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Abstract

In the complex and multidimensional field of medicine, multimodal data are prevalent and crucial for informed clinical decisions.
Multimodal data span a broad spectrum of data types, including medical images (eg, MRI and CT scans), time-series data (eg,
sensor data from wearable devices and electronic health records), audio recordings (eg, heart and respiratory sounds and patient
interviews), text (eg, clinical notes and research articles), videos (eg, surgical procedures), and omics data (eg, genomics and
proteomics). While advancements in large language models (LLMs) have enabled new applications for knowledge retrieval and
processing in the medical field, most LLMs remain limited to processing unimodal data, typically text-based content, and often
overlook the importance of integrating the diverse data modalities encountered in clinical practice. This paper aims to present a
detailed, practical, and solution-oriented perspective on the use of multimodal LLMs (M-LLMs) in the medical field. Our
investigation spanned M-LLM foundational principles, current and potential applications, technical and ethical challenges, and
future research directions. By connecting these elements, we aimed to provide a comprehensive framework that links diverse
aspects of M-LLMs, offering a unified vision for their future in health care. This approach aims to guide both future research and
practical implementations of M-LLMs in health care, positioning them as a paradigm shift toward integrated, multimodal
data–driven medical practice. We anticipate that this work will spark further discussion and inspire the development of innovative
approaches in the next generation of medical M-LLM systems.
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Introduction

Large language models (LLMs) are sophisticated machine
learning algorithms designed to process, understand, and
generate humanlike language, enabling key developments in
applications such as automated conversation, text analysis,
creative writing, and complex problem-solving [1]. In health
care, LLMs have shown remarkable potential, primarily through
their ability to process and analyze textual content [2,3]. These
models play a crucial role in assisting with diagnoses as they
can efficiently process extensive textual patient histories and

vast medical literature, providing clinicians with valuable
insights [4-7]. However, most current LLMs are primarily
limited to processing and generating textual content. While this
unimodal focus on text-based operation has been transformative
in the medical field, it does not fully capture the complex and
diverse nature of health care practice [8].

In health care, diagnosing and treating a patient often involves
a health care professional engaging in a comprehensive
approach: listening to the patient, reviewing their health records,
examining medical images, and analyzing laboratory test
results—and all this over time. This multidimensional process
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exceeds the capabilities of current unimodal LLM systems.
Moreover, nontextual data types play a crucial role in diagnosis,
effective treatment planning, research, and patient care [9-11].
Such data may include medical imaging (eg, x-rays, magnetic
resonance imaging [MRI], computed tomography [CT] scans,
positron emission tomography scans, and pathology slides),
electrophysiological data (eg, electrocardiography,
electroencephalography (EEG), and electromyography), sensory
data (eg, data from sensors of medical devices, such as
pacemakers and continuous glucose monitors), videos (eg,
recordings of surgeries, procedures, and patient interactions),
omics data (eg, genomics, proteomics, metabolomics, and
transcriptomics), and audio data (eg, recordings of patient
interviews and heart and respiratory sounds).

The introduction of LLMs has been a key development in the
field of artificial intelligence (AI) and natural language
processing (NLP). In 2010, the emergence of deep learning
revolutionized LLMs. Recurrent neural networks (RNNs),
particularly long short-term memory (LSTM) networks [12],
allowed models to better capture sequential data and context.
However, the major breakthrough occurred in 2017 with the
introduction of transformer models [13], which are widely used
for NLP tasks. A transformer is a type of neural network
architecture that uses a self-attention mechanism to capture
long-range dependencies between words in a sentence. While
the computation in architectures such as RNNs and LSTM
networks is sequential and slow for long sequences [14],
self-attention can be parallelized and made highly scalable.
Transformers have been widely trained using 2 objectives. The
first objective is mask language modeling (MLM), where the
objective is to learn text reconstruction by randomly masking
several words in text (eg, 10%) and update the transformer
weights toward this goal. Encoder transformers such as
Bidirectional Encoder Representations From Transformers
(BERT) [15] have been trained with the MLM objective. The
second widely used objective is the next word prediction or
causal language modeling. The self-attention mechanism is
masked such that, at each position in the sequence, the model
is able to attend only to the left words. This modeling approach
mimics how text is read by humans in one direction. The
self-attention mechanism allows for the computation of the
probability of predicting the next word in a document by
attending to the most relevant parts of the input sequence
[13,16]. By applying the prediction autoregressively, the
transformer model performs a text completion task by generating
multiple words. Interestingly, transformers extend beyond just
handling natural language data. They can effectively compute
representations for various data types provided these can be
represented as a sequence of tokens. The letters are elementary
entities that constitute the sequences. The unique set of tokens
represents the vocabulary. For example, in DNA sequence, each
nucleotide could be represented by tokens from the vocabulary
of 4 tokens: A, C, G, and T. This capability includes processing
elements such as video frames, audio spectrograms, time-series
data, code snippets, or protein sequences. BERT [15] is among
the first major models to use transformers. Subsequently, a
series of medical BERT models were proposed to accelerate
medical research [6,17-20].

In 2022, OpenAI released ChatGPT (GPT-3.5), a significant
iteration in the generative pretrained transformer (GPT) series
[21]. As an LLM, ChatGPT has been trained on a vast collection
of text data, which enables it to generate humanlike responses
across a broad spectrum of topics and formats. ChatGPT has
also shown its potential to become a valuable resource in health
care, making significant contributions to various medical
applications. It provided opportunities for advancing diagnostic
accuracy, personalized treatment planning, and medical research,
as well as optimizing health care administration and enhancing
communication in patient care [22-28]. In addition, several
open-source LLMs such as LLaMA [29], Flan-T5 [30], Vicuna
[31], and Alpaca [32] have substantially driven progress and
contributed to the field of LLMs. Although these LLM systems
have achieved considerable success, they are predominantly
limited to single data types. This limitation makes them less
effective for the multimodal nature of medicine, where handling
multiple data types is often required. Therefore, considerable
efforts have been dedicated to creating LLMs that handle
multimodal inputs and tasks, ultimately leading to the
development of multimodal LLMs (M-LLMs). In 2023, OpenAI
released GPT-4, an M-LLM with the dual capability to process
and respond to both text and images. Following the release of
GPT-4, several medically adapted versions of this model have
been developed [33-37]. These specialized versions of GPT-4
have been tailored to interpret medical data, understand patient
queries, and assist in diagnostic processes using both text and
image modalities. Building on these insights, M-LLMs are
increasingly recognized as systems capable of integrating
various data types to facilitate comprehensive patient
assessments, ensuring accurate diagnoses. In addition, they hold
the potential to streamline operations, significantly improving
efficiency in both clinical and administrative tasks. Most
importantly, with appropriate oversight, M-LLMs could provide
personalized care by tailoring treatment plans to meet the
individual needs of patients, thereby enhancing the quality of
health care services.

Recent studies [38,39] have explored the capabilities of
M-LLMs within the health care sector. However, these studies
exhibit several limitations. First, the range of data modalities
examined is often restricted to text, images, videos, and audio
[38], with some studies focusing narrowly on a limited number
of clinical applications [39]. Second, the discussion regarding
the potential uses of M-LLMs in health care is largely theoretical
[38], leading to a significant gap in demonstrating their
application in actual health care environments. Third, although
the challenges of integrating diverse data types into M-LLMs
are recognized, there is limited exploration of possible solutions
or ongoing research aimed at overcoming these technical barriers
[38,39].

This paper aims to present a detailed, practical, and
solution-oriented perspective on the use of M-LLMs in the
medical field. We unify the discussion by focusing on how
M-LLMs can serve as a transformative tool that integrates
various data modalities to enhance health care outcomes.
Specifically, we aim to (1) broaden the analysis of M-LLM
applications in health care to include additional data modalities,
such as time-series data and omics data, alongside conventional
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modalities such as images, text, audio, and video; (2) highlight
practical examples in which M-LLMs have been or could be
effectively applied in health care settings; (3) outline current
technological advancements to address the technical and ethical
challenges; and (4) propose future research directions to fully
exploit the capabilities of M-LLMs. Our unique contribution
lies in providing a comprehensive framework that links these
diverse aspects, offering a unified vision for the future of
M-LLMs in health care.

Background

Multimodal Learning
In the context of M-LLMs, the term multimodal encompasses
a range of scenarios in data processing and interpretation. First,
it refers to LLMs in which the input and output to the system
involve different modalities, such as text-to-image or
image-to-text conversions. Second, it describes LLM systems
capable of handling inputs from multiple modalities, such as
those that can process both text and images simultaneously.
Finally, multimodality characterizes systems designed to
generate outputs in >1 modality, such as systems capable of
producing both textual and image-based content [40].

Several previous works have developed basic M-LLMs by
aligning the well-trained encoders from different modalities
with the textual feature space of LLMs. This approach enables
LLMs to process inputs other than text, as seen in various
examples [41-44]. For instance, Flamingo [45] uses a

cross-attention layer to link a frozen image encoder with LLMs.
LLaVA [46] uses a basic projection method to incorporate image
features into the word embedding space. Similarly, models such
as Video-Chat [47] and Video-LLaMA [48] are designed for
video comprehension, whereas SpeechGPT [49] is tailored for
audio processing. A notable example is PandaGPT [50], which
uniquely manages to interpret 6 different modalities at the same
time, achieved through the integration of a multimodal encoder
known as ImageBind [51].

Despite numerous efforts focusing on understanding multimodal
content at the input side, there is a significant gap in the ability
to produce outputs in various modalities beyond textual content.
This underscores the importance of developing any-to-any
M-LLMs, which are crucial for realizing real artificial general
intelligence (AGI) [52,53]. Such models should be capable of
receiving inputs in any form and providing responses in the
appropriate form of any modality.

From Unimodal Limitations to Multimodal Solutions
Unimodal LLMs generate content in the same modality as that
in which they receive inputs, typically text, whereas M-LLMs
are capable of processing inputs from various modalities and
delivering outputs across multiple modalities, as illustrated in
Figure 1. Despite their remarkable abilities, unimodal LLMs in
medicine have inherent limitations that can be effectively
overcome by shifting toward multimodal systems. In Table 1,
we summarize these limitations in the medical field and illustrate
how the integration of a multimodal approach can address these
challenges.

Figure 1. Unimodal large language model (LLM) and multimodal LLM (M-LLM) examples. ECG: Electrocardiogram.
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Table 1. Summary of unimodal (text) large language model (LLM) limitations in medicine and potential multimodal LLM solutions.

Description of multimodal solutionMultimodal LLM solu-
tion

Description of unimodal limitationUnimodal (text) LLM limita-
tion

Multimodal models process and integrate diag-
nostic imaging information (eg, x-rays and

MRIsa), improving diagnostic accuracy and
patient outcomes.

Integration of diagnos-
tic imaging data

Unimodal LLMs in medicine can only pro-
cess textual patient data and cannot interpret
diagnostic images, which are vital in many
clinical scenarios.

Lack of diagnostic imaging
context

Multimodal systems incorporate and analyze

temporal data, such as ECGb readings or con-
tinuous monitoring data, enabling dynamic
tracking of patient health and disease progres-
sion.

Time-series data integra-
tion

Text LLMs often struggle with interpreting
time-series data, such as continuous monitor-
ing data or progression of diseases, which are
vital for tracking patient health over time.

Inability to analyze temporal
data

Multimodal systems can process and under-
stand audio signals, such as patient verbal de-
scriptions and heartbeats, enhancing diagnostic
precision.

Audio data processingUnimodal LLMs grapple with audio analysis,
which limits their effectiveness in health care
applications that rely on processing spoken
interactions or auditory signals.

Absence of auditory data in-
terpretation

By processing clinical notes, diagnostic im-
ages, and patient audio, multimodal systems
offer more comprehensive analyses of complex
medical conditions.

Multisensory data inte-
gration

Unimodal LLMs struggle with interpreting
complex medical conditions that require a
multisensory understanding beyond text.

Limited comprehension of
complex medical scenarios

Diversifying input types with clinical imaging
and audio data allows multimodal systems to
increase the number of training data points and,
hence, reduce overfitting, enhancing diagnostic
reliability.

Diverse clinical data
sources

Sole reliance on clinical texts can lead LLMs
to overfit to textual anomalies, potentially
overlooking critical patient information.

Overfitting to clinical textu-
al patterns

Multimodal systems use diverse modalities,
including patient interviews and diagnostic
images, to provide a broader context that can
mitigate biases in clinical decision-making.

Richer contextual pa-
tient data

Unimodal LLMs, especially text-based ones,
can inherit biases and misconceptions present
in their training data sets, affecting patient
care quality.

Bias and ethical concerns

aMRI: magnetic resonance imaging.
bECG: electrocardiography.

Foundational Principles of M-LLMs

Overview
The field of M-LLMs is evolving rapidly, with new ideas and
methodologies being continuously developed. The training of
medical M-LLMs is a complex process designed to effectively
integrate and interpret the diverse types of data encountered in
clinical practice. Typically, the architecture of an M-LLM
system encompasses four key stages (Figure 2): (1)
modality-specific encoding, (2) embedding alignment and
fusion, (3) contextual understanding and cross-modal
interactions, and (4) decision-making or output generation. In
addition to these stages, pretraining and fine-tuning processes

play a crucial role, interacting with and enhancing each of the
aforementioned stages.

This section presents the foundational principles that currently
guide the development and functioning of medical M-LLMs.
Importantly, the specific architecture of an M-LLM might vary
significantly to meet particular requirements, such as the types
of data it needs to handle, the tasks it is designed to perform,
and the level of interpretability and performance required.
Therefore, while the stages outlined provide a high-level
overview of an M-LLM system’s architecture, actual
implementations may vary widely to accommodate the unique
demands of each application. As this field progresses, we
anticipate that the guiding principles of medical M-LLMs will
continue to be shaped by emerging ideas and technological
advancements.
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Figure 2. Main components of multimodal large language model training.

Modality-Specific Encoding
The purpose of this stage is to transform raw data from each
modality into a format that the model can understand and
process. This involves using modality-specific encoders to
encode various data types into rich and informative
representations that subsequent components of the M-LLM
architecture can effectively leverage. These modality-specific
encoders are meticulously trained using extensive data sets of
unlabeled information to generate embeddings that accurately
encapsulate the data’s content. The encoders are trained in an
unsupervised manner using a large collection of data sets.
Selecting the appropriate encoding architecture and optimizing
the training methodology are imperative and often tailored to
the specific characteristics of the data and the requirements of
the medical task at hand. For example, image encoders (eg,
transformers [54] and convolutional neural networks (CNNs)
[55,56]) are designed to capture fine-grained patterns or
anomalies crucial for diagnosis, whereas text encoders (BERT
[15]) aim to comprehend complex medical terminology and
patient histories. Similarly, audio encoders (such as WaveNet
[57] and DeepSpeech [58]) are optimized to distinguish subtle
variations in sounds, such as differentiating between normal
and abnormal heart or lung sounds. Time-series encoders (such
as transformer-based models [15,59-61] and LSTM [12]) are
intended to detect critical changes over time, signaling the need
for urgent medical intervention. Finally, omics encoders (eg,
DeepVariant [62], Basenji [63], and DeepCpG [64]) focus on
identifying genetic markers or patterns associated with specific
diseases, aiding in the development of targeted therapies.

Embedding Alignment and Fusion
The purpose of this stage is to harmonize the embeddings from
different modality-specific encoders into a combined
representation that reflects the combined information from all
input modalities. This might involve techniques such as
concatenation [65] and attention mechanisms [13] or more
sophisticated methods such as cross-modal attention [66,67]
and tensor fusion [68]. While modality-specific encoding relies
solely on unsupervised data, embedding alignment needs
annotated data across modalities. Moreover, the alignment
mechanism in medical M-LLMs may require incorporating
domain-specific knowledge to enhance its understanding and

integration of medical data. For example, it might use known
relationships between symptoms and diseases or anatomical
correlations to better align and interpret the multimodal data.
This results in a more accurate, reliable, and clinically relevant
synthesis of information.

Contextual Understanding and Cross-Modal
Interactions
The objective of this stage is that the M-LLM not only
comprehends the individual modalities but also discerns their
interrelations and collective contributions to the overall medical
analysis or diagnostic task. This necessitates the deployment of
advanced neural network architectures, notably, transformers
equipped with cross-modal attention mechanisms [66,67]. These
mechanisms enable the M-LLM to dynamically prioritize and
integrate features across different modalities, enhancing its
ability to make informed medical decisions. In addition,
attention-based fusion strategies [68] could be implemented to
weigh and integrate information from disparate sources,
adjusting the focus of the model according to the contextual
relevance of each data point from each modality.

Decision-Making or Output Generation
This component is the actionable end of the model that produces
the final output or decision based on the integrated and
interpreted multimodal data. This could be a classification layer
capable of distinguishing between different medical conditions
or a sequence generator for creating detailed medical reports.
When encoder architectures are used, the model head layer can
be trained for downstream classification tasks. When decoder
architectures are used, the model head layer outputs logits of
vocabulary tokens that can be applied in an autoregressive
manner to synthesize a response. For instance, in diagnostic
imaging, the model might analyze combined textual and visual
embeddings to identify and categorize pathologies. In treatment
recommendation systems, the model could synthesize patient
history, current symptoms, and laboratory test results to suggest
personalized treatment plans. The effectiveness of this stage
depends on the precision of the previous components.

Pretraining and Fine-Tuning
Pretraining and fine-tuning are fundamental processes in the
development and optimization of LLMs, including multimodal
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ones [69]. They are not just single steps but integral, ongoing
processes that influence and enhance all components of an
M-LLM system’s architecture. They interact with the 4 previous
components of the M-LLM architecture in multiple ways.

Pretraining begins with modality-specific encoders, focusing
on learning general features and representations for each
modality. For instance, encoders are pretrained on large data
sets to understand text, images, or audio before they are
combined or applied for specific tasks. Within the embedding
alignment and fusion component, pretraining enables models
to learn preliminary methods for aligning and integrating
embeddings from different modalities, especially in
unsupervised or self-supervised setups in which the model is
exposed to vast amounts of multimodal data. In the context of
understanding and cross-modal interactions, pretraining lays
the foundation for learning complex relationships between
modalities. As the model is exposed to a wide and varied range
of multimodal data, it learns to identify common patterns and
interactions. Although pretraining does not directly result in
final decisions or outputs for the decision-making or output
generation component, it establishes essential capabilities and
knowledge. This foundational understanding equips the model
to later perform specific tasks more effectively.

Fine-tuning adapts a pretrained model to downstream tasks or
data sets. It involves adjusting and optimizing the model’s
parameters and architecture components using a smaller, more
task-specific data set. The fine-tuned models are capable of
following instructions and responding to questions and queries.
In the context of M-LLMs, fine-tuning would adjust how
individual modalities are encoded, how they are aligned and
fused, and how the model makes decisions based on this refined
understanding.

Applications

Overview
M-LLMs hold transformative potential for numerous medical
applications, demonstrating unparalleled proficiency in
processing and integrating diverse data types, as shown in Figure
3. In this section, we discuss the applications of M-LLMs in
clinical practice organizing them according to data type. These
categories include medical images, temporal data (encompassing
time-series and event data), audio, video, text, omics data, and
any-to-any M-LLMs. This structured approach enables a
thorough exploration of how these models can revolutionize
health care practices based on their ability to synthesize and
analyze complex multimodal information.

Figure 3. Applications of multimodal large language models in health care.

Medical Images
M-LLMs, equipped with advanced capabilities to process and
interpret various image modalities, can significantly enhance
diagnostic accuracy and efficiency in medical imaging
applications. Examples of these image modalities include x-rays,
MRI scans, CT scans, positron emission tomography scans,
ultrasound images, digital pathology slides, and retinal images.
Each modality provides unique insights into the body’s internal
structures, facilitating comprehensive analysis and aiding in the
early detection, diagnosis, and monitoring of diseases. For
example, in radiology, M-LLMs are instrumental in analyzing
CT and MRI images to offer precise, quantifiable data for
identifying and characterizing anomalies such as tumors,
fractures, and signs of chronic diseases. In addition, these
models support the generation of automated radiological reports
that summarize findings and suggest potential diagnoses. It is
also possible to use M-LLM embedding to retrieve similar cases

based on keyword searching. Conversely, M-LLMs allow for
the annotation and tagging of medical images with keywords.
This enables additional analytics applications. Similarly, in
pathology, M-LLMs interpret tissue sample slides, identifying
disease markers that are often subtle and challenging to discern.
In dermatology, M-LLMs apply their image analysis processes
to assess photos of skin lesions, aiding in the early detection of
skin cancers such as melanoma [70].

Significant progress has been made in the field of
general-domain image-text M-LLMs through the development
of models such as GLaMM [71], Qwen-VL [72], SpatialVLM
[73], InternVL [74], Osprey [75], Vary [76], ShareGPT4V [77],
OtterHD [78], LION [79], SPHINX [80], BLIVA [81], SVIT
[82], LLaVA [46], and CoVLM [83]. These advancements have
been made possible by leveraging billions of image-text pairs
predominantly sourced from the public web, enabling these
models to analyze and integrate visual and textual information
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to understand and generate complex and contextually relevant
responses. Such M-LLMs with vision capabilities can be adapted
for medical imaging applications (eg, LLaVA-Med [84],
PMC-VQA [85], Med-Flamingo [86], and PeFoMed [87]).
However, an important question arises regarding whether such
general-domain models can deeply understand medical images
or whether they simply recognize superficial patterns from
extensive pretraining. Previous work [88] evaluated the
performance of a general-domain M-LLM in biomedical image
classification tasks. The study aimed to determine whether such
M-LLMs can develop usable internal representations of medical
images and whether these representations could effectively
distinguish between various medical subclasses. The results
showed that generalist models can inherently understand medical
images and, in some medical contexts, even outperform
specialized, task-specific pretraining methods. Therefore, using
representations from generalist models may offer a data-effective
solution for developing classification models in the medical
imaging domain.

Temporal Data
M-LLMs with the ability to process and interpret time-stamped
sequences of data offer significant potential in areas such as
real-time patient status tracking in intensive care units,
longitudinal studies for chronic disease management, and
predictive analytics for patient risk assessment. M-LLMs
designed with temporal dimensions acquire predictive capability
and skills in extrapolating the understanding of medical
conditions over time. Temporal data include time-series,
spatiotemporal, and event data. For the purpose of this paper,
our focus will be on time-series and event data.

Time-series data are a sequence of data points collected or
recorded at regular time intervals, with each data point being
time-stamped. Examples include a patient’s heart rate recorded
over time and continuous glucose monitoring (CGM). In critical
care settings, M-LLMs can detect early signs of clinical
deterioration, such as sepsis or cardiac events, from continuous
monitoring of vital signs. In neurology, M-LLMs process EEG
data to detect neurological anomalies, such as seizure patterns.

Event data are a record of discrete actions or occurrences at
specific time points or over intervals. Unlike time-series data,
they do not have to be regularly timed. Examples include
electronic health records (EHRs) detailing various discrete
events in a patient’s medical history, such as physician visits,
hospital admissions, and prescription records, or sensor data
recording specific occurrences, such as motion sensors being
triggered with movement. Each event is time-stamped but does
not occur at regular intervals. M-LLMs are instrumental in
extracting meaningful insights from EHRs, which encompass
diverse and nonregularly timed medical events [89]. M-LLMs
can analyze the sequence and context of these events, providing
a comprehensive understanding of a patient’s medical history.
This analysis can lead to more accurate diagnoses, tailored
treatment strategies, and improved management of chronic
conditions. In addition, M-LLMs can process sensor data, such
as motion sensor activations in older adult care settings, offering
real-time insights into patient activity and well-being.

Significant advancements have been made in M-LLMs with
temporal analysis capabilities, including models such as
Time-LLM [90], LLM4TS [91], TEMPO [92], and PromptCast
[93], among others [94,95]. However, there is still a lack of
M-LLMs specifically designed for medical temporal data. Some
of the existing M-LLMs with temporal capabilities could be
adapted for medical applications [89,96], or new models
specifically designed and pretrained on medical temporal data
can be developed.

Audio
Medical M-LLMs that can process and comprehend audio
signals have the potential to significantly enhance health care.
These models can analyze vocal patterns and breathing sounds
to identify respiratory conditions such as asthma or chronic
obstructive pulmonary disease (COPD) early in their
development. In addition, M-LLMs can be used in mental health
to detect subtle changes in speech patterns, affective tone, and
vocal tone that may indicate depression, anxiety, or stress,
offering a noninvasive diagnostic tool that complements
traditional assessment methods. Moreover, audio-based
M-LLMs facilitate continuous monitoring of patients in intensive
care unit settings, using sound analysis to alert medical staff to
changes in patient condition that might necessitate immediate
intervention. Furthermore, these models enhance patient
engagement and education by converting medical advice into
accessible audio formats tailored to individual patient needs
and comprehension levels. They can also aid in the early
detection of neurological disorders through speech irregularities,
help monitor sleep apnea by analyzing breathing patterns during
sleep, and support speech therapy for stroke survivors by
tracking progress in speech fluency and pronunciation.

Numerous audio-text M-LLMs, leveraging transformer-based
architectures, have integrated text- and audio-based language
models, such as AudioPaLM [97], AudioLM [98], Pengi [99],
AudioGPT [100], SpeechGPT [49], VioLA [101], and
SALMONN [102], into a unified multimodal architecture. This
architecture is capable of processing and generating both text
and speech, facilitating applications such as speech recognition
and speech-to-speech translation. However, there is a gap in the
development of large audio models specifically tailored for
medical applications [103]. Nonetheless, these existing M-LLMs
with audio capabilities may be adapted and refined to address
the requirements of medical-related tasks.

Text
Although text-based LLMs are not inherently multimodal,
integrating text with other data modalities such as images and
audio transforms them into the core of M-LLMs. In clinical
practice, these text-based components of M-LLMs can be
applied in several ways. For instance, they facilitate the
automated generation of patient reports by interpreting and
summarizing complex medical language and data, including
diagnostic imaging and laboratory test results. M-LLMs with
additional skills in understanding tabular and other structured
textual data are expected to perform better on EHR data.
Furthermore, text M-LLMs play a crucial role in analyzing the
large volumes of clinical notes routinely available in EHRs to
predict clinical outcomes. In addition, they enhance medical
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education and training by providing simulations and interactive
learning experiences based on extensive medical literature and
case studies.

There is a growing interest in the development of M-LLMs that
incorporate text data, demonstrating the vast potential and
ongoing innovations in this field. Examples of biomedical text
LLMs include BiMediX [104], BioBERT [105], PubMedBERT
[106], and ClinicalBERT [20]. BioBERT is a biomedical
language representation model designed for text mining tasks
such as named entity recognition, relation extraction, and
question answering in the biomedical domain. PubMedBERT
is specifically pretrained from scratch on PubMed articles,
ensuring a highly focused approach to understanding medical
literature. ClinicalBERT is a BERT model pretrained on generic
EHR clinical documentation and discharge summaries. BiMediX
is the first bilingual medical LLM with expertise in both English
and Arabic, facilitating several medical interactions, including
multiturn conversations, multiple-choice queries, and closed
question answering.

Videos
M-LLMs hold significant promise in transforming the analysis
and interpretation of various types of video data within medical
settings. In surgical training, M-LLMs can analyze and interpret
surgical videos, providing real-time feedback and educational
insights. In physical therapy, M-LLMs can analyze patient
movement videos, aiding in designing targeted rehabilitation
programs and monitoring patient progress. They can also be
used in psychiatric evaluations to assess behavioral patterns
through video assessments. Furthermore, M-LLMs can be used
in internal examinations, interpreting recordings from
endoscopic and laparoscopic procedures to identify
abnormalities and support real-time decision-making during
these procedures. Their applications extend to home health care,
allowing for remote patient monitoring through video to track
well-being. They are also used in sleep studies, where video
recordings assist in diagnosing disorders such as sleep apnea.
In dermatology, video analysis of skin conditions over time
helps in tracking disease progression.

The progress in M-LLMs for video data analysis, demonstrated
by models such as Video-Chat [47], Video-ChatGPT [107],
Video-LLaMA [48], LLaMA-VID [108], MotionGPT [109],
LAVENDER [110], MovieChat [111], Vid2Seq [112],
VideoLLM [113], and VTimeLLM [114], shows significant
promise for the development of models tailored to medical
applications. The success of these models in nonmedical settings
lays a foundation for similar advancements in the health care
sector. However, a critical aspect in applying these models to
medicine is the incorporation of domain-specific medical
knowledge. Medical videos require not just technical analysis
but also contextual interpretation aligned with patient history,
presenting symptoms, and potential diagnoses. Furthermore,
the operational demands of these models in clinical
environments are stringent. They must function in real time or
near real time to offer actionable insights during critical medical
procedures, such as providing alerts during surgeries or
continuous patient monitoring.

Omics Data
M-LLMs leveraging omics data, encompassing genomics,
transcriptomics, proteomics, and other omics technologies, have
the potential to significantly enhance personalized medicine
and clinical diagnostics. By integrating and interpreting complex
omics data sets, M-LLMs can uncover novel biomarkers for
diseases, predict patient responses to specific treatments, and
facilitate the development of targeted therapies. For example,
in oncology, these models can analyze genetic mutations and
expression patterns to guide cancer treatment strategies.
Similarly, in cardiology, omics data analysis can help identify
genetic risk factors for heart diseases, enabling preventative
interventions. M-LLMs also support drug discovery processes
by predicting the efficacy and side effects of potential drugs
based on the omics profiles of diverse patient populations.

Several M-LLMs have been developed using omics data for a
wide range of biomedical applications [115]. In genomics, DNA
sequence language models are used for a variety of predictive
tasks. These tasks include predicting genome-wide variant
effects (GPN [116]; DNABERT [117]; and its subsequent
evolution, DNABERT-2 [118]), predicting DNA cis-regulatory
regions (DNAGPT [119], DNABERT, and DNABERT-2),
predicting DNA-protein interactions (TFBert [120] and MoDNA
[121]), and determining RNA splice sites from DNA sequences
(DNABERT and DNABERT-2). In transcriptomics, RNA
sequence language models are used for RNA splicing prediction
(SpliceBERT [122]), assessment of long noncoding RNAs’
coding potential (LncCat [123]), RNA-binding protein
interactions (BERT-RBP [124]), RNA modification
identification (BERT-m7G [125]), and predictions related to
protein expression and messenger RNA degradation
(CodonBERT [126]). In proteomics, protein language models
are used for secondary structure and contact prediction
(ProtTrans [127]), protein sequence generation (ProGen [128]),
protein function prediction (ProtST [129]), major
posttranslational modification prediction (ProteinBERT [130]),
biophysical property prediction (PromptProtein [131]), and
advancing the state of the art in proteomics [132,133].

Any-to-Any M-LLMs
Current M-LLMs are primarily limited to multimodal
comprehension on the input side, possessing limited capabilities
to generate content across various modalities [134,135]. Given
that clinicians frequently interact and communicate using a
variety of medical modalities, the potential applications of
any-to-any M-LLMs, which can accept input in any modality
and produce output in any modality, are numerous. For instance,
clinicians can provide a combination of textual patient history,
radiographic images, and audio recordings of patient symptoms
as input to the M-LLM. The M-LLM could then analyze this
multimodal input to diagnose the patient’s condition.
Subsequently, it could generate a multimodal output that
includes a textual report summarizing the diagnosis, annotated
images highlighting areas of concern, and an audio explanation
that can be easily shared with patients or other medical
professionals.

There is an increasing interest in the development of any-to-any
M-LLMs, highlighting the significant potential of their
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applications across various domains. For instance, NExT-GPT
[136] enhances an LLM with multimodal adapters and a range
of diffusion decoders, enabling the model to process and
generate outputs in any combination of text, images, videos,
and audio. Macaw-LLM [137] integrates images, audio, and
textual data using 3 primary components: a modality module
for encoding multimodal data, a cognitive module for leveraging
pretrained LLMs, and an alignment module for synchronizing
diverse representations. OneLLM [138] incorporates 8 unique
modalities within a single framework using a multimodal
alignment pipeline, which can be further expanded to include
additional data modalities. These models, among others
[139,140], can be tailored and fine-tuned to specifically address
the unique demands of tasks related to health care.

Use Case Example
In this section, we present a use case that demonstrates the
practical application of M-LLMs in health care using the
Contrastive Learning From Captions for Histopathology
(CONCH) model [141]. CONCH is a vision-language M-LLM
specifically designed for computational histopathology. It is
pretrained on the largest histopathology-specific vision-language
data set, enabling it to create effective representations for
non–H&E (hematoxylin and eosin)-stained images, such as
immunohistochemistry and special stains, without relying on

large public histology slide collections such as The Cancer
Genome Atlas, Pancreatic Cancer AI Platform, and
Genotype-Tissue Expression.

For this experiment, we used the pretrained model weights
available on Hugging Face [141] and installed the CONCH
package from the official repository [142]. The experiment was
conducted on a Linux machine equipped with an NVIDIA
GeForce GTX 1080 Ti graphics card using a web-based
demonstration application developed using the Flask web
framework. The application created a ChatGPT-like interface
for zero-shot cross-modal retrieval, accepting both
pathology-related text prompts and pathological images. It
computed cosine similarity and provided retrieval scores based
on the input data. Figure 4 illustrates how CONCH was used
to analyze 2 histopathology slides, providing confidence scores
for various diagnostic questions. The model processes both the
images and corresponding text prompts, offering a zero-shot
cross-modal retrieval approach to assist in diagnosing conditions
such as invasive ductal carcinoma, invasive lobular carcinoma,
and ulcerative colitis.

This use case example highlights the potential of M-LLMs such
as CONCH to enhance computational pathology by enabling
advanced, multimodal data retrieval and analysis even in
complex and specialized medical imaging tasks.

Figure 4. Demonstration of the Contrastive Learning From Captions for Histopathology (CONCH) model as a text-vision foundation model for
histopathology analysis.
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Challenges

Overview
While the potential of M-LLMs is promising, it is crucial to
understand the significant technical and ethical challenges and
limitations that accompany their development and deployment
in health care (Figure 5). From a technical perspective,

challenges include integrating diverse data sources (data fusion),
meeting extensive data requirements, ensuring scalability and
managing computational demands, and improving the
interpretability of M-LLMs. Ethically, issues such as bias and
fairness, obtaining informed consent, data privacy and security,
and the safety and alignment of these models in clinical practice
present substantial obstacles. In this section, we discuss these
challenges and propose potential solutions to tackle them.

Figure 5. Challenges of multimodal large language models in health care.

Technical Challenges

Data Fusion

Problem

Data fusion in medical M-LLMs is a sophisticated and complex
process that requires the integration of heterogeneous data types
to create a comprehensive and multidimensional representation
of patient health. This integration process encompasses several
technical challenges that must be adeptly managed. The first
challenge is the temporal and spatial alignment of different data
modalities, where aligning data from diverse sources such as
medical images, videos, and text-based records is crucial to
ensure that all data points are synchronized and that temporal
data (showing changes over time) and spatial data (showing
anatomical or physiological details) are correctly correlated.
Second, handling data sparsity and missingness is vital as it can
significantly impact diagnosis and treatment. For example,
missing frames in a medical video could miss critical changes
in a patient’s condition, incomplete medical images may not
fully reveal the extent of a disease, and gaps in EHRs can result
in a lack of historical context for patient care, necessitating
sophisticated techniques to infer missing information without
compromising diagnostic accuracy. Furthermore, normalization
and standardization are essential given the varied formats, scales,
and resolutions of different data modalities, for example,
adjusting the scale of medical images to a standard range,
normalizing text data from clinical notes to a uniform format
for analysis, and standardizing video data to ensure consistent
frame rates and resolutions. These challenges highlight the
complexity of integrating diverse data types used in M-LLMs,
underscoring the need for advanced computational techniques
and algorithms to address these issues effectively.

Potential Solution

Beyond foundational methods for data fusion, a variety of
advanced techniques exist that can enable M-LLMs to more
effectively integrate different modalities. Prompt-based
multimodal fusion [143] is one such framework that enables
bidirectional interaction among different modalities through a
2-stream structure, typically involving parallel construction of
the multimodal model through pretrained language and image
models. Hybrid fusion [144] integrates unstructured and
structured data along with other multimodal sources via a
pretrained language model, capturing a more comprehensive
patient representation. Gated fusion [145,146] uses mechanisms
such as neural network gates or attention mechanisms to
dynamically emphasize or de-emphasize different aspects or
modalities of the data based on the context. Finally, tensor fusion
[68] constructs a higher-order tensor representing all feature
combinations across modalities, which is then decompressed
or factorized to a lower dimension for tractable computation
while preserving the depth of multimodal interactions.

Data Requirements

Problem

In the pretraining phase of M-LLMs, large and diverse data sets
with extensive labeling in many cases are required to capture a
wide range of general knowledge across different modalities
(eg, text, images, and audio). The primary goals of pretraining
are to develop robust feature representations and ensure that the
model can handle the inherent variability in real-world data.
However, such multimodal medical data sets are currently
limited, and the acquisition of such large-scale labeled data
presents logistical, ethical, and privacy challenges [147].
Existing multimodal medical data sets available for public use
[84,85,148] are often relatively small in scale and demand the
consolidation of numerous resources. For instance, the
MIMIC-IV [148] includes a limited range of modalities,
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including clinical notes, medical images (chest x-ray Digital
Imaging and Communications in Medicine [DICM] images),
and time series (diagnostic electrocardiogram and patient
records), making it a valuable but constrained resource for
training medical M-LLMs. Similarly, PMC-VQA [85] and
LLaVA-Med [84] include text and image modalities for medical
visual question answering.

It is to be noted that the storage of vast amounts of multimodal
data (ie, medical images and scans, videos, and high-resolution
audio files) requires substantial storage capacity. Efficient and
secure storage solutions are essential to handle these data,
ensuring quick access and retrieval while maintaining data
integrity and security.

Potential Solution

To address the limited data challenge in training medical
M-LLMs, a combination of synthetic data generation and
federated learning could be used. Synthetic data generation
using generative models can create realistic, diverse data sets
that mimic real-world multimodal medical scenarios, thus
expanding the training data set without compromising privacy
or ethical standards [149-151]. In addition, federated learning
presents a viable solution for leveraging multimodal data from
multiple health care institutions without the need to share the
actual data, thus maintaining patient privacy [152-156]. This
decentralized approach enables multimodal M-LLMs to learn
from a vast, distributed data set encompassing a wide range of
medical modalities without necessitating centralization of the
data.

The few-shot learning approach enables models to generalize
from a limited number of examples. By leveraging the pretrained
knowledge and adapting quickly to new tasks with minimal
data, few-shot learning can be particularly useful in medical
scenarios in which labeled data are limited. Another approach
to reducing computational requirements and addressing the
problem of unavailable labeled data is in-context learning. This
approach enables models to perform tasks by providing
examples in the input context without fine-tuning the model
weights. This approach can be effective for tasks such as medical
image interpretation or clinical note analysis.

To address data storage demands when building M-LLMs,
cloud-based storage solutions offer a flexible and scalable way
to store big data and allow organizations to scale their storage
capacity as needed without the upfront investment in physical
infrastructure. Other benefits include improved accessibility
and cost efficiency, whereas providers can implement robust
security measures (eg, data encryption and access control).
Moreover, the combination of cloud-based storage and
distributed storage systems provides a robust and adaptable
solution for managing the extensive and complex data sets
needed for M-LLMs.

Scalability and Computational Demands

Problem

The development and deployment of M-LLMs in the medical
field pose significant scalability and computational challenges.
During training, such complex M-LLMs require substantial

computational power, often involving parallel processing and
sophisticated algorithms to manage and analyze the data
effectively. Moreover, M-LLMs face memory limitations due
to processing vast amounts of data, and their large size
necessitates considerable storage capacity. This can also lead
to network latency, slowing down model performance and
affecting user experience. The scalability issue is further
compounded by the need for continuous model updates to
incorporate new medical data and knowledge. These factors
translate to high operational costs, making the development of
medical M-LLMs feasible mainly for large technology
corporations with significant resources. Inference, on the other
hand, requires minimizing latency and reducing computational
load to ensure real-time or near–real-time responses in clinical
settings. Both phases pose unique challenges that need to be
addressed to facilitate the practical deployment of M-LLMs in
health care.

Potential Solution

To optimize efficiency during both training and inference,
several methods can be used. Parameter-efficient fine-tuning
methods such as adapter layers help reduce the computational
load by fine-tuning only a subset of the model’s parameters
[157,158]. In addition, quantization approaches can address the
scalability and computational demands by shifting toward
quantized versions of existing models using curated,
domain-specific data rather than pretraining from scratch [159].
This method capitalizes on the foundational strengths of
established models, significantly reducing the computational
resources needed for initial training [160]. Knowledge
distillation is another approach that involves training a smaller
“student” model to replicate the behavior of a larger “teacher”
model, requiring less computational power while retaining
performance [161]. Fine-tuning using targeted medical data sets
enhances accuracy and relevance in medical applications while
also cutting down development time and costs. Furthermore,
developing more efficient transformer architectures tailored for
multimodal data, such as Kosmos-1 [162], Muse [163], and
PixArt-α [164], presents a viable solution. Optimizing
algorithms for parallel processing is another approach that
promotes more efficient use of computational resources. During
inference, quantization and pruning continue to be beneficial
by reducing the computational burden and speeding up model
execution. Knowledge distillation allows for the use of smaller,
faster models that maintain high performance, ideal for real-time
applications. Additional optimization techniques, such as model
compression [165] and hardware acceleration using graphics
processing units (GPUs) or tensor processing units (TPUs)
[166], further enhance efficiency.

Model Interpretability

Problem

In contrast to unimodal LLMs, the scale of M-LLMs in terms
of parameters and training data introduces a unique set of
interpretability challenges alongside potential opportunities in
the field of research on model explainability. First, as these
models expand in size, the task of understanding and interpreting
their decision-making processes becomes increasingly
challenging [167]. This difficulty is amplified by the added
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internal complexity of M-LLMs and the extensive variety of
their training data sets. Moreover, this complexity necessitates
substantial computational resources to facilitate the generation
of explanations. Such increased complexity poses significant
hurdles for in-depth analysis, thereby hindering the debugging
and diagnostic processes essential for understanding and
improving M-LLMs.

Potential Solution

Addressing these interpretability challenges in the context of
health care is critical as clinicians—accountable to patients and
regulators—should have a reasonable ability to explain how a
complex model assists and makes medical recommendations.
Choosing between model performance and interpretability can
be problematic and is often down to trust (in model development
methods, data, metrics, and outcome data, among other things).
This challenge necessitates the development of advanced
methods for explaining transformer-based language models
[167,168], particularly methods for local explanations, such as
feature attribution explanation, attention-based explanation,
example-based explanation, and natural language explanation
[169-172], and global explanations, such as probing-based
explanation, neuron activation explanation, concept-based
explanation, and mechanistic interpretability [168,173,174]. In
addition, being able to use these explanations is crucial for
debugging and improving M-LLMs. An effective approach is
the development of integrated explanation frameworks
specifically designed for medical M-LLMs that can integrate
both local and global explanations. Such frameworks are
essential for handling the multimodal nature of medical data,
including the combination of textual and imaging information.
In addition, incorporating a human-in-the-loop approach, where
clinician feedback on the model’s explanations is used for
continuous improvement, can significantly enhance the practical
utility and trustworthiness of these M-LLM systems in medical
settings [167].

Ethical Challenges

Bias and Fairness

Problem

The potential for bias represents one of the primary ethical
challenges in using M-LLMs in health care. Specifically, in the
health care domain, data often exhibit bias due to the uneven
distribution of demographic attributes, preconceptions held by
health care professionals involved in data collection and
interpretation, and the varied academic and experiential
backgrounds that influence their perspectives [175-177]. If
M-LLMs are trained on patient data that contain biases related
to gender, ethnicity, socioeconomic status, or geographic
location, they may inadvertently cause biases in their predictions
or recommendations [175,178,179]. For example, a recently
developed M-LLM, LLaVA [46], when asked to analyze an
image featuring 2 Black men and 2 gorillas, erroneously
identified one of the men as a gorilla. This error suggests the
existence of racial bias within the algorithmic framework of the
model [180]. In health care, biased M-LLMs can lead to
differential treatment, misdiagnoses, and unequal access to
medical resources. For example, an M-LLM analyzing medical

images might miss subtle symptoms in darker-skinned
individuals due to biases in the training data. One study showed
that CNNs, when trained on publicly available chest x-ray data
sets, may show a tendency to underdiagnose specific
populations, such as individuals from marginalized communities
(eg, Black and Hispanic patients), women, and Medicaid
recipients [181].

Potential Solutions

Mitigating bias and improving fairness within medical M-LLMs
necessitates a multifaceted approach centered on 3 pillars: data
integrity, model refinement, and comprehensive evaluation
[181,182]. Essential to this strategy is the curation of diverse
and representative data. This involves compiling multimodal
medical data sets that encompass a wide array of demographics,
languages, and cultures to ensure balanced representation and
guide targeted model fine-tuning efforts [183]. Fine-tuning these
models through transfer learning and bias reduction techniques,
such as counterfactual data augmentation [184], can effectively
minimize patterns of gender, racial, or cultural bias.
Furthermore, deploying multiple methods and metrics for
evaluation is crucial. These may include human, automatic, or
hybrid evaluations alongside metrics such as accuracy,
sentiment, and fairness, which provide feedback on bias in
M-LLM outputs. Through such rigorous evaluation, biases can
be detected and continuously addressed, improving the reliability
of M-LLMs. Moreover, incorporating logic-aware mechanisms
into medical M-LLMs involves integrating clinical reasoning
and decision-making processes into the M-LLMs. This approach
promotes the generation of more accurate and less biased outputs
by applying medical reasoning to the relationships between data
tokens. For instance, logic-aware M-LLMs can differentiate
between correlational and causal relationships in patient data,
recognize the significance of laboratory values within clinical
contexts, and apply diagnostic criteria accurately across diverse
patient populations. Ultimately, the goal is to reduce bias without
compromising the performance of M-LLMs. It is a careful
balance of debiasing and enhancing the models, requiring
ongoing monitoring and adjustment to align with ethical
standards, particularly in the sensitive domain of health care
[185].

Informed Consent

Problem

Obtaining informed consent in the context of M-LLMs presents
unique challenges. In particular, it remains uncertain whether
patient consent is necessary for training M-LLMs using their
data if consent was previously obtained for research purposes
in general or for AI development specifically [178,186].
Furthermore, given the complexity of M-LLMs, it might be
difficult for patients to grasp what they are consenting to,
especially in terms of how their data will be used, how these
models operate, and the potential risks involved. This raises
questions about the validity of consent and the level of detail
required to adequately inform patients [177,178]. In addition,
it can be argued that traditional institutional review boards
(IRBs) and ethical oversight committees may be ill-equipped
to deal with AI and M-LLM applications due to the lack of
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understanding of such novel technologies in the medical arena
[187].

Potential Solutions

Health care providers and developers have a responsibility to
empower patients to make informed decisions about the use of
their data in developing M-LLMs. This requires providing them
with clear, transparent, simplified explanations of how M-LLMs
work, how their data will be used, the nature of the data they
handle, the steps taken to protect privacy, and the potential risks
of using their data (eg, algorithmic bias and privacy issues).
These explanations may take various forms, including written
text, visual aids, educational videos, or other materials tailored
to different levels of understanding. Professional training should
be provided to health care professionals on the capabilities,
limitations, and ethical considerations of using M-LLMs in
practice to effectively communicate these aspects to patients.
To this point, it may be necessary for health care and academic
medical institutions to adapt their IRBs for a more effective
governance and use of AI, first through incorporating a
sufficiently diverse set of expert members (eg, experts in
machine learning, experts in data science, and experts in
previous studies of marginalized or discriminated communities)
and, second, through more targeted, ongoing training of board
members. In doing so, IRBs are more likely to constructively
navigate issues pertaining to informed consent, data privacy
and security, and safety.

Data Privacy and Security

Problem

As mentioned previously, M-LLMs require a massive amount
of patient data (eg, medical history, clinical notes, medical
images, laboratory test results, and prescriptions) that are
inherently sensitive. This, in turn, raises substantial privacy and
security concerns—how will patient data be collected, stored,
and used? Who will have access to them and for what purposes
[175-177]? Researchers have demonstrated that bombarding an
LLM with specific questions (ie, adversarial attacks) could force
it to expose its training data, which contain verbatim personal
identifiable information and chat conversations [188]. They
have also concluded that larger models seem to be more
susceptible to attacks than smaller models [188]. Other studies
have shown that, even when sensitive patient data are
anonymized, certain algorithms can still identify individual
patients [189-191]. Unauthorized access or breaches can have
severe consequences, including reputational damage, misuse of
personal health information, and compromise of patient
confidentiality.

Potential Solutions

It is crucial to implement stringent data protection measures to
mitigate data privacy and security concerns when using patient
data for developing M-LLMs. One of these measures is the
implementation of federated learning techniques [153,155,156]
to enable M-LLMs to be trained on decentralized data sources
without the need to transfer sensitive or private information to
a central location, thereby preserving data privacy and security.
Furthermore, robust encryption protocols and anonymization
techniques should be applied to the data before transferring or

processing them. Secure storage infrastructure should be in
place to safeguard patient information. It is important to conduct
auditing of M-LLMs using data extraction attacks to understand
how well M-LLMs resist unauthorized attempts to extract data
and identify areas for improvement in terms of security and
privacy. Health care providers and developers must establish
strong data governance frameworks and policies and comply
with relevant privacy regulations (eg, Health Insurance
Portability and Accountability Act [HIPAA]). They also need
to adopt a proactive approach to cybersecurity and regularly
update security measures to counter-emerging threats.

Safety and Alignment

Problem

Ensuring the safety and alignment of M-LLMs in health care
is paramount. These models must not only be effective in
processing and analyzing medical data but also align with human
ethical standards, particularly those of health care professionals.
Similar to text-based models, where fine-tuning, reinforcement
learning from human feedback, and dynamic policy optimization
(DPO) are used to minimize harm and align outputs with human
preferences, M-LLMs could adopt analogous methodologies to
ensure that their recommendations are in harmony with the
preferences and ethical considerations of medical practitioners.
The challenge lies in aligning M-LLMs with the complex,
nuanced, and sometimes subjective decision-making processes
of human physicians. This involves training models on a diverse
array of scenarios, encompassing ethical dilemmas, treatment
preferences, and patient-centered care principles. By integrating
feedback loops in which health care professionals review and
adjust model outputs alongside technical and other professionals,
M-LLMs can learn to prioritize patient safety, privacy, and the
nuances of human empathy and ethical considerations in their
recommendations.

Potential Solutions

Developing a framework for continuous learning and adaptation
is crucial. This could involve iterative cycles of feedback and
adjustment in which M-LLMs are fine-tuned based on direct
input from health care professionals regarding the
appropriateness and ethical alignment of their outputs.
Incorporating mechanisms for DPO in which models adjust
their decision-making strategies in real time based on new
information or feedback could further enhance alignment with
human values. Moreover, simulating diverse clinical and ethical
scenarios during training phases can prepare M-LLMs to handle
real-world complexities.

Future Outlook

Overview
In the evolving landscape of medical M-LLMs, anticipating
future directions is crucial for advancing their application in
health care. In this section, we outline prospective advancements
and necessary adaptations that could enhance the functionality,
efficacy, and ethical integration of M-LLMs in health care.
Specifically, we explore the evolution in generating multimodal
outputs, the critical need for establishing performance
benchmarks, the shift in explainability paradigms toward
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comprehensive explainability, the role of M-LLMs in enhancing
interoperability within hospital systems, the formulation of
robust regulatory frameworks, and the essential role of
multidisciplinary collaboration (Figure 6). We envision that

these areas collectively represent key future perspectives where
M-LLMs are expected to transform both medical applications
and patient care.

Figure 6. Future directions of multimodal large language models in health care.

Generating Multimodal Outputs
While medical M-LLMs are rapidly evolving in processing
multimodal inputs, the development of multimodal outputs is
still trailing behind. The importance of multimodal outputs in
medical contexts is significant. For example, when asking
ChatGPT to explain complex medical concepts, such as
interpreting radiological images or outlining surgical procedures,
effective explanations should ideally blend textual descriptions
with graphical representations, mathematical equations, audio
narratives, or animations for enhanced comprehension. This
highlights the need for medical M-LLMs capable of producing
such varied outputs. A critical step toward this goal is the
creation of a shared intermediate output by the model, which
raises the following question: what form should this intermediate
output take? A practical method is using text as the intermediate
output, serving as a basis for generating additional modalities.
For example, the causal masked multimodal (CMM) model
[192] produces HTML markup that can be transformed into rich
web pages with text, formatting, links, and images.
Alternatively, using multimodal tokens where each token is
tagged to represent different modalities such as text or image
offers another route. Image tokens could feed into an image
generation model such as a diffusion model to generate visual
content, whereas text tokens are processed by a language model.
This dual-token approach paves the way for more sophisticated
and contextually appropriate multimodal outputs. Further
exploration and development in this field could lead to models
that seamlessly integrate a variety of output formats,
revolutionizing the way in which medical information is
conveyed and understood.

Establishing Benchmarks
Benchmarks are crucial in assessing the performance, accuracy,
and effectiveness of generative AI, especially in the context of

medical M-LLMs. The expansive scope and complex nature of
health care and medicine necessitate continuous advancements
in robust evaluation methods and frameworks. This is essential
to ensure that medical M-LLMs are effectively aligned with the
unique requirements of these domains. These benchmarks enable
model comparisons, highlighting efficiencies and creative
capabilities in specific tasks and data modalities both
individually and collectively. They also play a critical role in
detecting biases and limitations. Furthermore, they play a crucial
role in establishing industry standards for medical M-LLMs,
ensuring their ethical and safe use in sensitive medical contexts.
Recent initiatives in M-LLM benchmarks, such as AesBench
[193], Mementos [194], MME [195], MM-BigBench [196],
MLLM-Bench [197], and VLM-Eval [198], offer a foundational
framework that could be adapted to medical M-LLMs. However,
there is an urgent need for more comprehensive evaluation
methods and frameworks as well as rigorous rubrics for human
evaluation of M-LLM performance in real-world clinical
workflows and scenarios.

Evolution of Explainability: From Snapshot to
Temporal Explainability
Snapshot explainability refers to the ability of M-LLMs to
provide explanations for decisions or predictions at a single,
specific point in time. In contrast, temporal analysis offers a
more comprehensive understanding by tracking and interpreting
changes over time. Most current interpretability research on
M-LLMs neglects training dynamics, focusing mainly on post
hoc explanations of fully trained models [167]. This lack of
developmental investigation into the training process can lead
to biased explanations. Moreover, examining interpretability
based on a single data modality fails to reflect interactions
between modalities. Therefore, transitioning from static snapshot
explainability to dynamic temporal analysis is essential for
medical M-LLMs. This approach is particularly beneficial for
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using multimodal data in monitoring patient progress,
understanding disease trajectories, and predicting outcomes.
By leveraging temporal explainability, M-LLMs can better
contextualize data, uncovering patterns and trends that might
be overlooked in static analysis. This shift not only enhances
the accuracy of diagnoses and treatment plans but also improves
the personalization of patient care by taking advantage of rich
multimodal data.

Interoperability in Hospital Systems
An M-LLM could act as a central hub in hospitals, integrating
various unimodal AI systems such as radiology, insurance, and
EHRs. Currently, each department uses different AI tools from
various companies, and most of these systems do not
intercommunicate, resulting in access being limited to only
department-specific systems. For instance, radiologists use
radiological AI, whereas cardiologists might not have access
to this, and likewise for other specialties. The introduction of
M-LLMs can change this landscape significantly. M-LLMs
understand the language and format of all these disparate
software applications, allowing for seamless interaction. This
means that health care practitioners regardless of specialty could
easily work with any AI tool in the hospital, breaking down the
silos that currently exist. This potential is vital as it enables
comprehensive, integrated care, which individual organizations
cannot achieve alone due to proprietary restrictions on data.

Developing Regulatory Frameworks
The development of a regulatory framework for medical
M-LLMs is essential to ensure their safe, effective, and ethical
use. Regulatory bodies need to establish standards and guidelines
that define acceptable accuracy for various M-LLM applications,
ensuring that these tools are reliable and trustworthy in clinical
settings. A critical aspect of this framework also includes
algorithmic transparency; therefore, regulatory guidelines must
clearly stipulate requirements for explainability. Furthermore,
the protection of patient data privacy is essential given that
M-LLMs process sensitive health information. Therefore,
regulatory frameworks must enforce strict data protection
standards and formulate strategies for ethically collecting and
processing multimodal data sets. Moreover, regardless of
whether regulations are sufficiently developed or comprehensive
in any given jurisdiction, medical and research institutions have
an obligation to upgrade the knowledge and diversity of their
ethics approval boards.

Fostering Multidisciplinary Collaboration and
Stakeholder Engagement
AI, and specifically M-LLMs, is so new and complex in the
health care domain that the expertise and insights needed extend
far beyond the capabilities of any one health care or academic
medical organization. Thus, it is imperative for those
implementing M-LLM solutions to draw upon the know-how
of 4 major external stakeholders. First, because many AI projects
are expected to pose ethical concerns, the relevant applicable
regulatory bodies and local health authorities should be engaged
on a regular basis to ensure compliance with regulations. Indeed,
guidelines and laws are rapidly changing; at the time of writing,
the European Union has endorsed a world-first AI Act [199].

Second, much of the M-LLM innovation is expected to stem
from academic and research contexts, where scientists
continually push the boundaries of evidence-based, validated
AI projects commonly published and made available for public
benefit. Collaborating and partnering with such institutions
ensures that the latest approaches and technologies can be
incorporated into a health care project. Third, the industry is
often a forgotten collaborator due to perceived entry barriers
(eg, intellectual property ownership, exclusivity, and so forth).
However, large commercial companies have access to far wider
resources and technical expertise, particularly in engineering
development, than medical institutions and, when negotiated
with a win-win perspective, can significantly accelerate AI
project deployment in the health care context. The same may
apply to vendors who are infrastructure and deployment experts
and who may be able to contribute beyond the limited scope of
a purchase agreement. Moreover, when applicable, industry
partners may offer greater commercialization pathways for
projects. Finally, the fourth external stakeholder is the patient
advocacy organization. Such groups should be engaged early
and continuously and can help ensure that patients’ critical
perspectives are communicated and included within the
requirements of an M-LLM project. This is especially the case
in projects that directly impact the patients’ needs and
preferences, for instance, an M-LLM that interacts by providing
clinical insights and recommendations to the physician during
a patient consultation. Such advocacy groups can also be an
effective way for health care institutions to more naturally
engage in awareness and trust building with their communities.
Naturally, with external stakeholders, appropriate collaboration
and data agreements should be sought to protect the health care
institutions’ interests as well as those of their patients. In
addition, regardless of whether projects require internal or
external collaboration, best practices should be used to ensure
that roles, responsibilities, and decision-making structures are
clarified upfront.

Conclusions

In this paper, we explored the foundational principles,
applications, challenges, and future perspectives of M-LLMs
in health care practice. While this work suggests a promising
direction for the application of M-LLMs in medicine, it also
highlights the need for further evaluation and benchmarking of
their capabilities and limitations in real-world medical settings.
In addition, despite the momentum toward models capable of
processing multimodal inputs, the progression toward
sophisticated multimodal outputs remains comparatively slow.
Furthermore, it is crucial to acknowledge that the emergence
of M-LLMs does not render traditional LLMs obsolete. Instead,
M-LLMs serve as an extension, building upon the foundational
strengths and capabilities of LLMs to enhance health care
delivery. This association underscores that the efficiency of
M-LLMs is inherently tied to the robustness of the underlying
LLMs. As we advance toward more general AI systems,
M-LLMs offer a promising path to a comprehensive form of
AI in health care practice. The journey has its challenges, but
the potential rewards could significantly redefine our interaction
with technology in the medical field.
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