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Abstract

Background: Conventional neuropsychological screening tools for mild cognitive impairment (MCI) face challenges in terms
of accuracy and practicality. Digital health solutions, such as unobtrusively capturing smartphone interaction data, offer a promising
alternative. However, the potential of digital biomarkers as a surrogate for MCI screening remains unclear, with few comparisons
between smartphone interactions and existing screening tools.

Objective: This study aimed to investigate the effectiveness of smartphone-derived keystroke dynamics, captured via the
Neurokeys keyboard app, in distinguishing patients with MCI from healthy controls (HCs). This study also compared the
discriminant performance of these digital biomarkers against the Korean version of the Montreal Cognitive Assessment (MoCA-K),
which is widely used for MCI detection in clinical settings.

Methods: A total of 64 HCs and 47 patients with MCI were recruited. Over a 1-month period, participants generated 3530
typing sessions, with 2740 (77.6%) analyzed for this study. Keystroke metrics, including hold time and flight time, were extracted.
Receiver operating characteristics analysis was used to assess the sensitivity and specificity of keystroke dynamics in discriminating
between HCs and patients with MCI. This study also explored the correlation between keystroke dynamics and MoCA-K scores.

Results: Patients with MCI had significantly higher keystroke latency than HCs (P<.001). In particular, latency between key
presses resulted in the highest sensitivity (97.9%) and specificity (96.9%). In addition, keystroke dynamics were significantly
correlated with the MoCA-K (hold time: r=–.468; P<.001; flight time: r=–.497; P<.001), further supporting the validity of these
digital biomarkers.

Conclusions: These findings highlight the potential of smartphone-derived keystroke dynamics as an effective and ecologically
valid tool for screening MCI. With higher sensitivity and specificity than the MoCA-K, particularly in measuring flight time,
keystroke dynamics can serve as a noninvasive, scalable, and continuous method for early cognitive impairment detection. This
novel approach could revolutionize MCI screening, offering a practical alternative to traditional tools in everyday settings.

Trial Registration: Thai Clinical Trials Registry TCTR20220415002; https://www.thaiclinicaltrials.org/show/TCTR20220415002

(J Med Internet Res 2024;26:e59247) doi: 10.2196/59247
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Introduction

Mild cognitive impairment (MCI), a preclinical stage of
Alzheimer disease (AD), causes cognitive declines, especially
in memory and executive functions beyond what is expected
from normal aging [1]. The importance of early intervention
for patients with MCI has highlighted the need for continuous
testing of patients with MCI to ensure they have not transitioned
from MCI to AD [2]. Current test methods mainly depend on
neuropsychological screening tools implemented in a clinical
setting [3-5]. Unfortunately, previous studies have reported the
low sensitivity of these tools, particularly the Montreal Cognitive
Assessment (MoCA), which limits their effectiveness in
discriminating early MCI from healthy aging [4-6]. In addition,
various neuropsychological screening tools, such as the Rapid
Cognitive Screen, Six-item Screener, Mini-Cog, and Clock
Drawing Test, were investigated to determine their usefulness
in screening for MCI. However, similar to the MoCA, these
tools were found to have low sensitivity and specificity in
detecting MCI, leading to limitations in their application.
Although tools such as the Short Test of Mental Status and
Memory Alteration Test have been reported to show high
sensitivity and specificity, only one study has examined these
tools [7], which leaves their effectiveness uncertain. Therefore,
it has been concluded that existing neuropsychological screening
tools that evaluate cognitive function alone are ineffective for
screening MCI [7-9].

Apart from cognitive declines, there are several indications that
people with MCI are associated, to a certain degree, with motor
dysfunction in upper-extremity functions [10]. A previous study
indicated that individuals with MCI have poor performance in
dual-task gait tests, which involve a sensor-based,
upper-extremity motor task during cognitive testing. This could
be a marker to distinguish MCI from normal aging, with quite
high sensitivity (over 80%) and specificity (over 70%) [11].
Several studies suggest that MCI markers, especially digital
biomarkers using data derived from mobile and wearable
devices, could be a promising new research field, along with
the sensitivity and usability of sensors [11,12]. From this
perspective, variations in typing on and touching a smartphone
screen have been investigated for early MCI screening, showing
considerable differences compared to healthy aging [13,14].

Smartphone-induced behaviors are significantly correlated with
cognitive performance, such as the temporal characteristics of
typing speed, removal rate, and interval time between pushing
and releasing buttons. These keystroke dynamics have been
identified as a potential marker for cognitive decline, particularly
in attention and working memory [12,15,16]. Keystroke
dynamics could be collected seamlessly as users interact with
their smartphones during their daily routines, capturing their
natural behavior and thereby offering high ecological validity.
Therefore, keystroke dynamics have been used for the early
screening of AD and Parkinson disease [14,17]. In a previous
study, features of keystroke dynamics extracted from text-typing
activities were investigated to monitor signs of early cognitive
decline in MCI, showing their clinical efficacy [12,15,17].
Especially, the discriminant power of these features could be
enhanced when combined with conventional features of

cognitive decline such as memory and linguistic abilities [17].
These findings suggest the potential for multimodal features,
indicating that this approach is needed to discriminate MCI.

However, most previous studies on sensor-based markers to
discriminate MCI examined their efficacy by combining
sensor-derived data that could be difficult to use and assess,
such as those from accelerometers, voice recorders, and motion
capture sensors. This approach requires special devices that are
not typically used and must be installed on the body or in the
home, creating an artificial environment that deviates from the
subjects’ natural state and reduces ecological validity, resulting
in findings that are not applicable to everyday living [7,18,19].
Also, even if some prior studies revealed the potential of
smartphone-derived markers for MCI, it is difficult to ensure
their clinical applicability as no direct comparisons have been
made with widely used screening tools [13-15,17].

Therefore, this study aimed to examine the efficacy of digital
biomarkers obtained through routine interactions with a
smartphone keyboard to distinguish MCI from healthy aging
in a nonclinical setting, taking into consideration the pragmatic
condition of everyday living. In addition, this study aimed to
investigate whether classification performance could be
improved through the combination of keystroke dynamics and
conventional screening tools.

Methods

Participants
The participants were recruited from senior centers and daycare
centers in Seoul and Asan, South Korea. The study included 2
groups: 64 healthy controls (HCs) and 47 patients with MCI.
In accordance with a previous study [1], the inclusion criteria
for MCI were as follows: (1) a subjective memory complaint;
(2) memory impairment relative to age- and education-matched
HCs, confirmed by performance on a neuropsychological battery
(below 1.5 SD); (3) intact global cognitive function, confirmed
by a score on the Korean version of the Mini-Mental Status
Examination (MMSE-K); (4) independent activities of daily
living; and (5) experience using a smartphone for at least 3
months. The exclusion criteria were as follows: (1) diagnosed
with dementia by a clinician, (2) neurological or psychiatric
disorders such as stroke and depression, and (3) visual or
auditory impairments. These criteria are based on the original
Petersen criteria, which restricts MCI to memory problems
(amnestic MCI) only.

Ethical Consideration
This study was approved by the Institutional Review Board of
Soonchunhyang University (202306-SB-070-04) and registered
at the Thai Clinical Trials Registry (TCTR20220415002). This
study adhered to all relevant guidelines and regulations
concerning the ethical conduct of human subject research. All
participants provided written informed consent prior to the
initiation of any study activities. The consent process ensured
that all participants were fully informed about the nature of the
study, its objectives, and their rights as participants, including
the voluntary nature of their participation. To protect
participants’ privacy and confidentiality, all study data were
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anonymized and deidentified before analysis. No identifying
information was collected or stored that could be traced back
to individual participants. The study followed strict data
protection protocols to ensure the confidentiality of the
information provided by the participants. All participants were
compensated with ₩30,000 (~US $21.74) for their study
participation. No images that could potentially identify
individual participants were included in the paper or
supplementary materials.

Procedure
All participants performed the Korean version of the MoCA
(MoCA-K) and the computerized Corsi block-tapping test (CBT)
before their keystroke data were collected. Both the MoCA-K
and the computerized CBT were used to assess baseline
cognitive performance. Subsequently, the relationship between
these assessments and keystroke dynamics was examined. The
MoCA-K was selected for its role as a screening tool for MCI
and its ability to assess global cognitive function, while the CBT
was chosen for its efficacy in assessing working memory
decline, which is common in patients with MCI.

Participants then installed the “Neurokeys” mobile app
(Neurocast), developed for Android and iOS, which is available
for free and allows users to measure health conditions through
typing on a smartphone. The Neurokeys keyboard replaced the
default keyboard, and participants were allowed to become
accustomed to it for a week. During regular typing activities,
keyboard interactions (keystroke dynamics) such as key presses
and releases were recorded and time-stamped in the background.
The keystroke dynamics were stored in a JSON format and

indexed in a database, accessible only to the app. The app
periodically delivered information on uniquely coded keystroke
dynamics to a remote cloud server (Microsoft Azure), when the
participant’s device was connected to Wi-Fi and charging.

Data collection lasted a month, and all participants were
instructed not to have anyone other than themselves type on
their phones. Although it was impossible to confirm whether
participants typed all data definitively, the author reconfirmed
that only the participants themselves used their phones for 1
month before data analysis. This study did not impose a
minimum daily usage requirement on participants, as the aim
of this study was to capture keystroke dynamics that most
accurately reflect the natural status of their daily lives. Within
a month, 3530 typing sessions were collected, 2250 (63.7%)
from 64 HCs and 1280 (36.3%) from 35 patients with MCI. Of
the 3530 typing session, 2740 (77.6%) with more than 40 key
presses per session were finally used to ensure sufficient data
for meaningful comparison, in accordance with a previous study
[14]. The flow diagram of the overall procedure of this study
is presented in Figure 1.

Two variables of the keystroke dynamics stored in the JSON
files were analyzed in this study: hold time (HT) and flight time
(FT). These 2 variables were chosen because a previous study
showed that they are significant in discriminating MCI from
healthy aging among other keystroke dynamics [13]. HT refers
to the time interval between pressing and releasing a key, while
FT indicates the time interval between releasing a key and
pressing the next key (Figure 2). To preprocess data, HT >700
microseconds and FT >3 seconds were excluded according to
the guidelines in a previous study [14].

Figure 1. The flow diagram of the procedure of this study. CBT: Corsi block-tapping test; MCI: mild cognitive impairment; MoCA-K: Korean version
of Montreal Cognitive Assessment.
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Figure 2. Schematic representation of keystroke dynamics derived from time-stamped keyboard interactions.

Outcome Measures
The original MoCA was developed to discriminate MCI from
normal aging, and its domains consist of visuospatial/executive
function, attention, memory, language, abstraction, and
orientation [20]. Its score ranges from 0 to 30 points, where
higher scores indicate better global cognitive function. The
MoCA-K was adapted based on the original MoCA [21]
(Multimedia Appendix 1). The cutoff score of the MoCA-K for
MCI was 23, and 1 point could be added for participants with
fewer than 6 years of education. In a previous study with a cutoff
score of 23, its sensitivity and specificity were 94.2% and
40.5%, respectively [21].

The computerized CBT was used to assess attention and working
memory. Since patients with MCI commonly exhibit a decline
in memory and executive functions [1], a working memory test
that evaluates both memory and executive function components
was chosen [22]. In the task, 9 white squares were randomly
located on a tablet monitor. Some of the squares changed their
color from white to red in a sequential manner while participants
were asked to memorize the locations and sequences of the
changed squares. Afterward, participants were instructed to
point out the changed squares in the order in which their colors
had changed by touching the screen [23,24]. In this study, the
number of squares to be changed was 5, and 15 trials were
implemented. A previous study indicated that the average square
span of HCs is 5 [23].

The MMSE is a widely used tool for screening cognitive
impairment. The MMSE-K was the result of the MMSE being
translated into Korean and standardized [25] (Multimedia
Appendix 2). It comprises 12 items assessing 7 cognitive
domains: orientation, memory registration, attention and

calculation, recall, language, understanding and judgment, and
visual construction. Its score ranges from 0 to 30, with scores
below 24 indicating cognitive impairment [25].

All outcome measures were implemented by an occupational
therapist with 5 years of clinical experience.

Statistical Analysis
SPSS for Windows (version 22.0; IBM Corp) was used to
analyze the data. The demographic characteristics of the
participants were analyzed using descriptive statistics.
Independent 2-tailed t test and chi-square test were used to
compare both groups. A receiver operating characteristic (ROC)
curve analysis was used to confirm sensitivity and specificity,
and a cutoff score for patients with MCI was determined
according to the highest Youden Index (sensitivity + specificity
– 1), which could be a criterion for choosing an optimal cutoff
score. To conduct ROC curve analysis of the combination of
keystroke dynamics as a single variable, predictive probability
through logistic regression was used in accordance with a
previous study [26]. A Spearman correlation was performed to
examine the relationship between keystroke dynamics and global
cognitive function and working memory. Statistical significance
was set at P<.05.

Results

General and Clinical Characteristics in Both Groups
There were no statistically significant differences in
demographic characteristics between both groups (all P>.05)
except for the score of the MoCA-K (P<.001). This finding
indicated that HCs were age- and education-matched to patients
with MCI except for cognitive function (Table 1).
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Table 1. General and clinical characteristics of participants (N=111).

P valuet test or chi-square test (df)Patients with MCIb (n=47)HCsa (n=64)Characteristics

.43.795 (109)c74.45 (6.98)75.52 (7.00)Age (y), mean (SD)

.82.053 (1)dSex, n (%)

21 (45)30 (47)Male

26 (55)34 (53)Female

.87.163 (109)c6.34 (4.81)6.48 (4.41)Education period (y), mean (SD)

.111.600 (109)c11.87 (1.81)11.41 (1.25)Typing experience (y), mean (SD)

Grooved pegboard test (s), mean (SD)

.530.624 (109)c82.28 (6.02)82.98 (5.81)Preferred hand

.281.097 (109)c91.15 (4.90)92.25 (5.48)Nonpreferred hand

.221.229 (109)c26.55 (1.15)26.86 (1.39)MMSE-Ke (point), mean (SD)

<.0017.316 (109)c22.77 (2.26)25.83 (2.11)MoCA-Kf (point), mean (SD)

<.0016.817 (109)c.687 (0.07).773 (0.06)CBTg (accuracy), mean (SD)

<.00115.689 (109)c184.85 (25.24)108.77 (25.25)HTh (ms), mean (SD)

<.00120.151 (109)c1351.51 (242.75)622.925 (135.14)FTi (ms), mean (SD)

aHC: health control.
bMCI: mild cognitive impairment.
c2-tailed t test.
dChi-square test.
eMMSE-K: Korean version of the Mini-Mental State Examination.
fMoCA-K: Korean version of the Montreal Cognitive Assessment.
gCBT: Corsi block-tapping test.
hHT: hold time.
iFT: flight time.

Sensitivity, Specificity, and Discriminant Power
For discriminating patients with MCI from the matched HC,
both HT and FT showed a higher Youden Index than the
MoCA-K (HT: .847; FT: .947; and MoCA-K: .469), suggesting
that keystroke dynamics can better discriminate MCI compared

to the conventional MCI screening tool (Table 2). Specifically,
FT yielded a maximum sensitivity (97.9%) and specificity
(94.7%). Interestingly, when combined with the MoCA-K, HT
had a higher Youden Index, while FT did not (Table 2 and
Figure 3).

Table 2. Sensitivity and specificity of MCIa detection (N=111).

P valueAUCb (95% CI)CutoffYouden indexSpecificitySensitivityVariable

<.001.831 (.756-.903)22.50.469.532.938MoCA-Kc (point)

<.001.976 (.954-1.000)159.50.847.953.894HTd (ms)

<.001.997 (.990-.1000)884.00.947.969.979FTe (ms)

<.001.988 (.973-.1000).427.911.953.957MoCA-K + HT (probability)

<.001.997 (.990-.1000).255.947.969.979MoCA-K + FT (probability)

aMCI: mild cognitive impairment.
bAUC: area under the curve.
cMoCA-K: Korean version of the Montreal Cognitive Assessment.
dHT: hold time.
eFT: flight time.

J Med Internet Res 2024 | vol. 26 | e59247 | p. 5https://www.jmir.org/2024/1/e59247
(page number not for citation purposes)

ParkJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. ROC curves of 5 predictors: (A) MoCA-K, (B) HT, (C) FT, (D), MoCA-K + HT, and (E) MoCA-K + FT. Greater AUC values indicate higher
power in discriminating patients with MCI from healthy controls. AUC: area under the curve; FT: flight time; HC: healthy control; HT: hold time; MCI:
mild cognitive impairment; MoCA-K: Korean version of Montreal Cognitive Assessment; ROC: receiver operating characteristic.

Correlation in Keystroke Dynamics and Cognitive
Function
Keystroke dynamics were found to be significantly correlated
with the MoCA-K (HT: r=–.468; P<.001; FT: r=–.491; P<.001)

and the CBT (HT: r=–.487; P<.001; FT: r=–.492; P<.001; Table
3). These findings suggested that keystroke dynamics are
associated with global cognitive function and working memory.
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Table 3. Correlation of cognitive function with keystroke dynamics.

FTdHTcCBTbMoCA-Ka

MoCA-K

–.491–.468.3021r

<.001<.001.001—eP value

CBT

–.492–.4871.302r

<.001<.001—.001P value

HT

.7331–.487–.468r

<.001—<.001<.001P value

FT

1.733–.492–.491r

—<.001<.001<.001P value

aMoCA-K: Korean version of the Montreal Cognitive Assessment.
bCBT: Corsi block-tapping test.
cHT: hold time.
dFT: flight time.
eNot applicable.

Discussion

Principal Findings
The aim of this study was to evaluate keystroke dynamics as
potential digital biomarkers for MCI. For this purpose, keystroke
dynamics were investigated in 64 HCs and 47 patients with
MCI, alongside the conventional screening tool. By measuring
keystroke dynamics through the natural spontaneous use of
smartphones, this study aimed to identify distinct patterns that
differentiate HCs and patients with MCI.

The findings of this study revealed that keystroke dynamics,
particularly HT and FT, were effective in distinguishing between
HCs and patients with MCI. Notably, the sensitivity and
specificity of keystroke dynamics surpassed those of the
conventional screening tool. Furthermore, FT showed the highest
Youden Index for all outcome measures, and its Youden Index
did not increase when combined with the MoCA-K, suggesting
that FT can effectively distinguish MCI on its own; this finding
highlights its potential as an alternative screening method for
MCI.

Comparison to Prior Work
MCI-induced dysfunction includes motor as well as cognitive
dysfunction; this finding is supported by several studies
reporting that the degree of motor decline might help in
dissociating MCI from healthy aging [27]. Specifically,
dominant hand bradykinesia could be an efficient marker to
distinguish MCI [14]. In addition, a previous study indicated
that Parkinson disease signs characterized by slow movement
are correlated with patients with MCI. The findings of this study,
showing longer HT and FT in patients with MCI, are consistent
with these studies, emphasizing the link between motor function

decline and MCI [28]. Notably, motor impairment in patients
with MCI considerably affects fine motor skills more than gross
motor skills, which leads to a decline in dexterity skills in the
upper limbs, including typing [29,30].

Declines in motor function could be attributed to working
memory deficits [31,32]. Working memory is required to
maintain motor chunk length in high-level motor sequence
performance. However, patients with MCI, even patients with
amnestic MCI, are typically characterized by deficits in working
memory due to reduced brain volume in the prefrontal cortex
[33]. This aligns with this study’s findings, showing lower
performance in the CBT among patients with MCI compared
to HCs. Interestingly, no statistically considerable difference
in hand dexterity between both groups was confirmed by the
grooved pegboard test in this study, suggesting that longer HT
and FT in individuals with MCI are more likely to be attributed
to a deficit in working memory rather than a purely
motor-related issue. Therefore, smartphone typing in individuals
with MCI could be negatively affected by working memory
deficits.

Prior studies reported the potential of keystroke dynamics
derived from touchscreen typing to capture MCI, which supports
the findings of this study [13-15]. However, these studies did
not compare keystroke dynamics to traditional screening tools,
which limits the practical clinical applicability of keystroke
dynamics [13-16]. In contrast, this study demonstrated that both
HT and FT showed a greater discriminant power for MCI than
the MoCA-K, suggesting that keystroke dynamics could be
more beneficial to discriminate MCI from normal aging than
conventional screening tools. The main factor underlying this
comparative finding is based on the metrics between the
keystroke dynamics and the MoCA-K. Delayed HT and FT
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could represent a working memory deficit, one of the hallmarks
of MCI [33]. On the other hand, the MoCA-K includes
orientation and language domains, which are not obviously
impaired in MCI as it represents global cognitive function [5,6].
This difference in the metric could explain the superiority of
the keystroke dynamics for MCI screening.

Notably, FT showed the highest Youden Index for all outcome
measures, and its Youden Index did not increase when combined
with the MoCA-K. This result suggests that FT is more useful
in distinguishing MCI than HT. Furthermore, delayed FT can
be used alone as a good marker of MCI, which indicates that a
keystroke dynamics monitor could be a cost-effective way of
screening MCI, considering that it does not require the additional
implementation of neuropsychological tests to increase screening
accuracy. Similarly, in a previous study, an ensemble model
combining keystroke dynamics and linguistic features did not
show superiority in discriminating MCI over keystroke dynamics
alone [14], supporting the findings of this study. On the other
hand, recent studies have expanded keystroke dynamics analysis
by incorporating time feature analysis with graphical
transformations analyzed using convolutional neural networks.
Additionally, techniques such as natural language processing
(eg, noun-to-verbs ratio) have been applied [15]. There have
also been efforts to combine keystroke dynamics with brain
imaging data analyzed through machine learning to enhance
discriminant accuracy [34]. This reflects a growing interest in
multimodal biomarkers of naturalistic behavioral data and
machine learning methods, integrating various data sources to
improve the robustness of biometric systems [35].

Strengths
One of the main strengths of this study is the naturalistic
collection of data in an unobtrusive way, reflecting the natural
status of the participants while showing a significant correlation
with the clinical screening tool. Digital health is an emerging
field that enhances disease detection and management through
the objective capturing of behavioral characteristics in natural
situations [17]. From this digital health perspective, keystroke
dynamics derived from the natural interaction with smartphones
could be key factors in digital health for individuals with MCI.
In addition, keystroke dynamics could be noninvasively and
longitudinally captured during routine typing in real daily life
without any additional effort, ensuring long-term adherence.
Long adherence plays a key role in a continuous process of
monitoring, diagnosis, and treatment, which is of high
importance toward personalized management [14]. Considering

that individualized tests that ignore the longitudinal aspect of
data collection could miss people with cognitive impairment in
real-world settings [36], digital biomarkers from daily
smartphone use could ensure that MCI is not missed, allowing
for early intervention, compared to conventional screening tools
that are periodically implemented in clinics.

Limitations and Future Directions
Despite the promising findings and strengths of this study, there
are some limitations to be considered. First, these findings could
not be generalized as MCI was limited to its amnestic type.
Nevertheless, considering that individuals with amnestic MCI
show less heterogeneity in cognitive function than those with
nonamnestic MCI and multidomain MCI [5], the findings of
this study have clinical implications. Second, although working
memory decline in participants with MCI was investigated via
the CBT, the prefrontal cortex, which underlies working
memory, was not objectively observed. Thus, it is difficult to
affirm whether changes in keystroke dynamics in people with
MCI are due to working memory deficits caused by
neurodegeneration in the prefrontal cortex. A neuroimaging
study will provide more objective evidence of changes in the
keystroke dynamics of patients with MCI, allowing for subgroup
analysis based on neurodegeneration severity. Third, although
this study confirmed through subjective reports that participants
did not allow others to use their smartphones, this was not
objectively verified. Finally, this study demanded technology
familiarization with a smartphone to some extent.

In the future, therefore, to develop an ecologically valid MCI
screening variable for a larger population, it is necessary to
investigate activities that are easier to use and more widely
available. Additionally, it is necessary to determine if different
MCI subtypes exhibit distinct features of keystroke dynamics
and incorporate these findings into brain imaging data to
establish multimodal biomarkers.

Conclusion
Keystroke dynamics reflecting both motor and cognitive deficits
were identified as a more clinically useful digital biomarker for
MCI, compared to a neuropsychological screening tool. The
findings of this study present a new perspective on detecting
MCI via keystroke dynamics from smartphone use. These
promising results suggest that measures from smartphone typing
could serve as an ecologically valid digital biomarker in a
nonclinical setting, acting as a surrogate for laboratory-based
neuropsychological screening tools.
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FT: flight time
HC: healthy control
HT: hold time
MCI: mild cognitive impairment
MMSE: Mini-Mental Status Examination
MMSE-K: Korean version of the Mini-Mental Status Examination
MoCA: Montreal Cognitive Assessment
MoCA-K: Korean version of the Montreal Cognitive Assessment
ROC: receiver operating characteristic
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