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Abstract

Background: Effective fall prevention interventions in hospitals require appropriate allocation of resources early in admission.
To address this, fall risk prediction tools and models have been developed with the aim to provide fall prevention strategies to
patients at high risk. However, fall risk assessment tools have typically been inaccurate for prediction, ineffective in prevention,
and time-consuming to complete. Accurate, dynamic, individualized estimates of fall risk for admitted patients using routinely
recorded data may assist in prioritizing fall prevention efforts.

Objective: The objective of this study was to develop and validate an accurate and dynamic prognostic model for inpatient falls
among a cohort of patients using routinely recorded electronic medical record data.

Methods: We used routinely recorded data from 5 Australian hospitals to develop and internally-externally validate a prediction
model for inpatient falls using a Cox proportional hazards model with time-varying covariates. The study cohort included patients
admitted during 2018-2021 to any ward, with no age restriction. Predictors used in the model included admission-related
administrative data, length of stay, and number of previous falls during the admission (updated every 12 hours up to 14 days after
admission). Model calibration was assessed using Poisson regression and discrimination using the area under the time-dependent
receiver operating characteristic curve.

Results: There were 1,107,556 inpatient admissions, 6004 falls, and 5341 unique fallers. The area under the time-dependent
receiver operating characteristic curve was 0.899 (95% CI 0.88-0.91) at 24 hours after admission and declined throughout admission
(eg, 0.765, 95% CI 0.75-0.78 on the seventh day after admission). Site-dependent overestimation and underestimation of risk
was observed on the calibration plots.

Conclusions: Using a large dataset from multiple hospitals and robust methods to model development and validation, we
developed a prognostic model for inpatient falls. It had high discrimination, suggesting the model has the potential for
operationalization in clinical decision support for prioritizing inpatients for fall prevention. Performance was site dependent, and
model recalibration may lead to improved performance.
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Introduction

Falls in hospitals cause serious injuries and deaths [1]. Inpatient
falls are difficult to predict [2] or prevent [3], although some
inpatient fall prevention strategies that require efforts early in
patients’admissions have been effective [4-6]. The use of health
professional–completed fall risk assessment and screening tools
to identify patients at high risk of falls has been a popular
approach to stratify the risk of falling for inpatients, as has the
development of clinical prediction models incorporating these
assessments [7,8]. A clinical prediction model is a model that
estimates an individual’s probability of a current health
condition (diagnostic) or one that may occur in the future
(prognostic). These models are usually estimating a probability,
or risk, for the given patient and health outcome. As a result, a
prognostic model is a form of a clinical prediction model (or
risk prediction model) that would be relevant to estimating the
risk of falling for an inpatient in a manner that could guide the
use of a fall prevention strategy by clinical teams. Recent efforts
include work to use prediction tools to guide the selection of
specific prevention strategies to prevent inpatient falls [9].
However, the discriminatory performance of inpatient falls risk
assessment tools and prediction models is often poor, which
may have contributed to why many risk model–guided
treatments have failed to demonstrate effectiveness [9]. This
study used the Northern Hospital Modified St Thomas’ Risk
Assessment Tool, which was developed for acute inpatients and
had a sensitivity and specificity of 0.65 and 0.79, respectively
[10]. A recent multihospital trial demonstrated the noninferiority
and potential superiority of divestment away from conventional
in-hospital fall risk assessment toward a simple clinical decision
support that prompted consideration of potential patient
interventions [11]. The tools used in both of these studies
required clinical teams to complete questionnaires and manually
score patient risk based on tallying up the identified risk factors.
Conventional fall risk assessments may therefore be introducing
additional data collection burdens to health professionals without
leading to better patient outcomes.

Our previous review that investigated the methods and data
used to develop prognostic models for inpatient falls found that
reporting quality was typically poor, with a largely homogeneous
approach to model development [8]. No studies applied
time-to-event methods, also known as survival modeling
approaches, to predict falls. Instead, studies typically used data
available at admission to predict a binary end point of fall at
any time during the patient admission over unknown and
heterogenous lengths of time [8]. This approach has the potential
to be misleading if used in a clinical decision support system,
as the estimated risk (probability of a fall) may be primarily
driven by exposure time through long lengths of stay rather than
the proximal risk of experiencing a fall event. If exposure time
is not appropriately accounted for during model development,
fall prevention strategies may be disproportionately assigned
to those who are likely to stay longer at the expense of those

who are at an elevated relative risk despite shorter anticipated
lengths of stay.

Many existing fall prediction models rely upon a wide variety
of data sources, often requiring manual collection and data entry,
which limits the potential for integration into real-time risk
prediction and clinical decision support [12]. Development of
a robust, interpretable prediction model that can estimate the
risk of inpatient falls using solely routinely recorded electronic
medical record (EMR) data to guide the assignment of effective
inpatient fall prevention strategies remains a priority. An
important anticipated advantage of relying on routinely recorded
EMR data is that risk estimates can be generated without the
requirement for additional fall risk screening tasks to be
completed by clinical staff, likely being resource-saving when
compared with widely used questionnaire-based falls risk
screening. It is also particularly important for the first days of
an admission period when in-hospital fall prevention strategies
are typically initiated and when most falls occur, as risk
estimates can be generated immediately as data are available
[13].

Primarily, our previous review highlighted that relying on data
collected as part of routine clinical care and stored within EMR
systems and using time-to-event modeling approaches is
underexplored and may be particularly useful and relevant for
the given clinical context of falls risk screening, assessment,
and prevention [8]. Our primary interest was to develop a
prognostic model for inpatient falls using a survival modeling
approach and EMR data from 5 hospitals that performed well
early in admission, with the potential for implementation in a
clinical decision support tool to help augment clinician
decision-making regarding the initiation of effective inpatient
fall prevention interventions.

This study is reported in accordance with the Transparent
Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) statement and checklist [14].

Methods

Overview
Model development choices were informed by a previous review
[8] and best-practice recommendations [15,16]. The model was
developed using Cox proportional hazards regression and
included time-varying covariates and predictor variables
available within the EMR system. Performance was assessed
in terms of discrimination and calibration using internal-external
cross-validation, and the final model was fit using the full
dataset.

Setting and Data Cleaning
After consultation with fall prevention experts and hospital
geriatricians, we censored observations after 14 days of
admission. After 14 days, hospital falls occurred at a lower rate
and may be associated with a different clinical context for
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long-stay patients that may benefit from a more targeted
modeling strategy. To ensure the data focused on the period in
which fall interventions are initiated and most falls occur, we
used EMR data for the first 14 days of admission from patients
admitted to 5 Australian hospitals between 2018 and 2021 to
develop our model. Our intention was for study findings to be
representative of inpatient hospital wards broadly. There were
no exclusion criteria applied to eliminate particular subgroups
of hospital patients; patients from any ward and of any age were
included for model development and validation. In each of our
included hospitals, inpatient falls were recorded in the EMR
using RiskMan (RiskMan International Pty Ltd), a proprietary
patient safety system for tracking and managing adverse events
[17]. RiskMan reports were linked to each inpatient admission
record using a unique identifier, including date and time stamps.
When the time of fall was not recorded, it was assumed to be
at midnight on the morning of the date specified to ensure no
predictions used data recorded after the fall.

To maximize the potential for generalizability and ease of
potential transferability to external hospital systems while
eliminating the need for clinical staff time for additional fall
risk assessment and data entry, predictor variables used in the
model were primarily derived from administrative information
routinely recorded for all hospital admissions. This included
the source of the admission (eg, whether they came from
residential aged care or through the emergency department),
type of admitting medical service (eg, neurosurgery or
orthopedics), sex (coded as the binary variable “Female”), age
in years, as well as years since 2018 to incorporate potential
adjustment for longer-term trends in fall risk over the study
period. We also included 2 time-varying covariates in the
model—the number of previous inpatient falls during the current
admission up until the time of prediction and the time since

admission, in hours. The time since admission variable was
updated every 12 hours throughout the admission.

Because coding for admission source and medical service
categories with similar or overlapping meanings varied across
hospital facilities, we aggregated these into overarching
categories that could be readily applied to data from all hospitals
based on clinical groupings, shown in Table 1. Using these
overarching clinical groupings also mitigated the risk of
categorical variables for admission source or medical service
being exclusive to the training or validation datasets. The
“Other” categories for these 2 variables were used to include
missing data as well. There were no missing data for other
covariates included in the model. Restricted cubic splines with
4 knots were used for patient age and the years since 2018, and
a restricted cubic spline with 3 knots was used for the hours
since admission variable. A spline function with n knots is made
up of n+1 piecewise polynomial functions where the knot
locations describe the place (value of the variable to which
spline is being applied) where these 2 sequential polynomial
functions meet. For example, in the full model, the restricted
cubic spline applied to patient age has 4 knots, meaning that
there are 5 polynomial functions that meet at the 4 locations
(values of patient age; described in Multimedia Appendix 1).
Further information on use and interpretation of spline terms
are illustrated in Regression Modeling Strategies by Harrell
[18]. The restricted cubic splines used in this study have an
advantage for use in prediction models in that they are
constrained to be linear in their 2 tails (above the last knot and
before the first knot). This is particularly important considering
the use of “years since 2018” as a predictor and the possible
use of the model in years that exceed the range of the data used
to fit it.
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Table 1. Demographics and summary of key predictor variables used in the model.

AllHospitalVariable and measure

54321

Inpatient admissions, n

1,107,55610,983124,149150,458359,075462,891Total

2,373,34331,882273,179256,887612,6581,198,736Days

1,730,13323,825228,770197,951485,189794,398Days (truncated at 14 days)

559,458
(50.51)

7364 (67.05)65,440 (53.71)89,113 (59.23)205,809
(57.32)

191,732
(41.42)

Female, n (%)a

Falls (truncated at 14 days)

600413482863813773027Total, n

5341 (0.48)122 (1.11)731 (0.59)562 (0.37)1248 (0.35)2678 (0.58)Fallers, n (%)a

56 (35-72)38 (26-71)61 (43-77)52 (31-72)42 (26-63)63 (48-74)Age (year), median (IQR)

0.3 (0.2-1.4)1.0 (0.2-2.3)0.4 (0.2-2.1)0.3 (0.2-1.2)0.3 (0.2-1.2)0.3 (0.1-1.3)Length of stay (days), median (IQR)

Medical service, n

100,120504222,86922,67826,69422,837General medicine

34,665<1008138<100b10,69415,833Orthopedics

31,870<100<100272912,20916,932Psychiatry

17,657<1008912<1009057840Rehabilitation

5449<100<100<100<1005449Neurosurgery

3739<10015736131553<100aPalliative medicine

2145<100<100<100<1002145Geriatrics

628<100<100<100<100628Psychogeriatric

378<100<100<100<100378Spinal

910,905594182,657124,438307,020390,849Other

Admission source, n

476,809399084,57077,243182,224128,782Emergency department—this hospital

371,689416029,37838,29191,621208,239Outpatient department—this hospital

181,078327700225,57663,47584,698Routine readmission no referral required

28,10774420841186390620,187Admitted patient transferred from other hos-
pital

12,221<10061634013611,119Private medical practitioner (not psychiatry)

2166<100<100<100<1002140Residential aged care service

2130<1003632371237257Community service

33,3561716118758216,4717469Other

aPercentages were calculated with the total number of inpatient admissions as the denominator.
bCells with small values have been replaced with “<100” to address privacy concerns.

Evaluation
Following advice from Steyerberg and Harrell [16], we
developed the model using the full dataset but evaluated model
performance using internal-external cross-validation.
Internal-external cross-validation is a process in which the folds
used for cross-validation correspond to individual study sites,
in this case, hospitals. This method is useful for reporting
prediction performance, as allocation to validation folds is

nonrandom, is reproducible, and provides better estimates of
model generalizability [19]. It also means that every validation
fold is an entirely separate hospital from those used for fitting
the model, meaning that it provides a better estimate of
generalizable performance to new settings than internal
validation (where data from a single site are divided into a
development dataset and an evaluation dataset). Table 2 shows
a summary of how the internal-external cross-validation folds
are constructed from the dataset comprising 5 hospitals. In this
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process, 5 models are fit—one for each hospital being used as
a validation dataset, with the remaining 4 hospitals being used
to fit the model. Table 2 shows a summary of the data used to
fit each of the 5 models (fold 1 to 5) and the final model (fit
using the data from all hospitals). Using the entire dataset for
model development but internal-external cross-validation for
reporting ensures that the model does not suffer from avoidable
losses in performance by using a subset of the data and
potentially omitting useful observations [16].

Model performance was evaluated in terms of discrimination
and calibration. The area under the time-dependent receiver
operating characteristic (ROC) curve was calculated for each
fold and a “combined” curve was derived to show the moving
average across folds. The time-dependent ROC curve was
evaluated using prediction times of every 24 hours from 1 day
post admission to 1 week after admission. The survivalROC R
package [20] was used to estimate the time-dependent ROC
curves. To estimate the parameter uncertainty of our

performance metrics, we applied the approach described by
LeDell and colleagues [21] by modifying the cvAUC R package
[22] to combine area under the curve (AUC) values from
multiple cross-validation folds and construct 95% CIs. For
visualization purposes, the curves labeled “combined” on the
ROC plots in this study were constructed using vertical
averaging [23].

To evaluate model calibration, we followed advice from
McLernon and colleagues [24] to obtain moderate calibration
curves over the full-time range. As described in the supplement
of their study, we used a Poisson model with the outcome
regressed against the linear predictors, fit with a restricted cubic
spline, and the log of the predicted cumulative hazard as an
offset. Smoothed curves were applied to investigate whether
observed fall event rates were equal to the predicted risk among
patients with the same predicted risk. We created curves
separately for each validation fold.

Table 2. Sample size calculations and summary.

Events per parameter, nModel parameters, nFalls, nPatient days (truncated at
14 days), n

Inpatient admissions, nModela

135222977935,735644,665Fold: 1

1782646271,244,944748,481Fold: 2

2062653661,532,182957,098Fold: 3

1992651761,501,363983,407Fold: 4

2262658701,706,3081,096,573Fold: 5

2312660041,730,1331,107,556Final

aModel represents the cross-validation fold models and the final model fit with all patient data. The fold models are those that fit during internal-external
cross-validation and incorporate all patient data except for the associated hospital of the same number. For example, the “Fold: 1” model was fit using
patient data from hospitals 2 to 5, with hospital 1 being the validation set.

Sample Size
We considered a model with a possible 30 parameters, a fall

rate of 0.0054, a conservative estimate of 0.143 Cox-Snell R2

for sample size calculation, a selected prediction time of 24
hours, and mean follow-up of 37.5 hours (the mean length of

stay within the truncated dataset). The Cox-Snell R2 was
obtained by using an estimated C-index of 0.7, the approximate
performance of recently published inpatient fall prediction
models [8], and transforming it into an estimate for the

Cox-Snell R2 using methods described in related works by Jinks
et al [25] and Royston and Sauerbrei [26]. Using the pmsampsize
R package [27], we estimated that the minimum sample size
for fitting this Cox model would be 1619 patients, with 330 fall
events, and 11.75 events per parameter. During our
internal-external cross-validation, the least powered model that
was fit included 2977 falls and 135 events per parameter (22
parameters; a summary of model parameters, patients, and
events used for each model fit during cross-validation is
illustrated in Multimedia Appendix 2). The final model was fit
with 6004 falls and 231 events per parameter (26 parameters).

Ethical Considerations
Approval was granted by the Metro South Human Research
Ethics Committee (HREC/2020/QMS/64807). The requirement
for informed consent was waived.

To protect the privacy and confidentiality of candidates, the
data used in the study cannot be publicly shared. However,
analysis code, including software and package versions, is
available on GitHub [28].

Results

Patient characteristics and frequencies for admission source and
medical service are described for each included hospital in Table
1. The admitted patient records over 4 years (2018 to 2021)
used in this study included 1,107,556 inpatient admissions.
There was approximately even representation of male and
female patients (559,458/1,107,556, 50.51% female) and the
median (IQR) age was 56 (35-72) years. There were 6004 falls
and 5241 individual fallers.

There were expected and notable differences in patient age and
sex characteristics between hospitals, consistent with the clinical
services offered at each facility and populations served. In this
context, hospitals differed by size and level of intensive care
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unit services, specialized geriatric care units, rural or inner-city
location, and number of beds (Table 1) [29].

The final model fit to the entire dataset is provided in Table 3
with associated locations for spline terms in Multimedia
Appendix 1. This study was conducted with the primary aim of
developing a prognostic model for inpatient falls, not to identify
prognostic factors. Interpreting estimates from Table 3 allows
us to identify which factors were associated with higher risk
estimates but should not be interpreted as causally related to
falls. Male patients, patients receiving geriatric or rehabilitation

care, and those with previous falls were associated with higher
risk estimates.

The AUC was 0.899 (95% CI 0.88-0.91) when a prediction time
of 24 hours after admission was used. Discriminatory
performance reduced as the admission progressed (Figure 1).
There were substantial differences in performance between
hospitals, particularly as time since admission increased. Model
calibration plots indicated that overestimation and
underestimation of risk occurred, with the degree of deviation
from optimal calibration dependent on the cross-validation fold
(Figure 2 [24]).

Table 3. Summary of the final model.

Hazard ratio (95% CI)Estimate (95% CI)Parameter

0.8034 (0.7630-0.8460)–0.2189 (–0.2705 to –0.1673)Female

1.0224 (1.0154-1.0294)0.0221 (0.0153 to 0.0290)Age (years)a

0.9949 (0.9832-1.0068)–0.0051 (–0.0169 to 0.0068)Age (years)b

0.9708 (0.9229-1.0211)–0.0297 (–0.0802 to 0.0209)Age (years)c

1.0231 (0.9169-1.1416)0.0228 (–0.0868 to 0.1324)Time since 2018 (years)a

0.9637 (0.6979-1.3307)–0.0370 (–0.3597 to 0.2857)Time since 2018 (years)b

1.0461 (0.3952-2.7692)0.0451 (–0.9285 to 1.0186)Time since 2018 (years)c

1.0055 (0.7690-1.3147)0.0054 (–0.2627 to 0.2736)Admission source (community service)

0.9997 (0.9205-1.0857)–0.0003 (–0.0828 to 0.0822)Admission source (emergency department - this hospital)

0.5742 (0.4432-0.7439)–0.5548 (–0.8137 to –0.2959)Admission source (other)

0.6755 (0.6041-0.7552)–0.3924 (–0.5040 to –0.2807)Admission source (outpatient department - this hospital)

0.4499 (0.2912-0.6950)–0.7988 (–1.2337 to –0.3639)Admission source (private medical practitioner [not psychiatry])

0.9546 (0.7262-1.2549)–0.0465 (–0.3199 to 0.2270)Admission source (residential aged care service)

0.4223 (0.3095-0.5760)–0.8621 (–1.1727 to –0.5516)Admission source (routine readmission no referral required)

1.3065 (1.1375-1.5006)0.2673 (0.1288 to 0.4059)Medical service (geriatrics)

0.9800 (0.8245-1.1648)–0.0202 (–0.1929 to 0.1525)Medical service (neurosurgery)

0.7307 (0.6506-0.8207)–0.3137 (–0.4298 to –0.1976)Medical service (orthopedics)

0.5650 (0.5277-0.6049)–0.5710 (–0.6393 to –0.5027)Medical service (other)

1.2698 (1.0928-1.4754)0.2389 (0.0888 to 0.3889)Medical service (palliative medicine)

0.7142 (0.6356-0.8025)–0.3366 (–0.4531 to –0.2201)Medical service (psychiatry)

0.9789 (0.7317-1.3095)–0.0213 (–0.3123 to 0.2697)Medical service (psychogeriatric)

1.0425 (0.9076-1.1975)0.0417 (–0.0969 to 0.1802)Medical service (rehabilitation)

0.5697 (0.3356-0.9671)–0.5627 (–1.0919 to –0.0335)Medical service (spinal)

1.3510 (1.2781-1.4279)0.3008 (0.2454 to 0.3562)Time since admission (hours)a

0.6962 (0.5842-0.8297)–0.3621 (–0.5374 to –0.1867)Time since admission (hours)b

2.4728 (2.3727-2.5771)0.9053 (0.8640 to 0.9467)Previous falls (n)

aLevel 1 for the spline terms (refer to Multimedia Appendix 1 for knot locations for each term).
bLevel 2 for the spline terms.
cLevel 3 for the spline terms.
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Figure 1. Discrimination performance. (A) Time series of discrimination performance for prediction times between 1 day and 1 week. The colored
lines represent performance at difference centers when used as the holdout set during cross-validation, and the dashed black line represents the aggregate
measure of discrimination with the gray region as the 95% CI for this estimate. (B-H) Time-dependent ROC curves for predicted times from 1 day to
1 week, each including a curve for each of the 5 models fit during internal-external cross-validation as well as a “combined” curve derived using
vertical-averaging. AUC: area under the curve; ROC: receiver operating characteristic.
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Figure 2. Calibration performance for each cross-validation fold. The top row (A and B) shows the full plots, and the bottom row (C and D) shows the
same curves but with a focused view to better visualize the largest portion of predicted values (predicted cumulative hazards between 0 and 0.015). (A
and C) Empirical cumulated density functions of the cumulative hazard from the Cox regression model. (B and D) Moderate calibration assessment as
described by McLernon et al.

Discussion

Principal Findings
Using only routinely recorded information in EMR systems
from 5 hospitals of varying capacities and capabilities, we
successfully developed a novel prognostic model for inpatient
falls using a time-to-event modeling approach. Our approach
has the potential to add value to inpatient falls prevention efforts
by updating prognostic risk predictions with new information
throughout a patient’s admission as it becomes available without
requiring clinical staff to collect additional fall-risk screening
or assessment data and manually estimate risks. It was
encouraging to observe useful predictive performance that was
not inferior to more labor- and data-intensive fall risk prediction
approaches that featured in our previous review [8]. Studies
reporting AUC within our previous review that included external
validation and used data from adult inpatients typically reported
AUC in the range of 0.7 to 0.85 [30-32]. By developing our
model using only data from EMR, this labor-efficient approach
to estimation of inpatient fall risk has the potential to be
implemented in clinical decision support systems that aid in

appropriate allocation of effective inpatient fall prevention
interventions without dependency on physical functional
performance assessment [33,34].

Overall, our model demonstrates similar or greater
discriminatory performance than many other published models
for inpatient falls, particularly those that have been externally
validated [2,8]. Calibration was site dependent but generally
poor. The variable model performance, in terms of both
discrimination and calibration, and its association with hospitals
may be explained by differences in patient cohorts, fall rates,
and the nature of care provided in each hospital.

The poor calibration performance may suggest that the absolute
model predicted risk should be interpreted with caution.
However, predictions are likely to remain useful for if the
models were implemented in a manner that prioritized
higher-risk patients (based on rank of estimated risk) toward a
fall prevention intervention rather than applying a selected cutoff
point above which the patient receives the intervention.

This approach would better take advantage of the high
discriminatory performance without relying heavily on the need
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for the model to be well calibrated and for the selected cutoff
point to be used on potentially biased estimates of risk. The use
of a cutoff point may not work effectively due to the observed
miscalibration based on local clinical contexts, but model
recalibration by hospital could be beneficial [35].

We observed that there was a high level of between-hospital
variability in ROC curves, particularly for prediction times at
day 4 and later. We suspect that this is due to there being
relatively few patients and fallers who are still admitted at that
time. For example, the particularly unstable ROC curve for
hospital 4 observed in Figure 1 had a median length of stay of
0.4 (IQR 0.2-2.1) days, with likely relatively few admitted
patients, and very few admitted patients with falls, remaining
after day 3. We suspect that the ROC curve for this hospital for
these later prediction times is likely influenced by relatively
few data.

While some aspects of our model are directly comparable to
existing inpatient fall prediction models, several are unique.
We have not identified any time-to-event prediction models in
the literature that evaluate performance in terms of
discrimination and calibration [8]. As binary prediction models
typically identify fallers as patients who fell over the remaining
time in the admission without time-varying covariates, perhaps
the closest comparison from our study would be our model’s
discriminatory performance at day 1 before time-varying
covariates had influenced risk predictions. For this scenario,
the discrimination of our model demonstrates superior
performance during internal-external cross-validation. In
addition, the advantages of a time-to-event approach include
the ability to update predictions as the admission progresses
and new data become available, and better incorporation of
current length of stay into estimated risk.

We used internal-external cross-validation because this is the
most appropriate way to evaluate a clinical prediction model
when (1) data are available from multiple sites and (2) there are
enough data at each site to ensure that models developed from
each cross-validation fold are adequately powered [16]. Many
clinical prediction model development studies may only rely
on data from 1 to 3 sites. In our previous review, we found that
only 2 of 51 studies used data from more than 3 hospitals to
develop their model (43 of which only used data from a single
hospital) [8]. When only a few sites, it may be impractical to
conduct internal-external cross-validation as there would only
be 2- or 3-folds, and potentially have too small a portion of the
entire dataset for those models to be adequately powered.
Fortunately, in our study, we had data from 5 sites and, of the
5 models fit during cross-validation, the lowest number of events
per parameter was 135, which was much higher than the
minimum number estimated by our sample size calculations
(11.75).

For evaluation of the discrimination, we used the area under
the time-dependent ROC curve. To create a single summary
measure, we used vertical averaging of the 5-folds [23]. A
potential limitation of this is that hospitals are equally influential
on the “combined” curve and the final estimate of
discrimination, there is no additional weight given to hospitals
with more data than others. However, in this study, the models

with the lowest performance were typically those evaluated on
hospitals with fewer admitted patients and events, rather than
the largest hospital (“Fold 1” curve in Figure 1), which was
consistently the best performing.

Most existing approaches to predicting inpatient falls use data
collected upon admission to estimate risk for the duration of
the entire admission. This may lead to confusing interpretations;
if clinicians interpret predicted risks as a function of admission
time, this can be misleading. For example, a user may interpret
the patient’s daily fall risk as the total estimated risk divided
by the expected length of stay in days, which inappropriately
assumes falls risk is evenly distributed over the entire admission.
A patient may have a relatively high risk of falling on any given
day, but if they are admitted for a condition that is associated
with shorter lengths of stay, then a binary prediction model may
predict a deceptively low risk. Time-to-event models avoid this
potentially erroneous conclusion by accounting for length of
stay inherently. We anticipate that a model of this level of
discriminatory performance may be useful when allocating
patients for fall prevention intervention, but this would need to
be evaluated prospectively or possibly within a simulation study
[36].

The use of machine learning methods for clinical prediction
models has been increasing in popularity, including neural
networks or tree-based ensemble models such as random forests
or extreme gradient boosting [37,38]. There are variants of these
approaches capable of handling time-to-event models but none,
to our knowledge, have been applied to develop a prognostic
model for falls. For example, random survival forests have been
used to predict colorectal cancer prognosis [39], and “pycox”
[40], an implementation of a Cox model for a neural network
using PyTorch, has been used to predict in-hospital events
including mortality and discharge [41]. There has also been a
recent increase in popularity of sequence models, including
attention models and recurrent neural networks, which can
incorporate a sequence of input data of variable lengths and of
irregular intervals [42]. We expect that combining these
approaches with a Cox layer, as is used in “pycox,” may lead
to the benefits of both being able to use time-varying covariates
and being able to appropriately predict falls as a time-to-event
outcome. A recent study has implemented a similar approach
to fit a time-dependent Cox survival neural network to generate
dynamic predictions, with example datasets including
age-related eye disease and time-to-liver transplant [43]. The
machine learning methods included in our recent review [8]
were limited to those predicting falls as either occurring any
time in the admission or within a fixed time horizon [44,45],
but none used a time-to-event outcome. Consequently, it is
difficult to know whether falls may be better estimated by the
additional complexity and ability to estimate interaction effects
within these methods.

We expect that by incorporating more time-varying predictors
in a Cox model to predict falls may improve performance but
may require a larger dataset with more falls to avoid overfitting.
Another limitation of using this model is that it requires
computation to estimate risk and cannot be easily implemented
without an EMR, as other commonly used analog falls risk
assessment tools can [33,46]. Although a reduction in data
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collection burden for health professionals is a strength of our
model, it is a potential barrier to implementation in settings
without the required levels of digital maturity.

Conclusions

In this study, we have presented a prognostic model using
time-to-event modeling. We used internal-external
cross-validation with data from 5 hospitals with notable
heterogeneity to estimate its generalizable performance and
present the final model that incorporated data from all 1,107,556
inpatient admissions. We anticipate that the reported model
estimates may be adjusted to improve calibration performance

at each hospital, and that this model has potential use for
improving clinical care in the context of prompting the initiation
of fall prevention strategies. However, evaluating our model in
a simulated clinical environment or prospective clinical trial is
a requisite step in determining whether the model is clinically
useful. These studies may guide the implementation of the
presented model within a decision support system for falls
prevention strategies in hospital inpatient environments. Given
the use of time-to-event modeling approaches, we also anticipate
that machine learning methods that account for time-varying
predictors may lead to improved discrimination and calibration.
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