occurrence
of ischemic stroke [71].

Cardioembolism-type stroke is caused by cardiogenic diseases,
where emboli from the heart and aortic arch dislodge and
circulate, leading to cerebral artery embolism [83]. Studies have

shown that left atrium (LA) enlargement may lead to myocardial
fibrosis and disruption of atrial muscle bundles, resulting in
blood stasis within the atrium and reduced atrial contraction
capacity. This can lead to AF, thereby increasing the risk of
cardioembolic stroke [84].

Small artery occlusion-type stroke, also known as lacunar stroke,
is a pathological condition caused by disease in the small
penetrating arteries of the deep regions of the cerebral
hemispheres or brainstem, leading to ischemic necrosis of the
brain tissue supplied by these arteries [85]. The international
Standards for Reporting Vascular Changes on Neuroimaging-1
clearly state that white matter hyperintensities (WMH) are
neuroimaging indicators of small vessel disease and can predict
the occurrence of stroke [16].

Figure 6. Risk factors and etiology of stroke. (A) Hemorrhagic stroke and ischemic stroke. (B) Large artery atherosclerosis–type stroke and its risk
factors. (C) Cardioembolism-type stroke and its risk factors. (D) Small artery occlusion–type stroke and its risk factors. LA: left atrium.

AI-Assisted Detection of CAS
The most commonly used imaging method for the detection of
CAS in clinical practice is ultrasound (Figure 7) [86,87].

In 2015, Alam et al [67] proposed a robust fuzzy radial basis
function network that combines fuzzy c-means clustering and
a radial basis function network, incorporating spatial information
and a smoothing parameter to handle noise.

In 2017, Araki et al [68] combined improved spatial domain
filtering techniques with ML to use the morphological
differences in carotid artery walls from ultrasound images. The
authors used the improved spatial domain filtering techniques
to remove image noise and used SVMs for classification [68].

In 2021, Al-Mohannadi et al [69] introduced morphological
operations in an encoder-decoder structure to reduce the impact
of noise on the results, using Sobel gradient direction images
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and Prewitt gradient direction images as inputs. In the same
year, Mi et al [70] designed an MBFF-Net (a multibranch feature
fusion network) with 3 branches. The first 2 branches extract
plaque features at multiple scales and different contexts, while
the third branch uses prior information [70].

In 2022, Latha et al [88] compared various ML and DL
algorithms for carotid artery segmentation. Among the ML

algorithms, RF performed the best, while CapsuleNet
outperformed other DL algorithms [88].

In 2023, Jiang and Chiu [72] integrated a centerline extraction
network and a dual-stream centerline-guided network into a 3D
UNet. The centerline extraction network generates centerline
heat maps to indicate the position of the carotid artery centerline,
while the centerline-guided network segments the 3D ultrasound
images based on the centerline heat maps [72].

Figure 7. Carotid artery stenosis (CAS). (A) Healthy person. (B) Healthy person (annotated). (C) Patient with CAS. (D) Patient with CAS (annotated).
Lumens are marked in blue.

AI-Assisted Detection of AF and LA Enlargement
Similar to CAS, echocardiography is commonly used clinically
to detect stroke-related heart disease, such as AF and LA
enlargement (Figure 8) [15].

In 2018, Degel et al [73] proposed an algorithm that combines
DL, shape priors, and adversarial learning to achieve automatic
segmentation of the LA in 3D ultrasound images. This algorithm
uses VNet for 3D volume segmentation and trains an
autoencoder network to constrain the segmentation results to
the shape of the LA [73].

In 2019, Moradi et al [74] proposed MFP-UNet, which combines
a pyramid network with the UNet model, adding 2
downsampling layers to extract more detailed features from the
images. The authors also used the Niblack global thresholding
method to preprocess the cardiac ultrasound images to enhance
contrast [74].

In 2020, Leclerc et al [75] proposed an RUNet composed of 2
UNets. The first UNet obtains the region of interest by dilating
the preliminary results, and the second UNet is used to predict
the final segmentation. RUNet outperformed other networks in
reducing geometric and anatomical prediction anomalies [75].

In 2021, Liu et al [76] introduced a pyramid-shaped local
attention mechanism in UNet to capture contextual information
and designed a label consistency learning mechanism to improve
the classification accuracy of edge pixels in cardiac ultrasound
images.

In 2023, Li et al [77] proposed a multitask DL model for cardiac
ultrasound segmentation and key point detection, named
EchoEFNet. The network introduces ResNets, branched
networks, and dilated convolutions in the encoder part and
incorporates multiscale concepts in the decoder part, combining
both low-level and high-level features [77].
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Figure 8. The presence of left atrium (LA) enlargement. (A) Healthy person. (B) Healthy person (annotated). (C) Patient with LA enlargement. (D)
Patient with LA enlargement (annotated). LA areas are marked in blue. LV: left ventricle; RA: right atrium; RV: right ventricle.

AI-Assisted Detection of WMH
MRI is superior to CT in terms of soft tissue contrast, allowing
for better differentiation between white matter and gray matter
in the brain. Therefore, MRI is more commonly used clinically
to detect cerebral small vessel disease and WMH (Figure 9)
[89,90].

In 2020, Liu et al [78] proposed the M2DCNN, a network
composed of 2 symmetrical U-shaped subnetworks. This
network uses dense blocks, dilated blocks, and multiscale
processing to improve feature extraction and prediction
capabilities. In addition, it introduces a loss function based on
the similarity between lesions and background [78].

In 2021, Park et al [79] proposed a UNet with multiscale
foreground highlighting, incorporating an auxiliary classifier

in the middle layers of the decoder for deep supervision training.
The authors used multiscale label images and applied the
highlight foreground method to enhance foreground voxels [79].

In 2021, Li et al [80] introduced squeeze-and-excitation blocks
and dense connections into the UNet architecture to better
capture spatial and multiscale semantic information.

In 2023, Huang et al [81] proposed the level set loss (LSLoss)
loss function. LSLoss consists of 4 loss terms, each designed
to optimize foreground loss, background loss, region of interest
loss, and divergence loss, to improve the accuracy of
segmentation results [81].

In 2024, Farkhani et al [82] proposed the volumetric
segmentation of WMH using transformer architecture, which
enhances the UNet by using consecutive self-attention encoders
to capture spatial dependencies in the data.

Figure 9. The presence of white matter hyperintensities (WMH). (A) Patient with minor WMH. (B) Patient with minor WMH (annotated). (C) Patient
with extensive WMH. (D) Patient with extensive WMH (annotated). WMH areas are marked in blue.

In-Depth Analysis of Stroke Risk Prediction
Carotid and cardiac ultrasound segmentation can assist
physicians in quantitatively assessing the condition of a patient’s
heart and carotid arteries, providing important references for
evaluating the risk of stroke. However, ultrasound image
segmentation is a complex task. Compared to CT and MRI
images, ultrasound images have lower contrast, noisy and blurry
boundaries, and numerous artifacts, making ultrasound medical
image segmentation more challenging.

For ultrasound image segmentation and classification, DL
generally outperforms ML. Among ML algorithms, RF, with
its capability to handle multifeature data, performs the best in
handling these tasks with high accuracy and robustness. By

contrast, other ML algorithms such as SVM and kNN perform
well in certain specific tasks but are generally not as stable and
accurate as RF. This is similar to the excellent performance of
RF in stroke lesion segmentation and classification as discussed
in the Segmentation and Classification of Stroke Lesions
subsection, further demonstrating RF’s superior performance
in image segmentation and classification tasks [88].

To address the significant noise in ultrasound images, many
researchers have incorporated denoising techniques into their
algorithms. Alam et al [67] introduced spatial information and
smoothing parameters to handle noise, and Araki et al [68] used
spatial filtering techniques. In addition, due to the high noise
and blurry boundaries in ultrasound images, advanced
architectures such as transformers may not necessarily
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outperform traditional convolutional blocks. In the comparative
experiments in the study by Liu et al [76], traditional
architectures such as UNet, UNet++, and ResNet performed
better than Swin-UNet. Although Swin-UNet, with its advanced
transformer architecture, significantly improved feature
extraction and generalization capabilities, it exhibited overfitting
in the segmentation of edge regions due to the substantial noise
and blurred edges in ultrasound images.

The structures of carotid and cardiac ultrasound images are
relatively fixed, and the introduction of morphological
operations can better optimize these fixed structures. This
effectively reduces the impact of noise and small artifacts,
improves segmentation accuracy, enhances structural features,
and increases robustness. Araki et al [68] used the morphological
characteristics of the carotid artery wall to specifically improve
spatial filtering, while Al-Mohannadi et al [69] introduced Sobel
and Prewitt operators to make the model more attentive to edge
information, aiding in the identification and segmentation of
the boundaries of the carotid artery and the heart. Mi et al [70]
and Degel et al [73] incorporated shape prior information, and
Liu et al [76] introduced a label consistency learning
mechanism. These 3 studies used the concept of templates to
constrain the segmentation results and reduce missegmentation.
For the segmentation of carotid vessels, centerline extraction
can accurately determine the center position of the vessels,
providing precise references for subsequent segmentation and
feature extraction. This can largely ignore small noise and
artifacts in the image, providing more stable segmentation results
[72].

For WMH segmentation, many researchers have attempted to
use attention mechanisms to enhance the model’s focus on small

targets. The attention mechanism allows the model to selectively
focus on important regions of the image based on the task
requirements, reducing dependence on irrelevant information
[78]. Farkhani et al [82] achieved the precise capture of key
regions through self-attention and hybrid transformer
mechanisms, contributing to the improvement of WMH
segmentation accuracy.

In the task of WMH segmentation, there is a significant class
imbalance due to the large difference in the number of pixels
between white matter and non–white matter regions. The WMH
segmentation model tends to predict the more numerous classes
while ignoring the minority classes, leading to overfitting. To
address this issue, Liu et al [78] and Li et al [80] introduced
dense blocks, which reduce the number of training parameters
and alleviate the problem of vanishing gradients.

For small target segmentation, optimizing the loss function is
a promising approach. In the study by Huang et al [81], an
LSLoss function was proposed to train the segmentation
network. This method allows for training without actual ground
truth labels, helping to avoid overfitting the training data.

Stroke Prognosis

Overview
Stroke prognosis refers to predicting long-term outcomes such
as recovery status, quality of life, and survival rates of patients
based on medical imaging and clinical dates. AI technology can
quantify the extent of brain tissue damage, assess patients’
prognostic situations, and provide benchmarks for long-term
rehabilitation (Table 4) [91].
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Table 4. Methods and performance of stroke prognosis.

MeritsPerformanceMethodsData set, nImage typeStudy, year

Estimation of final infarct lesion and penumbra

An automated method to estimate the
penumbra; uses multimodal MRI images

AUCc: mean 0.94, SD 0.08RFb80MRIaMcKinley et al
[92], 2017

Integrates time to maximum; uses apparent
diffusion coefficient threshold

AUC: mean 0.88, SD 0.12CNNd222MRINielsen et al [93],
2018

Does not depend on reperfusion informa-
tion

AUC: 0.92; DSCe: 0.58UNet182MRIYu et al [94], 2020

Accounts for the underlying cerebral blood

flow; combines RBMg and GRUh
DSC: 0.38; HDf: 29.21 mmCNN75MRIPinto et al [95],

2021

Incorporates rotation and reflection vari-
ants; incorporates clinical indicators; pre-
dicts the modified Rankin Scale outcomes

DSC: mean 0.88, SD 0.01; accura-
cy: mean 0.75, SD 0.03; AUC:
mean 0.80, SD 0.03

UNet100MRIWong et al [96],
2022

Estimation of stroke recovery outcomes

Multimodal CRsAUC: 0.744SVMk116CTi, CRsjBentley et al [97],
2014

Compares RF, XGBoostl, and logistic re-
gression

AUC: mean 0.808, SD 0.085RF541CRsMonteiro et al [98],
2018

Incorporates PCAn into the DNNAUC: 0.8348DNNm15,099CRsCheon et al [99],
2019

Introduces the ASPECTSo scaleAUC: 0.89RF257CTKuang et al [100],
2019

Implements the synthetic minority over-
sampling technique

AUC: 0.928; accuracy: 0.863RF1207CRsScrutinio et al
[101], 2020

Integrates multimodal CRs; predicts the
modified Rankin Scale outcomes

AUC: 0.856; accuracy: 0.804MLp246CT, CRsBrugnara et al
[102], 2020

aMRI: magnetic resonance imaging.
bRF: random forest.
cAUC: area under the curve.
dCNN: convolutional neural network.
eDSC: Dice similarity coefficient.
fHD: Hausdorff distance.
gRBM: restricted Boltzmann machine.
hGRU: gated recurrent unit.
iCT: computed tomography.
jCR: clinical record.
kSVM: support vector machine.
lXGBoost: extreme gradient boosting.
mDNN: deep neural network.
nPCA: principal component analysis.
oASPECTS: Alberta Stroke Program Early Computed Tomography Score.
pML: machine learning.

Estimation of Final Infarct Lesions and Penumbra
Acute stroke lesions tend to increase in size over time, leading
to increased damage to brain tissue. To address this issue, some
researchers have used AI to predict the final infarct lesions and
the penumbra [103].

In 2017, McKinley et al [92] proposed an RF-based algorithm
for penumbra prediction in multimodal MRI, called FASTER.
This algorithm first extracts various statistical metrics from

perfusion and diffusion imaging in the MRI data and then uses
a decision forest algorithm to predict the penumbra [92].

In 2018, Nielsen et al [93] used CNNdeep to predict final infarct
lesion, outperforming traditional general linear models, CNNs
based on time to maximum, and apparent diffusion coefficient
threshold methods.

In 2020, Yu et al [94] proposed a UNet-based model for
predicting the final infarct lesions in patients with acute ischemic
stroke. This model is the first DL-based stroke infarct prediction
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model that does not rely on reperfusion information. The volume
error between the predicted results and the ground truth is only

9 mm3 [94].

In 2021, Pinto et al [95] proposed a method combining restricted
Boltzmann machine and gated recurrent unit to predict the final
stroke lesion in patients with acute ischemic stroke after 90
days. Each restricted Boltzmann machine learns features from
different MRI parameter maps, which are then merged with the
original maps and input into a convolutional and recurrent neural
network architecture for supervised learning [95].

In 2022, Wong et al [96] developed a DL-based method for
predicting the final infarct volume from MRI images. This
approach uses networks with rotation and reflection variants
and incorporates clinical variables to predict the 90-day modified
Rankin Scale score [96].

Estimation of Stroke Recovery Outcomes
Clinical data can assist in estimating stroke recovery. Lesion
volume and lesion location are critical factors in predicting
recovery. Patients with extensive brain damage or strokes
affecting critical brain areas generally have a poorer prognosis.
Integrating patient clinical records with medical imaging can
enhance the estimation of recovery outcomes [104].

Bentley et al [97] used SVMs to predict whether patients with
acute ischemic stroke would develop symptomatic intracerebral
hemorrhage after thrombolysis. Through the analysis of clinical
records and brain CT images of 116 patients with acute stroke,
the authors found that SVMs outperformed traditional prediction
scoring systems in predicting symptomatic intracerebral
hemorrhage [97].

Monteiro et al [98] investigated the use of ML methods to
predict functional recovery in patients with ischemic stroke 3
months after the event. The study examined the performance
of 5 different classifiers, among which RF exhibited the best
performance [98].

Cheon et al [99] constructed a deep neural network model
combined with principal component analysis for feature
extraction. The model demonstrated high predictive ability
based on clinical records from 15,099 patients with stroke [99].

Kuang et al [100] proposed an automated method for Alberta
Stroke Program Early CT Score scoring from NCCT images of
patients with acute ischemic stroke. This method uses texture
features to train an RF classifier and performs well in identifying
large areas of early infarction [100].

Scrutinio et al [101] used an RF algorithm enhanced with
synthetic minority oversampling technique to predict the 3-year
mortality rate of patients with severe stroke, significantly
outperforming the logistic regression model.

Brugnara et al [102] integrated clinical records, multimodal
imaging, and angiographic features to predict the modified
Rankin Scale outcomes of patients with acute ischemic stroke
after endovascular treatment. With the increase in medical
information modalities, the model performance gradually
improves [102].

In-Depth Analysis of Stroke Prognosis
For stroke prognosis, both DL and ML have their respective
advantages [105]. DL models require large amounts of data for
training to learn sufficiently complex features and avoid
overfitting. This also explains why the deep neural network in
the study by Cheon et al [99] achieved better performance after
being trained on 15,099 clinical records, although acquiring a
large amount of high-quality clinical data for stroke prognosis
may be challenging.

By contrast, traditional ML methods have demonstrated greater
robustness and efficiency in handling stroke prognosis tasks.
Studies have shown that when handling stroke prognosis tasks,
RF and its variant models have shown better performance than
other ML algorithms [98,100,101]. This is mainly due to the
robustness of RF models against data noise.

For the estimation of the final infarct lesion and penumbra,
although the existing estimation may not achieve high DSC
values, metrics such as volume error and AUC have reached
high levels, indicating good practical value. In the future,
through continual optimization and improvement of algorithms,
the clinical translation prospects of AI in final infarct estimation
will be even broader.

Discussion

Principal Findings
Over the past 25 years, significant advances have been made in
AI-assisted stroke diagnosis. From 1999 to 2012, development
was constrained by the limited performance of traditional
thresholding and heuristic algorithms, resulting in low diagnostic
accuracy and restricted clinical applicability. From 2012 to
2016, the advent of, and the advances made by, ML algorithms
significantly expanded research in AI-assisted stroke diagnosis.
The implementation of advanced statistical models and
classifiers enabled more detailed analysis of stroke imaging
data and improved diagnostic precision. After 2016, DL
techniques, particularly CNNs, demonstrated significant
improvements over traditional methods and ML algorithms
[106].

AI has significantly enhanced the accuracy and efficiency of
stroke lesion segmentation and classification, stroke risk
prediction (eg, assessment of LA enlargement, CAS, and
WMH), and stroke prognosis (eg, prediction of stroke recovery
outcomes, final infarct lesion, and penumbra). Stroke lesion
segmentation and classification enable more precise diagnoses,
reduce the time to diagnosis, and improve patient treatment
outcomes. Stroke risk prediction allows for timely intervention,
potentially reducing stroke occurrence. Stroke prognosis helps
physicians develop personalized rehabilitation plans, optimize
treatment strategies in real time, and provide more accurate
prognostic information to patients and their families. Integrating
AI into clinical practice enables health care providers to use
advanced data analysis and pattern recognition capabilities to
streamline workflows, reduce diagnostic errors, enhance the
diagnostic process, and improve the continuous monitoring and
management of patients with stroke [107].
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However, notwithstanding the aforementioned advances, several
challenges remain in clinical applications. First, stroke diagnosis
is a complex process that requires the integration of multimodal
information (eg, medical imaging, genomic data, and clinical
records) for comprehensive evaluation. However, the effective
integration of multimodal data with diverse formats is
challenging. Second, AI algorithms lack effective clinical
validation. The generalization ability of AI models is limited,
with many algorithms performing inconsistently across different
data sets and imaging devices. In addition, given the inherent
“black box” nature of AI algorithms, it is essential to develop
transparent and interpretable models to help clinicians build
trust in AI-assisted diagnosis. Finally, the use of AI in stroke
diagnosis presents privacy and data security issues. Traditional
data-sharing and model training methods may lead to
information leakage.

The recent emergence of models such as the Segment Anything
Model (SAM) [108], Vision Mamba (VMamba) [109], and
multimodal large language models (LLMs) [110] has provided
new directions for stroke diagnosis. SAM boasts a large
parameter count and introduces pretrained weights from vision
transformer, resulting in excellent generalization performance
for medical image segmentation [108]. MedSAM, a fine-tuned
version of the original SAM tailored for medical images, shows
a 22.51% improvement in DSC on zero-shot medical image
segmentation tasks compared to the untuned SAM [111].
nnSAM integrates pretrained SAM encoders and UNet encoders
in parallel, combining robust feature extraction capabilities with
better adaptability to different image segmentation tasks [112].
SAM performs well on external data sets from various imaging
devices without further training, demonstrating potential to
address the issue of limited generalization ability.

Multimodal LLMs can effectively integrate multimodal clinical
data, enabling a more comprehensive understanding of patient
conditions [113,114]. Gu et al [115] used LLMs for stroke
quantitative evaluation using multimodal data, achieving an

interrater agreement of 0.823 with expert ratings, demonstrating
outstanding performance and application prospects. Meanwhile,
VMamba represents a further improvement and upgrade of the
transformer architecture. It can capture global information while
maintaining linear computational complexity, addressing the
performance bottleneck caused by the quadratic computational
complexity of transformers [109]. Whether VMamba can
achieve a leap in performance for stroke diagnosis similar to
transformers remains to be seen and will require further
evaluation over time.

Federated learning is able to address data privacy and security
issues, allowing different institutions to collaboratively train
AI models without sharing raw data. Federated learning not
only protects patient privacy but also facilitates
cross-institutional data sharing and collaboration, improving
the generalization ability and accuracy of the models [116].

Overall, standardization is a key factor in promoting the
application of AI in the medical field. It is necessary to establish
unified evaluation standards and operational procedures to
ensure that different institutions and researchers can consistently
use AI technologies. In addition, medical professionals need
continuous education and training on AI to better understand
and trust the technology, which will enable them to apply it
more effectively in clinical practice [117].

Conclusions
This paper reviewed the current status, challenges, and
development trends of AI in acute stroke lesion segmentation
and classification, stroke risk prediction, and stroke prognosis
over the past 25 years. AI-assisted stroke diagnosis has now
shown good performance, assisting physicians in making rapid
diagnoses and improving patient outcomes. With the
development of new AI technologies such as SAM, LLMs, and
VMamba, AI-assisted diagnosis of acute stroke is expected to
achieve higher accuracy and stability in the future.
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