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Abstract

Background: Accurate hospital length of stay (LoS) prediction enables efficient resource management. Conventional LoS
prediction models with limited covariates and nonstandardized data have limited reproducibility when applied to the general
population.

Objective: In this study, we developed and validated a machine learning (ML)–based LoS prediction model for planned
admissions using the Observational Medical Outcomes Partnership Common Data Model (OMOP CDM).

Methods: Retrospective patient-level prediction models used electronic health record (EHR) data converted to the OMOP CDM
(version 5.3) from Seoul National University Bundang Hospital (SNUBH) in South Korea. The study included 137,437 hospital
admission episodes between January 2016 and December 2020. Covariates from the patient, condition occurrence, medication,
observation, measurement, procedure, and visit occurrence tables were included in the analysis. To perform feature selection, we
applied Lasso regularization in the logistic regression. The primary outcome was an LoS of 7 days or longer, while the secondary
outcome was an LoS of 3 days or longer. The prediction models were developed using 6 ML algorithms, with the training and
test set split in a 7:3 ratio. The performance of each model was evaluated based on the area under the receiver operating characteristic
curve (AUROC) and the area under the precision-recall curve (AUPRC). Shapley Additive Explanations (SHAP) analysis measured
feature importance, while calibration plots assessed the reliability of the prediction models. External validation of the developed
models occurred at an independent institution, the Seoul National University Hospital.

Results: The final sample included 129,938 patient entry events in the planned admissions. The Extreme Gradient Boosting
(XGB) model achieved the best performance in binary classification for predicting an LoS of 7 days or longer, with an AUROC
of 0.891 (95% CI 0.887-0.894) and an AUPRC of 0.819 (95% CI 0.813-0.826) on the internal test set. The Light Gradient Boosting
(LGB) model performed the best in the multiclassification for predicting an LoS of 3 days or more, with an AUROC of 0.901
(95% CI 0.898-0.904) and an AUPRC of 0.770 (95% CI 0.762-0.779). The most important features contributing to the models
were the operation performed, frequency of previous outpatient visits, patient admission department, age, and day of admission.
The RF model showed robust performance in the external validation set, achieving an AUROC of 0.804 (95% CI 0.802-0.807).

Conclusions: The use of the OMOP CDM in predicting hospital LoS for planned admissions demonstrates promising predictive
capabilities for stays of varying durations. It underscores the advantage of standardized data in achieving reproducible results.
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This approach should serve as a model for enhancing operational efficiency and patient care coordination across health care
settings.

(J Med Internet Res 2024;26:e59260) doi: 10.2196/59260
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Introduction

Length of stay (LoS) in the health care system directly impacts
optimal patient care provision, health care costs, and overall
hospital efficiency [1]. An accurate prediction of LoS allows
health care institutions to optimize utilization, maximize the
availability of limited hospital resources, and ensure the effective
management of hospital personnel [2,3]. Precise predictions
can also facilitate the identification of patients at risk for
long-term hospitalization, facilitating timely interventions to
improve treatment [4]. Consequently, LoS optimization is widely
recognized as an essential strategy for efficiently managing
hospital resources and the overall quality of health care services
[5,6].

Thus far, however, hospital LoS prediction models have focused
primarily on patients with specific diseases and binary outcomes
within certain specialties, limiting both their applicability across
broader hospital settings and the precision of day-specific LoS
analysis [7-10]. Levin et al [11] developed an automated
discharge prediction model for use in the multidisciplinary
rounding process. Sotoodeh et al [12] proposed a framework
based on a hidden Markov model to predict LoS for patients in
an intensive care unit using physiological measurements. Deep
learning and artificial neural networks, incorporating the entire
electronic health record (EHR) and clinical free-text notes, have
been utilized to predict LoS outcomes, specifically targeting
medical-surgical patients [9]. The Bayesian network model also
predicted an expected discharge within 7 days for emergency
department (ED) admissions [13,14].

Furthermore, previous LoS prediction models, constrained by
single-center nonstandardized data with limited covariates,
reduced generalizability. Historically, models often included
limited clinical features and overlooked aspects such as
hospitalist services and the characteristics of the hospital stay,
limiting the scope and accuracy of information in the developed
models. LoS is reflected by multiple factors, such as
environmental conditions, health care system dynamics, and
social drivers of health [15,16]. In contrast, previous models
for predicting LoS mostly centered on demographics, lab results,
and vital signs. Traditional LoS models ignored admission
details, procedure codes, medications, and comorbidities, which
are crucial for understanding patient recovery [1]. Additionally,
prior studies often relied on data from a single medical center
and nonstandardized sources like administrative data, the
Medical Information Mart for Intensive Care (MIMIC), and
EHRs for model development, leading to models with limited
transferability between institutions due to varied data standards
[17-19].

This study used standardized observational clinical data to
address these challenges. The Observational Medical Outcomes
Partnership Common Data Model (OMOP CDM) is a
standardized framework designed to streamline and harmonize
health care data from diverse sources [20]. The OMOP CDM
strengthens the semantic interoperability of data and enables
large-scale studies, including various health care research
applications like predictive modeling [21,22]. Specifically, it
enhances the reproducibility of research findings and ensures
comparability of results, allowing researchers to seamlessly
work with data from various health care systems [23]. It also
reduces the effort required for data mapping and transformation,
thereby streamlining the process and improving the prediction
model’s overall efficiency [22,23]. Adopting OMOP CDM in
health care research contributes to more robust, scalable, and
collaborative studies, ultimately improving the quality of health
care research and patient care.

In this study, we aimed to develop and evaluate machine
learning (ML)–based models for predicting hospital LoSs of 7
days or more for planned admissions using the OMOP CDM
data. This study proposes multiclassification models for general
hospitalization, targeting LoS durations of 3,4,5,6, and 7 days
to reflect the complex clinical spectrum of health care
conditions. These ML models are expected to facilitate an
accurate prediction of LoS in various health care settings, aiding
health care services in proactively implementing preventive
measures to avoid unnecessary extensions of stay.

Methods

Data Source and Participants
We carried out an observational cohort study using EHR data
in the OMOP CDM format (version 5.3) from 2 tertiary
hospitals, the Seoul National University Bundang Hospital
(SNUBH) for development and internal validation and Seoul
National University Hospital (SNUH) for external validation.
SNUBH and SNUH are tertiary general hospitals affiliated with
universities in the Seoul metropolitan area and the capital city,
respectively. They provide services for inpatients, outpatients,
and ED patients. The EHR data from both hospitals encompass
patient demographics, diagnoses, chief complaints, outpatient
drug prescriptions, inpatient and ED drug administrations,
operations, vital signs, laboratory test results, and in-hospital
deaths [24]. Both hospitals use the same EHR system and have
similar ETL processes for OMOP CDM. Out of a total of
961,672 admission episodes, 137,437 (14.3%) indexed
hospitalizations with LoS ranging from 2 to 30 days between
January 2016 and December 2020 were included in the study.
The prediction timing was set within 30 days, aligning with
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standard practices in most studies [25]. We included individuals
who were over 18 years old, had at least 1 inpatient visit
occurrence, were hospitalized in or after 2016, had at least 1

occurrence of any medical condition, survived hospitalization,
and had no unplanned admissions during the study period. The
study cohort of patients is provided in Figure 1.

Figure 1. Flowchart for model development and external validation study populations. A. Internal validation was conducted at Seoul National University
Bundang Hospital (SNUBH) B. External validation was conducted at Seoul National University Hospital (SNUH). CDM: Common Data Model; LoS:
length of stay.

Ethical Considerations
Each participating site (SNUBH and SNUH) obtained an
institutional review board (IRB) exemption (IRB no
X-2103-672-907, IRB no E-2305-020-1429). Informed consent
was waived due to the use of deidentified data within a secure
internal network and the retrospective nature of the study.

Data Extraction and Predictors
We used an open-source Feature Extraction R package (version
3.0.1; R Foundation for Statistical Computing) to extract
patients’clinical data before hospital admission from the OMOP
CDM at SNUBH. Patient clinical characteristics, including
condition occurrence, drug, observation, measurement,
procedure, death, and visit occurrence tables were collected.
The covariates included sex, age, the department at the visit,
surgical operations, and lab results. After analyzing the LoS
distribution for all patients, we excluded 2 departments,
ophthalmology and nuclear medicine, from the model
development due to their significantly shorter LoS (Figure S1
in Multimedia Appendix 1). Additional covariates that relied
on the number of days (–365, –180, and –30) relative to the
index date included diagnosis history, visit occurrences, and
drug history. Severity scores such as the Charlson Comorbidity
Index, Diabetes Complications Severity Index, CHADS2, and
CHADS2-VAsc were also included as covariates. Additionally,
custom covariates, such as the time, day of the week of
admission, admission on holidays, day of the week of operation,
whether operations were performed, diastolic and systolic blood
pressure, body temperature, diagnosis at admission, and
anthropometric measurements (eg, height and weight) were
incorporated in the development of the prediction models.

Outcomes
The study classified hospitalizations lasting 7 days or longer
using binary classification. In comparison, multiclassification
was applied to categorize hospital stays lasting 3 days or longer,
with specific subgroups for 3, 4, 5, 6, and 7 days. A
hospitalization was defined as an inpatient visit during the study
period, excluding unplanned admissions such as hospitalization
through the emergency room [26].

Feature Selection and Model Development
After generating all the custom and noncustom covariates,
logistic regression (LR) with Lasso regularization eliminated
redundant collinear predictors from the models. We normalized
continuous variables for uniform feature representation during
data preprocessing and converted categorical variables into
binary vectors using one-hot encoding. We removed variables
from the analysis that had over 30% of the values missing [27].
Six ML models [5,28], including LR, random forest (RF),
Extreme Gradient Boosting (XGB), Light Gradient Boosting
(LGB), Gradient Boosting (GB), and multilayer perceptron
(MLP) were evaluated to develop predictions for binary (LoS
≥7 days) and multiclass length of stay (LoS 3, 4, 5, 6 ≥7 days)
outcomes based on the selected features. Model hyperparameters
were optimized using 10-fold cross-validation via
RandomizedSearchCV from Python (v.3.7.6) and scikit-learn
library (v.0.22.1). We externally validated the models using
SNUH data.

Model Evaluation
We evaluated model performance using 5 metrics: area under
the receiver operating characteristic curve (AUROC), area under
the precision-recall curve (AUPRC), sensitivity, precision, and
specificity. A bootstrap resampling technique with 1000
replicates was employed to compute 95% CIs for all metrics.
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The optimal threshold point of the Youden Index was used to
assess the sensitivity and specificity of an LoS of 7 days or
longer. Shapley Additive Explanations (SHAP) analysis
interpreted the output of ML models and identified predictors
that positively and negatively contribute to the model’s
prediction. Furthermore, calibration plots assessed the reliability
of the prediction models and ascertained whether the predicted
probabilities aligned with the actual outcomes across different
probabilities. The Brier Score measured the accuracy of
probabilistic predictions quantitatively. The performance of the
models at SNUH was evaluated using AUROC and AUPRC,
SHAP, and calibration plots alongside Brier Scores.

Statistical Analysis
Statistical analysis was conducted using R software (version
3.0.1) and Python (version 3.8.10).

Patient entry events consisted of 2 groups based on LoS <7 days
and LoS ≥7 days. For the internal data set, comparisons between
these groups were performed using standard 2-sample t tests

for continuous variables and chi-squared tests of independence
for categorical variables. To compare characteristics between
internal and external validation cohorts, we used the tableone
package in R, which generated descriptive statistics presenting
continuous variables as mean (SD) and categorical variables as
frequency counts and percentages. All the packages used are
listed in Table S2 in Multimedia Appendix 1.

Results

Baseline Characteristics
During the study period, we identified 129,938 inpatient
admission episodes at SNUBH and 169,165 at SNUH, each
with an LoS ranging from 2 to 30 days. The mean age of the
admitted patients were 58.4 (SD 15.4) years at SNUBH and
59.2 (SD 14.9) years at SNUH. The average LoS for planned
admissions was 5.2 days at SNUBH and 5.4 days at SNUH.
The baseline characteristics of both cohorts are presented in
Table 1.
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Table 1. Baseline characteristics and outcomes of planned admissions in the test and validation cohorts.

External validation set (SNUHb)Internal validation set (SNUBHa)Characteristics

Overall

(n=169,165)

LoS >=7

(n=47,028)

LoS <7

(n=122,137)

Overall

(n=129,938)

LoS>=7

(n=34,439)
LoSc< 7

(n=95,499)

 

59.2 (14.9)58.8 (15.5)59.4 (14.6)58.4 (15.4)60.9 (15)57.5 (15.5)Age (years), mean (SD)

85,942 (50.8)21,986 (46.8)63,956 (52.4)58,879 (45.3)16,762 (48.7)42,117 (44.1)Male sex, n (%)

162 (8.75)162 (8.86)162 (8.70)162 (8.84)161 (9.08)162 (8.75)Height (cm), mean (SD)

63 (12.1)62.5 (12.3)63.3 (12)63.4 (12.6)62.9 (12.4)63.6 (12.7)Weight (kg), mean (SD)

36.5 (0.409)36.5 (0.446)36.4 (0.392)36.7 (0.4)36.8 (0.4)36.7 (0.4)Body temperature, mean (SD)

Care site, n (%)

256 (0.2)83 (0.2)173 (0.1)280 (0.2)67 (0.2)213 (0.2)Allergy

46 (0)8 (0)38 (0)183 (0.1)27 (0.1)156 (0.2)Anesthesiology

7145 (4.2)565 (1.2)6580 (5.4)5841 (4.5)433 (1.3)5408 (5.7)Cardiology

367 (0.2)50 (0.1)317 (0.3)48 (0)16 (0)32 (0)Dermatology

1149 (0.7)337 (0.7)812 (0.7)749 (0.6)185 (0.5)564 (0.6)Endocrinology

30,615 (18.1)3163 (6.7)27,452 (22.5)9744 (7.5)1418 (4.1)8326 (8.7)Gastroenterology

23,151 (13.7)12,273 (26.1)10,878 (8.9)23,574 (18.1)8275 (24)15,299 (16)General surgery

27,180 (16.1)4761 (10.1)22,419 (18.4)15,798 (12.2)3828 (11.1)11,961 (12.5)Hematology/oncology

310 (0.2)178 (0.4)132 (0.1)357 (0.3)222 (0.6)135 (0.1)Infectious diseases

509 (0.3)225 (0.5)284 (0.2)1,311 (1)380 (1.1)931 (1)Internal medicine

2744 (1.6)1138 (2.4)1606 (1.3)1945 (1.5)468 (1.4)1477 (1.5)Nephrology

3074 (1.8)972 (2.1)2102 (1.7)3768 (2.9)621 (1.8)3147 (3.3)Neurology

2310 (1.4)1478 (3.1)832 (0.7)1295 (1)1037 (3)258 (0.3)Psychiatry

6691 (4)2300 (4.9)4391 (3.6)11,301 (8.7)5200 (15.1)6101 (6.4)Neurosurgery

14,080 (8.3)3516 (7.5)10,564 (8.6)16,621 (12.8)1484 (4.3)15,137 (15.9)Obstetrics/gynecology

5176 (3.1)169 (0.4)5007 (4.1)923 (0.7)32 (0.1)891 (0.9)Ophthalmology

9308 (5.5)5382 (11.4)3926 (3.2)11,393 (8.8)3158 (9.2)8235 (8.6)Orthopedic surgery

6247 (3.7)777 (1.7)5470 (4.5)6204 (4.8)492 (1.4)5712 (6)Otolaryngology

1799 (1.1)715 (1.5)1084 (0.9)181 (0.1)28 (0.1)153 (0.2)Pediatrics

294 (0.2)233 (0.5)61 (0.1)1170 (0.9)962 (2.8)208 (0.2)Physiatry

3374 (2)1572 (3.3)1802 (1.5)1805 (1.4)1056 (3.1)749 (0.8)Plastic surgery

3774 (2.2)1002 (2.1)2772 (2.3)3638 (2.8)540 (1.6)3098 (3.2)Pulmonary disease

1499 (0.9)458 (1)1041 (0.9)418 (0.3)172 (0.5)246 (0.3)Rheumatology

5817 (3.4)3233 (6.9)2584 (2.1)6006 (4.6)2576 (7.5)3430 (3.6)Thoracic surgery

9167 (5.4)1446 (3.1)7721 (6.3)4722 (3.6)1610 (4.7)3112 (3.3)Urology

Admission hour, n (%)

18,844 (11.1)6352 (13.5)12,492 (10.2)21,495 (16.5)6215 (18)15,280 (16)9-12

75,556 (44.7)22,512 (47.9)53,044 (43.4)77,323 (59.5)19,892 (57.8)57,431 (60.1)12-15

57,766 (34.1)14,631 (31.1)43,135 (35.3)26,554 (20.5)7253 (21.1)19,401 (20.3)15-18

16,999 (10)3533 (7.5)13,466 (11)4466 (3.4)1079 (3.1)3387 (3.5)18-21

Day of week of hospital admission, n (%)

33,665 (19.9)9399 (20)24,266 (19.9)26,807 (20.6)6759 (19.6)20,048 (21)Monday

29,108 (17.2)8966 (19.1)20,142 (16.5)23,548 (18.1)6758 (19.6)16,790 (17.6)Tuesday

29,474 (17.4)8833 (18.8)20,641 (16.9)23,460 (18.1)6546 (19)16,914 (17.7)Wednesday
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External validation set (SNUHb)Internal validation set (SNUBHa)Characteristics

Overall

(n=169,165)

LoS >=7

(n=47,028)

LoS <7

(n=122,137)

Overall

(n=129,938)

LoS>=7

(n=34,439)
LoSc< 7

(n=95,499)

 

25,760 (15.2)5733 (12.2)20,027 (16.4)20,629 (15.9)4733 (13.7)15,896 (16.6)Thursday

11,483 (6.8)3109 (6.6)8374 (6.9)9854 (7.6)2867 (8.3)6987 (7.3)Friday

5706 (3.4)1905 (4.1)3801 (3.1)4329 (3.3)1213 (3.5)3116 (3.3)Saturday

33,969 (20.1)9083 (19.3)24,886 (20.4)21,311 (16.4)5563 (16.2)15,748 (16.5)Sunday

52,292 (30.9)22,164 (47.1)30,128 (24.7)69,626 (53.6)23,850 (69.3)45,776 (47.6)Surgical operation, yes

Severity scores, mean (SD)

1.3 (1.1)1.4 (1.2)1.3 (1.1)1.3 (1.1)1.4 (1.2)1.3 (1.1)CHADS2
dVASce

0.6 (1)0.6 (1)0.6 (1)0.6 (1)0.7 (1.1)0.6 (1)CHADS2

0.7 (1.3)0.7 (1.4)0.7 (1.3)0.6 (1.3)0.6 (1.4)0.5 (1.2)DCSIf

2.6 (2.5)2.5 (2.4)2.6 (2.6)2.11 (2.4)2.2 (2.2)2.1 (2.5)CCIg

aSNUBH: Seoul National University Bundang Hospital.
bSNUH: Seoul National University Hospital.
cLoS: length of stay.
dCHADS2: clinical prediction tool used to test congestive heart failure, hypertension, age, diabetes, and stroke.
eVASc: The expanded version of CHADS2 that also tests for transient ischemic attack, vascular disease, age, and sex category.
fDSCI: Diabetes Comorbidity Severity Index.
gCCI: Romano’s adaptation of the Charlson Index.

Performance in Internal Validation
In the internal validation of the prediction model, the XGB
model achieved the top performance in planned admissions for
binary classification, with an AUROC of 0.891 (95% CI
0.887-0.894) and an AUPRC of 0.819 (95% CI 0.813-0.826)
(Table 2). The LGB model showed the highest performance in
the multiclassification, with an AUROC of 0.901 (95% CI

0.898-0.904), 0.836 (95% CI 0.831-0.841), 0.750 (95% CI
0.742-0.758), 0.766 (95% CI 0.757-0.774), and 0.890 (95% CI
0.887-0.893) for LoS 3, 4, 5, 6, and ≥ 7 days, respectively, and
a macro AUPRC of 0.556 (Table 3). Overall, the predictive
performance for LoS consistently showed good discriminatory
ability, achieving an AUROC >0.800 in both the binary and
multiclassification scenarios (Figure 2A, Table 2).
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Table 2. Model performance for binary outcomes in the internal and external validation sets. All numbers are presented with 95% CI.

NPVdPPVcSpecificitySensitivityAUPRCbAUROCaData set and
models

Internal validation (n=38,847)

0.873 (0.869-
0.877)

0.642 (0.634-0.650)0.786 (0.780-0.790)0.771 (0.764-0.778)0.744 (0.736-
0.752)

0.853 (0.850-
0.857)

LRe

0.824 (0.819-
0.828)

0.794 (0.786-0.801)0.922 (0.918-0.925)0.604 (0.596-0.613)0.802 (0.795-
0.808)

0.881 (0.878-
0.885)

RFf

0.852 (0.848-
0.856)

0.768 (0.760-0.775)0.896 (0.893-0.900)0.686 (0.679-0.695)0.819 (0.813-
0.826)

0.891 (0.887-
0.894)

XGBg

0.849 (0.845-
0.853)

0.763 (0.755-0.770)0.894 (0.891-0.898)0.681 (0.673-0.690)0.811 (0.804-
0.818)

0.888 (0.884-
0.891)

GBh

0.843 (0.839-
0.847)

0.778 (0.770-0.786)0.906 (0.902-0.910)0.661 (0.653-0.669)0.816 (0.811-
0.824)

0.889 (0.886-
0.893)

LGBi

0.833 (0.829-
0.838)

0.778 (0.770-0.786)0.910 (0.906-0.913)0.635 (0.627-0.643)0.804 (0.798-
0.811)

0.882 (0.878-
0.885)

MLPj

External validation (n = 169,165)

0.878 (0.876-
0.880)

0.445 (0.441-0.449)0.775 (0.773-0.777)0.630 (0.622-0.632)0.508 (0.503-
0.514)

0.760 (0.757-
0.763)

LR

0.845 (0.843-
0.846)

0.605 (0.601-0.611)0.923 (0.921-0.924)0.412 (0.408-0.417)0.545 (0.540-
0.551)

0.804 (0.802-
0.807)

RF

0.853 (0.851-
0.855)

0.530 (0.524-0.535)0.879 (0.877-0.881)0.473 (0.468-0.479)0.523 (0.518-
0.529)

0.774 (0.772-
0.777)

XGB

0.852 (0.850-
0.854)

0.503 (0.498-0.508)0.863 (0.861-0.865)0.481 (0.476-0.486)0.499 (0.493-
0.504)

0.765 (0.763-
0.768)

GB

0.859 (0.857-
0.860)

0.560 (0.555-0.565)0.888 (0.887-0.890)0.492 (0.487-0.497)0.542 (0.537-
0.548)

0.798 (0.796-
0.801)

LGB

0.850 (0.848-
0.852)

0.563 (0.558-0.569)0.890 (0.898-0.901)0.449 (0.444-0.454)0.532 (0.527-
0.538)

0.789 (0.786-
0.791)

MLP

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cPPV: positive predictive value.
dNPV: negative predictive value.
eLR: logistic regression.
fRF: random forest
gXGB: Extreme Gradient Boosting.
hGB: Gradient Boosting.
iLGB: Light Gradient Boosting.
kMLP: Multilayer Perceptron.
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Table 3. Model performance for multiclass classification in the internal and external validation sets. All numbers are presented with a 95% CI.

External validation set (n=169,165) Internal validation set (n=38,847)Model and class

Macroaveraged
AUPRC

AUPRCAUROCMacroaveraged
AUPRC

AUPRCbAUROCa

0.3420.486LRc

0.546 (0.542-0.550)0.718 (0.715-0.720)0.693 (0.683-0.702)0.861 (0.857-0.866)day 3
(class 0)

0.340 (0.335-0.345)0.697 (0.694-0.700)0.543 (0.531-0.555)0.805 (0.799-0.811)day 4
(class 1)

0.139 (0.136-0.143)0.571 (0.567-0.576)0.216 (0.206-0.229)0.714 (0.705-0.722)day 5
(class 2)

0.115 (0.112-0.118)0.596 (0.591-0.601)0.226 (0.213-0.240)0.710 (0.700-0.719)day 6
(class 3)

0.570 (0.566-0.575)0.751 (0.748-0.754)0.754 (0.746-0.762)0.853 (0.849-0.857)day 7 ≥
(class 4)

0.3790.534RFd

0.620 (0.616-0.625)0.754 (0.751-0.756)0.751 (0.742-0.759)0.883 (0.880-0.887)day 3
(class 0)

0.366 (0.361-0.371)0.720 (0.717-0.723)0.588 (0.576-0.600)0.822 (0.817-0.828)day 4
(class 1)

0.158 (0.154-0.162)0.589 (0.585-0.594)0.250 (0.237-0.264)0.737 (0.729-0.745)day 5
(class 2)

0.138 (0.134-0.142)0.627 (0.622-0.632)0.296 (0.280-0.312)0.751 (0.742-0.760)day 6
(class 3)

0.613 (0.608-0.617)0.797 (0.794-0.799)0.784 (0.778-0.791)0.872 (0.869-0.875)day 7 ≥
(class 4)

0.3630.546XGBe

0.609 (0.605-0.613)0.753 (0.751-0.755)0.770 (0.761-0.778)0.899 (0.896-0.903)day 3
(class 0)

0.343 (0.338-0.348)0.703 (0.700-0.706)0.595 (0.583-0.606)0.829 (0.825-0.835)day 4
(class 1)

0.135 (0.131-0.138)0.570 (0.565-0.574)0.251 (0.239-0.265)0.735 (0.727-0.744)day 5
(class 2)

0.123 (0.119-0.126)0.600 (0.594-0.604)0.298 (0.282-0.315)0.751 (0.742-0.760)day 6
(class 3)

0.607 (0.602-0.611)0.785 (0.782-0.787)0.814 (0.808-0.821)0.887 (0.884-0.891)day 7 ≥
(class 4)

0.3260.538GBf

0.562 (0.558-0.567)0.718 (0.716-0.721)0.766 (0.757-0.774)0.900 (0.896-0.903)day 3
(class 0)

0.253 (0.249-0.257)0.621 (0.618-0.624)0.593 (0.580-0.605)0.829 (0.824-0.835)day 4
(class 1)

0.146 (0.143-0.150)0.600 (0.595-0.604)0.236 (0.225-0.248)0.735 (0.727-0.743)day 5
(class 2)

0.103 (0.101-0.106)0.564 (0.559-0.569)0.285(0.270-0.301)0.754 (0.745-0.762)day 6
(class 3)

0.565 (0.560-0.570)0.754 (0.751-0.756)0.812 (0.806-0.819)0.888 (0.885-0.891)day 7 ≥
(class 4)

0.3830.556LGBg

0.626 (0.622-0.630)0.766 (0.764-0.768)0.770 (0.762-0.779)0.901 (0.898-0.904)day 3
(class 0)
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External validation set (n=169,165) Internal validation set (n=38,847)Model and class

Macroaveraged
AUPRC

AUPRCAUROCMacroaveraged
AUPRC

AUPRCbAUROCa

0.361 (0.375-0.386)0.724(0.721-0.727)0.606 (0.594-0.618)0.836 (0.831-0.841)day 4
(class 1)

0.146 (0.143-0.149)0.595 (0.590-0.599)0.270 (0.256-0.284)0.750 (0.742-0.758)day 5
(class 2)

0.132 (0.128-0.135)0.616 (0.611-0.621)0.318 (0.302-0.335)0.766 (0.757-0.774)day 6
(class 3)

0.632 (0.628-0.637)0.808 (0.806-0.810)0.818 (0.812-0.824)0.890 (0.887-0.893)day 7 ≥
(class 4)

0.3460.523MLPh

0.582 (0.578-0.586)0.735 (0.732-0.737)0.736 (0.727-0.745)0.887 (0.883-0.890)day 3
(class 0)

0.333(0.328-0.338)0.685 (0.682-0.689)0.574 (0.561-0.586)0.821 (0.816-0.827)day 4
(class 1)

0.137 (0.134-0.140)0.590 (0.586-0.594)0.239 (0.228-0.253)0.730 (0.722-0.739)day 5
(class 2)

0.120 (0.117-0.123)0.603 (0.598-0.608)0.276 (0.260-0.291)0.736 (0.727-0.745)day 6
(class 3)

 0.559 (0.554-0.564)0.747(0.745-0.750) 0.791 (0.784-0.798)0.874 (0.871-0.878) day 7 ≥
(class 4)

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cLR: logistic regression.
dRF: random forest
eXGB: Extreme Gradient Boosting.
fGB: Gradient Boosting.
gLGB: Light Gradient Boosting.
hMLP: Multilayer Perceptron.

Figure 2. Receiver operating characteristics curves (AUROCs) for length of stay binary classification in the internal validation set. A. Internal validation
was conducted at Seoul National University Bundang Hospital (SNUBH) B. External validation was conducted at Seoul National University Hospital
(SNUH). CDM: Common Data Model; LoS: length of stay. LR: logistic regression; RF: random forest; XGB: Extreme Gradient Boosting; GB: Gradient
Boosting; LGB: Light Gradient Boosting; MLP: Multilayer Perceptron. ROC: receiver operating characteristic.
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SHAP Calibration Plots and Brier Scores in Internal
Validation
The most important features contributing to the predictive
performance of the models were the operation performed, the
admitted patient’s department, age, and severity scores such as
the Charlson Index-Romano adaptation and the frequency of
outpatient visits in the past 6 months (Figure 3A). In the
multiclassification models, the SHAP analysis revealed distinct
predictors, including surgical operations, blood pressure, and
day of the week of hospital admission, which significantly

influenced different hospital stay durations (Figure S2 in
Multimedia Appendix 1). Specifically, surgical operations were
significant predictors for LoS of 3 days and 7 days or longer,
while admissions in obstetrics/gynecology and neurosurgery
were relevant for LoS of 4 and 5 days. Additionally, hospital
admissions on Wednesdays and Fridays were associated with
a 6-day LoS (Figure S2 in Multimedia Appendix 1). The
calibration plot and Brier scores indicated strong calibration
performance, achieving approximately 0.14 scores in both the
binary and multiclassification models (Figure 4A, Table S3 in
Multimedia Appendix 1).

Figure 3. Shapley Additive Explanations (SHAP) feature importance analysis for the model predicting length of stay of 7 days or longer. A. Internal
validation was conducted at Seoul National University Bundang Hospital (SNUBH) B. External validation was conducted at Seoul National University
Hospital (SNUH).

Performance in the External Validation
In the external validation, the RF model performed the best in
predicting an LoS of 7 days or longer with an AUROC of 0.804
(95% CI 0.802-0.807) and an AUPRC of 0.545 (95% CI
0.540-0.551) (Table 3). The AUROC decreased by 8% compared
to the AUROC obtained from SNUBH (Figure 2B). The LGB
model showed superior overall performance for
multiclassification, with an average AUROC of 0.711 and a
macro AUPRC of 0.383 across different LoS durations (Table
3). The AUROC showed a 0.93 reduction compared to the
internal validation multiclassification model.

SHAP, Calibration Plots, and Brier Scores in the
External Validation
The SHAP analysis identified significant predictors for hospital
stays of 7 days or longer, including surgical procedures, elevated

body temperatures, frequency of outpatient visits in the past
month, hospital admissions on Fridays, and older age (Figure
3B). In the multiclassification analysis, akin to the prediction
model’s internal validation, cases with surgery performed
showed an increased LoS in the hospital. Admission to the
cardiology department generally led to discharge within 3 days.
Specifically, admissions to the obstetrics/gynecology and
hematology/oncology departments were associated with an
average LoS of 4 and 5 days, respectively. Hospital admissions
on Sundays and a higher number of outpatient visits in the past
month resulted in hospital stays lasting more than 6 days (Figure
S3 in Multimedia Appendix 1). The binary and
multiclassification models accurately calibrated predicted
probabilities and actual outcomes on the external validation
data set (Figure 4B, Table S4 in Multimedia Appendix 1).
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Figure 4. Calibration of length of stay prediction models for 7 days or longer in internal and external validation sets. A. Internal validation was conducted
at Seoul National University Bundang Hospital (SNUBH) B. External validation was conducted at Seoul National University Hospital (SNUH). LR:
logistic regression; RF: random forest; XGB: Extreme Gradient Boosting; GB: Gradient Boosting; LGB: Light Gradient Boosting; MLP: Multilayer
Perceptron.

Discussion

Principal Findings
In this paper, we proposed two ML models using the
standardized vocabularies of the OMOP CDM: (1) a binary
classification model predicting LoS of 7 days or more and (2)
a multiclassification model categorizing LoS as 3, 4, 5, 6, and
7 days or longer. This study demonstrates that combining
clinical and nonclinical characteristics from a standardized data
source from different institutions yields moderate predictive
accuracy and efficiently leverages the benefits of multicenter
studies. To our knowledge, our model is the first to offer both
binary and multiclass classification predictions for LoS using
the OMOP CDM.

The ML algorithms using GB performed the highest binary
classification performance, while the LGB model performed
the best in the multiclass classification. The ML predictions
identified surgical operation, diastolic blood pressure, and the
day of week of hospital admissions as critical factors for
predicting both an LoS of 7 days or more and for multiclass
classification of LoS. The external validation revealed a model
performance 8% lower than the internally calculated AUROC
value. This decline in performance could be attributed to
variations in patient populations and medical specialties across
hospitals and disparities in converting EHR data into the
standardized OMOP CDM format [29-31].

In this study, we conducted an extensive analysis across 46
departments, developing a model that predicted LoS from 3 to
7 days or longer. A multidepartment approach unraveled the
complex dynamics of patient stays and illuminated the varied
factors influencing each day’s length of stay. Insights from this
broad patient spectrum could equip health care professionals
with essential tools for improving patient care strategies in
various health care settings. These models may aid in optimizing
health care resources and contribute to identifying patients most
likely to be discharged on a particular day using classification
algorithms.

Additionally, our LOS prediction model offers potential
economic benefits by enabling better planning and management
of bed occupancy, reducing costs associated with the inefficient
use of hospital beds. By anticipating extended stays, hospitals
can arrange necessary interventions in advance, potentially
preventing prolonged hospitalizations and lowering treatment
costs. Streamlining discharge processes based on accurate
predictions reduces delays and frees up beds more quickly,
leading to cost savings in terms of staffing and resource
management. Although further studies are needed to empirically
validate these benefits, our findings suggest that implementing
such predictive models could support clinical and financial
improvements in hospital management.

Earlier studies often used data sources such as administrative
data, the MIMIC, and EHRs for model development, resulting
in limited applicability across different institutions due to
heterogeneous data standards (Table S1 in Multimedia Appendix
1). The variations in these data sources hindered scalability and
the capacity to efficiently manage a wide range of routinely
collected observational health data. Previously utilized data
constrained the transferability of the model outputs to different
patient populations across multiple medical specialties and
institutions [5,17,32]. We designed prediction models that
implemented the OMOP CDM standardized vocabularies and
demonstrated their application across independent institutions,
ensuring interoperability and applicability. Although one study
predicted LoS from multicenter data using federated learning,
it relied solely on administrative data and trained with 3
regression models, suggesting multicollinearity issues [33].
Unlike the aforementioned model, ours included hospital stay
characteristics and patients’ medications incorporating more
records than the federated learning research. As a result, our
model, including hospital admission information and
comprehensive patient history, provides more reliable insights,
covering a broader range of records.

Systematic reviews assessing efficacious health system
interventions to avoid prolonged hospital LoS in high-risk
populations indicate that reducing LoS requires a multifaceted
approach, including clinical care and the logistics of care
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coordination [4]. However, most previous studies primarily
used demographics, lab results, and vital signs as input features
[1]. Some authors integrated data from different modalities,
combining free-text notes and demographic information with
time-varying features, while only a few employed medications
as predictive variables [1]. In this study, we incorporated clinical
and nonclinical features, including medical specialties, severity
scores, day and time of admission, and hospital admissions
during the weekend. Time-dependent covariates classified as
occurring in the past 1, 6, and 12 months include frequency of
different types of visits, active ingredients in a drug group, and
medical conditions to capture health care utilization patterns.
This comprehensive data integration provides a longitudinal
view of the patient, enabling more personalized care planning
and effective discharge strategies tailored to each patient’s
recovery.

When comparing prediction models for a 7-day LoS using the
OMOP CDM within the 2 tertiary hospitals, we found that
surgical operation, admitting unit, patient age, severity scores,
and admission day significantly influenced hospital stay
duration. For example, our internal validation revealed that
older patients admitted to the neurosurgery department and
undergoing surgery often have longer LoS, aligning with the
notion that older adult patients requiring neurosurgery tend to
have poorer prognosis and generally require extended
hospitalization [34]. In contrast, admissions to
obstetrics/gynecology appeared to have a shorter LoS, likely
because they are mostly elective surgeries, such as cesarean
deliveries [35,36]. A lower frequency of outpatient visits in the
past 6 months was associated with a longer LoS, indicating that
patients who visit the hospital less frequently may not be
managing their health effectively. Friday admissions, typically
through the emergency room, were more likely to involve severe
conditions, while the unavailability of elective surgeries during
the weekend could result in a longer LoS [37]. Weekend
admissions, particularly on Sundays and Mondays, were
associated with shorter LoS, likely due to the scheduling of
preplanned treatments and elective surgeries on weekdays [38].
Additionally, certain medical specialties were linked to extended
LoS. Psychiatric admission often resulted in longer stays,
attributed to the need for comprehensive assessments and
stabilization in mental health care [39]. Similarly, admissions

to hematology/oncology departments frequently reported
prolonged stays for monitoring and managing side effects and
complications arising from hematologic cancer treatments [40].
Higher body temperatures indicated more severe conditions,
potentially leading to longer durations of illness [41].

Limitations
This study has several limitations. The models were only
externally validated in a single hospital, which may limit their
applicability to other health care settings with different patient
populations and characteristics. However, health care systems
with OMOP CDM can readily implement the methods proposed
in this study using standardized vocabularies and analytic codes
[17,23,42]. This work aids in developing a model that predicts
the remaining LoS based on hospitalization progression during
the admission period within a heterogeneous population through
the Observational Health Data Sciences and Informatics
(OHDSI) network study. Additionally, smaller patient numbers
in the 5- and 6-day LoS categories in both the internal and
external validation sets (Table S5 in Multimedia Appendix 1)
may have affected the model performance for these subgroups.
The models may not fully capture real-world performance due
to the limited consideration of local context and resources such
as team dynamics, hospital processes, staffing resources, social
drivers of health, and administrative support—limitations
stemming from nonstandard fields in the OMOP CDM. Using
the standardized information we could capture from the CDM,
we developed a reproducible model based on standardized
variables that are less influenced by individual hospitals, such
as clinical factors and hospital stay characteristics.

Conclusion
In this study, we utilized the OMOP CDM to predict the LoS
in planned admissions, considering both binary (LoS ≥ 7 days)
and multiclassification scenarios (LoS of 3, 4, 5, 6, and 7 days
or more). The performance of the prediction models was
consistent and confirmed through external validation. The
proposed models showed ease of application in various clinical
settings and reproducibility across institutions within the OHDSI
community. The findings of this study may assist hospitals in
effectively managing hospital resources, such as staffing,
equipment, and supplies at different institutions.
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