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Abstract

Background: Current blood glucose monitoring (BGM) methods are often invasive and require repetitive pricking of a finger
to obtain blood samples, predisposing individuals to pain, discomfort, and infection. Noninvasive blood glucose monitoring
(NIBGM) is ideal for minimizing discomfort, reducing the risk of infection, and increasing convenience.

Objective: This review aimed to map the use cases of artificial intelligence (AI) in NIBGM.

Methods: A systematic scoping review was conducted according to the Arksey O’Malley five-step framework. Eight electronic
databases (CINAHL, Embase, PubMed, Web of Science, Scopus, The Cochrane-Central Library, ACM Digital Library, and IEEE
Xplore) were searched from inception until February 8, 2023. Study selection was conducted by 2 independent reviewers,
descriptive analysis was conducted, and findings were presented narratively. Study characteristics (author, country, type of
publication, study design, population characteristics, mean age, types of noninvasive techniques used, and application, as well
as characteristics of the BGM systems) were extracted independently and cross-checked by 2 investigators. Methodological
quality appraisal was conducted using the Checklist for assessment of medical AI.

Results: A total of 33 papers were included, representing studies from Asia, the United States, Europe, the Middle East, and
Africa published between 2005 and 2023. Most studies used optical techniques (n=19, 58%) to estimate blood glucose levels
(n=27, 82%). Others used electrochemical sensors (n=4), imaging (n=2), mixed techniques (n=2), and tissue impedance (n=1).
Accuracy ranged from 35.56% to 94.23% and Clarke error grid (A+B) ranged from 86.91% to 100%. The most popular machine
learning algorithm used was random forest (n=10) and the most popular deep learning model was the artificial neural network
(n=6). The mean overall checklist for assessment of medical AI score on the included papers was 33.5 (SD 3.09), suggesting an
average of medium quality. The studies reviewed demonstrate that some AI techniques can accurately predict glucose levels from
noninvasive sources while enhancing comfort and ease of use for patients. However, the overall range of accuracy was wide due
to the heterogeneity of models and input data.

Conclusions: Efforts are needed to standardize and regulate the use of AI technologies in BGM, as well as develop consensus
guidelines and protocols to ensure the quality and safety of AI-assisted monitoring systems. The use of AI for NIBGM is a
promising area of research that has the potential to revolutionize diabetes management.
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Introduction

According to the International Diabetes Federation, around 537
million adults aged 20-79 years were diagnosed with diabetes
in 2021, a number that has been projected to increase to 783
million in 2045 [1]. Chronic diabetes mellitus (DM) leads to
many severe complications, including stroke, blindness, ulcers,
kidney failure, and vascular damage [2]. DM management places
a massive burden on health care expenditure, which has more
than quadrupled to at least US $966 billion over the last 15 years
[1]. The most common and possibly life-threatening
complication of DM is hypoglycemia [3], where common
symptoms include autonomic (anxiety, tremors, palpitations,
and diaphoresis) and neuroglycopenic (blurred vision, dizziness,
headache, and loss of consciousness) manifestations [4].
Therefore, individuals with DM are often advised to monitor
their blood glucose levels regularly to detect and manage
abnormalities [4]. However, current blood glucose monitoring
(BGM) methods are often invasive and require repetitive
pricking of a finger to obtain blood samples, predisposing
individuals to pain, discomfort, and infection [5]. The threshold
for the onset of hypoglycemia also differs among patients (ie,
typically higher in patients with uncontrolled diabetes),
indicating the need for personalized BGM strategies [4].

Besides invasive BGM techniques, minimally invasive and
noninvasive techniques have been developed. The most common
minimally invasive method adopts the glucose-oxidase principle
where a wire-based sensor is inserted in the subcutaneous layer
of the skin [6]. It involves a calibration process that measures
the current signal from the interstitial fluid rather than from the
blood [7]. However, frequent calibration is required to maintain
sensor accuracy by using traditional invasive fingerpick samples
as a reference [8]. Recent flash glucose monitoring uses factory
calibration which does not require calibration by the user but
this method requires frequent replacement of the needle
electrode every 1-2 weeks [9].

Noninvasive blood glucose monitoring (NIBGM) is ideal for
minimizing discomfort, reducing the risk of infection, and
increasing convenience. The latest advancements include
near-infrared spectroscopy (NIRS), photoplethysmography
(PPG), Raman spectroscopy (RS), photoacoustic signals, and
biosensors, like saliva and tears [10]. As noninvasive methods
do not directly detect blood glucose levels from blood samples,
artificial intelligence (AI) could be used to estimate and predict
blood glucose levels based on specific features selected. The
use of AI could also facilitate the personalized BGM to inform
treatment options, including insulin initiation and titration
[11,12]. Although AI algorithms have been widely used in
various health care settings including decision support systems
and warning systems for hypoglycemia in patients with T1DM,
little is known regarding the applicability of noninvasive
methods [13,14].

Several studies have explored noninvasive methods for
measuring and monitoring blood glucose levels in patients with
and those without DM [15-17]. However, these reviews did not
cover the use of machine learning (ML) systems often embedded
in these devices, nor did they perform a comprehensive analysis

of the accuracy of the devices. Similarly, some reviews have
focused on the use of AI approaches for diabetes diagnosis and
management using optical sensors [17] and breath analysis [18].
While these reviews present a comprehensive analysis of the
available and used ML models, they often only cover one
method of data collection, such as optical sensors. Two reviews
focused on heart rate variability analysis [19,20] while another
review focused on both electrocardiography (ECG) and PPG
signals [21]. Furthermore, another review focused on detailing
an overview of ML and AI techniques in the field of DM
detection and self-management but not on NIBGM [22].
Therefore, a comprehensive review of the existing literature is
needed to understand the current status of the use of AI in
NIBGM. Given the novelty of using AI in NIBGM systems,
evidence on the accuracy and effectiveness of such technologies
is limited. Thus, we conducted a scoping review to rapidly map
the key concepts and evidence regarding the use of AI for
continuous NIBGM. Our findings would scope the available
evidence on this topic, and identify the existing research gaps
to inform the value and direction of conducting a full systematic
review [23].

Methods

Overview
This scoping review was conducted using Arksey and
O’Malley’s five-step framework and reported according to the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta‐Analyses extension for Scoping Reviews)
guidelines (Multimedia Appendix 1) [24].

Step 1: Identifying the Research Question
Our primary research question was as follows: (1) what are the
use cases of AI-assisted noninvasive BGM systems? Our
secondary research question was as follows: (2) what are the
AI models developed for noninvasive BGM?

Step 2: Identifying Relevant Studies
A comprehensive literature search was conducted on 08
February 2023 across 8 major databases, namely CINAHL,
Embase, PubMed, Web of Science, Scopus, The
Cochrane-Central Library, ACM Digital Library, and IEEE
Xplore. The following key terms were used in the search:
“glucose monitoring”; “monitoring glucose”; “artificial
intelligence”; “computer heuristics”; “fuzzy logic”; “knowledge
bases”; “machine learning”; “natural language processing”;
“neural networks”; and “sentiment analysis” (Multimedia
Appendix 2). Content experts were consulted and previous
reviews on similar topics were hand searched for additional
relevant studies.

Step 3: Study Selection and Methodological Quality
Assessment
After the search was completed, duplicate studies were identified
and removed. The remaining papers had their abstracts screened
in a double-blinded, independent manner by 2 investigators
(PZC and HSJC) according to the following inclusion criteria:
prospective and retrospective primary studies that described the
use of AI for continuous noninvasive BGM among human
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participants and written primarily in English. Papers were
excluded if they: (1) were reviews or gray literature, (2) did not
involve AI in the continuous NIBGM, (3) involved nonhuman
participants, or (4) were primarily non–English-language papers.
Disputes were resolved via discussion and consensus by the 2
investigators. Both investigators (PZC and HSJC) then combed
the relevant journals, bibliography, and conference submissions
to identify more relevant papers, and all papers then underwent
a full-text sieve based on the inclusion and exclusion criteria.

The methodological quality appraisal of each study was
conducted independently by 2 reviewers (PZC and EJ) using
the Checklist for assessment of medical AI (ChAMAI) [25].
Reviewers rated each included study on 30 items representing
6 domains namely problem understanding, data understanding,
data preparation, modeling, validation, and deployment. Each
item (bolded to represent having a high priority) received a
rating of OK (adequately addressed), mR (sufficient but
improvable), or MR (inadequately addressed, corresponding to
a score of 2, 1, and 0, respectively. Items on a low-priority (not
bolded) received half the scores and the maximum total score
is 50 [26]. Overall scores indicate the study quality to be low

(0-19.5), medium (20-34.5), or high (35-50). Discrepancies
were resolved by a third reviewer (HSJC).

Step 4: Data Charting
Data were extracted independently and cross-checked by 2
investigators (PZC and HSJC). Any disputes were resolved via
discussion and consensus. Study characteristics extracted
included the author names, country, type of publication, study
design, population characteristics, mean age, types of
noninvasive techniques used, and application, as well as
characteristics of the BGM systems (use of AI, AI type, AI
features, types of data imputed, technology used, dataset,
validation, proportion of training and testing dataset, and metrics
used).

Results

Step 5: Collating, Summarizing, and Reporting the
Results
Our initial search yielded 1270 studies. After removing
duplicated citations, screening through 848 titles and abstracts,
and 65 full-text papers, 33 papers were included in this scoping
review (Figure 1).
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Figure 1. PRISMA-ScR flowchart. PRISMA-ScR: Preferred Reporting Items for Systematic Reviews and Meta‐Analyses extension for Scoping
Reviews.

Study Characteristics
Most of the included studies were conducted in Asia (n=21,
64%) [10,27-46], were peer-reviewed journal papers (n=24,
73%) [10,30-41,47-57], were prospective cohort studies (n=20,
61%) [30-33,35-43,47,49,51-53,57,58], and used optical (eg,
near-infrared and PPG) techniques (n=19, 58%)

[10,27,29,31,33,35-37,39,40,42,44,45,47,51,53,56-58] to
estimate blood glucose levels (n=27, 82%)
[27,29-31,33-38,40-43,45-48,50-53,55-58] (Table 1). Most of
the studies did not report the population characteristics
[10,27,29,33,35-39,41,42,44-46,48,54,56-58], mean age
[10,27-36,39,41-43,45,46,48,50-53,55,57], and sex
[27-29,33,35,36,38-41,43-48,50-52,54,55,57,58].
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Table 1. Summary of study characteristics.

Values (N=33), n (%)Study characteristics

Country

1 (3)Algeria [48]

1 (3)Bangladesh [27]

5 (15)China [33,35,39-41]

1 (3)China (Hong Kong) [30]

7 (21)India [10,31,32,34,43-45]

1 (3)Indonesia [42]

1 (3)Israel [37]

1 (3)Malaysia [46]

2 (6)Mexico [47,58]

1 (3)Netherlands [52]

2 (6)South Korea [36,38]

1 (3)Spain [56]

2 (6)Sri Lanka [28,29]

7 (21)United States [49-51,53-55,57]

Type of publication

24 (73)Journal paper [10,30-41,47-57]

9 (27)Conference papers [27-29,42-46,58]

Study design

20 (61)Prospective cohort [30-33,35-43,47,49,51-53,57,58]

7 (21)Retrospective cohort [10,28,44,48,50,54,56]

6 (18)Others [27,29,34,45,46,55]

Population characteristics

2 (6)Type 1 DMa [50,52]

1 (3)Type 2 DM [28]

2 (6)Healthy [47,51]

9 (27)Mixture [30-32,34,40,43,49,53,55]

19 (58)NRb [10,27,29,33,35-39,41,42,44-46,48,54,56-58]

Age (years)

6 (18)21-40 [38,44,47,54,56,58]

3 (9)40-65 [37,40,49]

24 (73)NR [10,27-36,39,41-43,45,46,48,50-53,55,57]

Sex (male)

1 (3)0 [10]

2 (6)<50 [34,49]

7 (21)>50 [30-32,37,42,53,56]

23 (69.70)NR [27-29,33,35,36,38-41,43-48,50-52,54,55,57,58]

Noninvasive techniques

19 (58)Optical (NIRc, PPGd, Raman) [10,27,29,31,33,35-37,39,40,42,44,45,47,51,53,56-58]

1 (3)Impedance [55]

4 (12)Biosensor (breath, saliva, tears) [30,32,34,52]
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Values (N=33), n (%)Study characteristics

2 (6)Imaging (ECGe, UWBf) [46,48]

2 (6)Mixture [38,50]

5 (15)NR [28,41,43,49,54]

Applications

2 (6)Predict DM [10,44]

2 (6)Monitoring by physician [43,53]

27 (82)Estimate BGg levels [10,27,29-42,45-48,50-52,54-58]

1 (3)Estimate HbA1c
h levels [49]

1 (3)Predict future BG levels [28]

aDM: diabetes mellitus.
bNR: not reported.
cNIR: near-infrared.
dPPG: photoplethysmography.
eECG: electrocardiography.
fUWB: ultrawideband.
gBG: blood glucose.
hHbA1c: hemoglobin A1c.

Use Cases of AI-Assisted NIBGM
The majority of the use cases were to estimate blood glucose
levels (n=29, 88%), [10,27,29-31,33-38,40-48,50-53,55-58], 3
(9%) were to detect DM [10,32,54], 1 (3%) was to estimate
suitable insulin doses [44], and another was to predict future
blood glucose level (Table 1 and Multimedia Appendix 3
[10,27-58]). Only one study used AI-assisted NIBGM to
estimate hemoglobin A1c (HbA1c) levels and blood glucose
variability among adults with prediabetes [49], which is
noteworthy as glucose variability refers to oscillations in blood
glucose levels throughout the day and could suggest the severity
of diabetic complications.

BGM Technology
A summary of the technology used for NIBGM is shown in
Multimedia Appendices 4 and 5 [10,27-58] and Figure 2. Of
the 33 studies, 19 studies experimented with devices to estimate
blood glucose levels using optical methods including PPG (n=7,
21%) [27,31,35,40,44,45,56], NIRS (n=7, 21%)
[10,29,36,39,42,53,57], RS (n=1, 3%) [51], absorption
spectroscopy (n=1, 3%) [33], noninvasive optical analysis of
visible light capture by specialized cameras (n=1, 3%) [47],

color image sensor (n=1, 3%) [37], and laser beam and light
diode resistor (n=1, 3%) [58], 4 studies used devices that
detected biological substances, including biosensor for tear
glucose [37] and breath analysis [48] (two were not reported
[30,52]), 3 (6%) studies used imaging techniques, including
ECG [48] and ultrawideband (UWB) [46], 2 studies used mixed
methods, including Optical+Electromagnetic+Thermal
techniques [36] and Impedance+Multi-Wavelength NIR
Spectroscopy [38], and 1 study used a device that measured
tissue impedance (Multimedia Appendix 4 [10,27-58]). NIR
spectroscopy detects the intensity of the reflected near-infrared
light by glucose molecules in the blood to estimate blood
glucose levels [35]. PPG operates on the same principles as that
of the pulse oximeter, by calculating blood glucose levels based
on the light intensity detected on a receiver and sent out by a
transmitter [12]. RS works by comparing the Raman light
emitted from a scattering medium (tissue) for transcutaneous
determination of compositions of molecules, such as glucose,
in the tissue-blood matrix [15,51]. RS can noninvasively monitor
variations in glucose present at low concentrations in the
blood-tissue matrix of the skin due to its distinct characteristic
spectral features.
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Figure 2. Blood glucose monitoring technology.

NIBGMs based on biosensors use breath, saliva, or tear samples
to derive blood glucose concentrations based on their
components, such as sodium, potassium, and calcium ions.
ECGs measure the electrical activities of the heart and present
them as a PQRST wave, with various abnormalities of the waves
seemingly correlated with hyper- and hypoglycemia [49]. UWB
imaging estimates blood glucose change via changes in the
blood dielectric properties [46]. Two devices had mixed methods
of detection. The device by Song et al [38] used both impedance
and NIR to estimate blood glucose levels, while the device by
Abubeker and Baskar [44] integrated ultrasonic,
electromagnetic, and thermal data from the patient. Finally, the
device by Malinin et al [55] measured the impedance of tissues
via bracelet-type electrodes to detect blood glucose levels by
monitoring the transfer functions of a tissue segment in the
electromagnetic field.

A total of 19 (58%) devices used light-related signals as the
input data (PPG signals [27,31,35,36,40,45,56], UWB imaging
[46], NIR signals [10,29,39,53,57], Raman Spectra [51],
nonvisible light signals [33,37,58], visible light signals [47],
and LED light [42]), 5 (15%) devices collected biological
samples (tears [52,59], breath [30,32], and saliva [34]), 4 (12%)
devices used images or videos (video of finger [27,40], facial
video [35], and image of finger or ear [57]), 4 (12%) devices
collected vitals (eg, oxygen saturation, heart rate, and skin
temperature [41,44,49,50]), 1 (3%) device collected impedance
data [55], 1 (3%) device used ECG data [48], 1 (3%) device
used a combination of types of inputs (intensity modulated
photocurrent spectroscopy and multiwavelength NIRS) [38], 2
(6%) devices extracted various attributes from the patient’s
lifestyle and background, with one using medication intake,
food intake, daily activities, and measured blood glucose levels
as the input [28], and the other using pregnancy, BMI, insulin
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level, age, blood pressure, skin thickness, glucose, and diabetes
pedigree function [54].

AI Models Developed for NIBGM
A summary of the characteristics of ML is shown in Multimedia
Appendix 5 [10,27-58]. The accuracy of NIBGM estimating
blood glucose ranged from 35.56% [38] to 94.23% [38], mean

absolute error (MAE) ranged from 0.248 [54] to 11.8 [15], R2

ranged from 0.11 [44] to 0.91 [37], and Clarke error grid (CEG;
A+B) ranged from 86.91% [50] to 100%

[12,15,23,25,36,37,39,41]. Both MAE and R2 were used to
evaluate regression models, with lower MAE scores meaning

a more accurate model and higher R2 scores meaning a model
that can cover a greater variety of data points. CEG was
developed to measure the efficacy of BGM systems, and it
consists of a grid divided into five zones. Zone A represents
values that are clinically accurate and safe, while zones B, C,
D, and E represent progressively more significant clinical errors.
Typically, only data points within zones A and B are accepted
by clinicians. A total of 8 (55%) devices achieved a CEG (A+B)
of 100%, all of which included supervised learning models.

Various ML and deep learning (DL) algorithms were used. Nine
[25,28,31,36,37,40,42,46,51] devices used only DL models
(often some kind of neural network [NN]), while 8
[15,23,24,27,38,39,50,58] devices included only ML models.
The rest used a mix of models. Among the DL models or NNs,
6 devices [2,31,40,42,49,56] used artificial neural networks
(ANN), and three devices [12,25,54] used deep NNs. Among
the ML models, 10 devices [12,14,22,27,34,38,41,44,53,54]
used random forest (RF), 8 devices [12,34,41,43,44,49,54,56]
used linear regression, 5 devices [14,26,29,34,49] used support
vector machines (SVM) and 5 devices [22,41,44,53,54] used
support vector regression. Datasets were split according to ratios
ranging from 70:30 to the traditional 80:20 for training and
testing according to different studies.

The most popular ML algorithm used was RF. Incidentally, RF
is widely recognized as one of the most effective machine

learning algorithms for classification tasks [22]. Increasing the
number of trees in the forest improves prediction accuracy,
allowing for tailored models based on specific characteristics.
One study which used the use of RF had an accuracy of 94.2%
[45], while another study that examined the use of RF to predict
HbA1c achieved a low mean average percent error of 4.87%
[49].

Another popular algorithm used for data classification is SVM.
SVM uses nonlinear mapping to transform DM training data
into a higher dimension and seeks the optimal linear separating
hyperplane [22]. It aims to create distinct margins between
different classes, improving the training and testing speed. In
a study based on salivary electrochemical signals, SVM
outperformed other models in estimating blood glucose levels
with 85% accuracy, 84% precision, and 85% sensitivity [34].
SVM had the best performance in another study which used
PPG signals with an accuracy of 81.7% [44].

NNs are a popular DL model extensively used for the detection
and diagnosis of DM. This was evident in a study that used
CNN to estimate blood glucose levels using breath signals [32].
Performance was promising with a low mean square error of
0.14 and area under the curves as 0.97, 0.96, and 0.96 for T1DM,
T2DM, and healthy, respectively [32]. ANN performed best
when using input from the Pima Indian diabetes dataset,
achieving an overall accuracy of 88.6% [54].

Study Quality
The mean overall ChAMAI score on the included papers was
33.5 (SD 3.09), suggesting an average of medium quality (Table
2). Most of the studies were of medium quality ranging between
30 and 41, while 10 studies were of high quality with a score
equal to or more than 35. The proportion of “OK,” “mR,” and
“MR” in high-priority items range from 20% to 80%, 0% to
6.7%, and 6.7% to 80%, respectively (Figure 3). The proportion
of “OK,” “mR,” and “MR” in low-priority items range from
10% to 50%, 0% to 20%, and 50% to 90%, respectively (Figure
4). The interrater agreement in using ChAMAI indicated
moderate agreement (Cohen κ=0.49).

J Med Internet Res 2024 | vol. 26 | e58892 | p. 8https://www.jmir.org/2024/1/e58892
(page number not for citation purposes)

Chan et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Study quality rated based on ChAMAIa.

Overall (50)Deployment (8)Validation (12)Modeling (6)Data prepara-
tion (8)

Data understand-
ing (6)

Problem under-
standing (10)

Author (Year)

33476547Abubeker and Baskar
(2022) [44]

34486448Agrawal et al (2022)
[10]

333106437Alarcón-Paredes et al
(2019) [47]

34396547Ali et al (2016) [46]

32476537Arbi et al (2023) [48]

29375437Balasooriya and
Nanayakkara (2020)
[28]

3741054410Bent et al (2021) [49]

343106537Bogue-Jimenez et al
(2022) [50]

33285549Enejder et al (2005)
[51]

33386547Francisco-García et al
(2019) [58]

333654510Geelhoed-Duijvestijn
et al (2021) [52]

30366537Guo et al (2012) [30]

34395548Habbu et al (2019)
[31]

353105548Jain et al (2020) [53]

33385737Khanam and Foo
(2021) [54]

25265435Krishnan et al (2020)
[45]

34396547Lekha and Suchetha
(2018) [32]

37496459Liu et al (2019) [33]

373965410Malik et al (2016)
[34]

31296536Malinin (2012) [55]

363106557Manurung et al (2019)
[42]

413106769Monte-Moreno (2011)
[56]

34395449Nanayakkara et al
(2018) [29]

383106559Nie et al (2023) [35]

31396436Rachim and Chung
(2019) [36]

31386536Rajeshwaran et al
(2022) [43]

33366459Segman (2018) [37]

30385437Song et al (2015) [38]
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Overall (50)Deployment (8)Validation (12)Modeling (6)Data prepara-
tion (8)

Data understand-
ing (6)

Problem under-
standing (10)

Author (Year)

30386535Sumaiya et al (2020)
[27]

35486449Valero et al (2022)
[57]

35386549Yu et al (2021) [39]

38396569Zhang et al (2020)
[40]

31386446Zhu et al (2021) [41]

aChAMAI: Checklist for assessment of medical artificial intelligence.

Figure 3. Proportion of OK=adequately addressed, mR=sufficient but improvable, MR= inadequately addressed ratings on each high priority items.
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Figure 4. Proportion of OK=adequately addressed, mR=sufficient but improvable MR= inadequately addressed ratings on each low priority items.

Discussion

Principal Findings
Findings from this scoping review revealed the applications of
AI-assisted NIBGM systems, available technology developed,
and types of AI algorithms from the 33 included studies
published between 2005 and 2023. Most studies (n=20, 60%)
originated from just 3 countries mainly China, India, and the
United States.

The bulk of the evidence comes from Asian studies, potentially
due to the alarming increase in the prevalence of DM in Asia
compared to their European counterparts [60]. There was an
even mix of studies from low-, middle- and high-income
countries but it is unclear whether AI technologies can be made
affordable and accessible to individuals in low- and
middle-income countries.

More research can be done to determine the cost and
accessibility of AI-assisted glucose monitoring systems and
their barriers to widespread adoption. A significant number of

studies were reported in conference proceedings, which reflect
the emerging evidence regarding AI in NIBGM. Perhaps more
research relating to diagnostic accuracy can be conducted to
increase the strength of evidence for the adoption of such
technology over current traditional glucose monitoring systems.

The majority of studies that develop ML algorithms to predict
DM used the Pima Indian diabetes dataset which comprises 8
parameters. These criteria include the number of pregnancies,
BMI, plasma glucose concentration, blood pressure, skinfold
thickness, diabetes pedigree function, and an outcome variable
of class 0 or 1 (where 0 denotes patient without diabetes and 1
denotes patient with diabetes) [61,62]. Other features include
waveform characteristics from optical signals, such as shape
and amplitude, to estimate blood glucose levels [33,36,40]. AI
advances in the field of blood glucose estimation research in
the context of NIBGM have the potential to improve the quality
of life for patients with DM and minimize invasiveness.

Application
AI was mainly used in NIBGM to estimate real-time blood
glucose levels using optical, biosensing, imaging, and tissue
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impedance measurement technology instead of current widely
used methods such as blood tests or finger pricks [63]. AI was
also used to predict future blood glucose levels (up to 30 minutes
later) [22] and detect DM [10,44], suggesting the potential of
AI-assisted NIBGM for continuous BGM and diagnostic
purposes.

Technology Used
Two broad classifications for NIBGM emerged namely sample-
and non–sample-based methods of detection. Sample-based
include studies like Malik et al [34] which use salivary
electrochemical signals to train ML models. Concentrations of
sodium, potassium, and calcium ions were measured and
correlated with blood glucose levels [34]. Other sample-based
techniques include the use of breath signals to detect acetone
to estimate blood glucose levels [30,32]. A major challenge for
the development of NIBGM systems which rely on bodily fluid
is that the concentration glucose level is miniscule [64]. Hence,
there is a need to enhance sensitivity and remove other
interference in such sensors [65].

Out of the non–sample-based noninvasive techniques developed
to predict blood glucose levels, PPG, akin to the technology of
pulse oximetry, appears the most among the studies followed
by other optical techniques such as NIRS and RS. The results
were not surprising as the use of optical methods for measuring
glucose levels is presently one of the best approaches in
noninvasive glucose estimation research [47]. For example,
Monte-Moreno [56] used a PPG-based sensor to measure
changes in blood volume changes and developed an ML
algorithm to estimate blood glucose levels [14]. While traditional
PPG requires skin contact, typically using a finger over a
smartphone camera, to detect blood volume changes, advanced
remote PPG allows the detection of subtle skin color changes
to estimate blood volume changes [27,35,40]. These
technologies have to be validated against the conventional BGM
methods in a larger clinical population to establish their
usefulness and efficiency [66].

Such technology may be useful for self-monitoring since it has
a low barrier of entry and only requires a smartphone. Such
setup may also be useful in clinical settings for monitoring or
diagnostic purposes and reduces the need for retraining since
staff are familiar with similar setups in the hospitals. On the
other hand, others have commented that the use of PPG is often
corrupted by measurement artifacts from movements, restricting
one’s movement during continuous glucose monitoring [36,67].

ML Models
This review maps out the various DL and traditional ML
algorithms used by the studies. Previous studies have adopted
ML for risk stratification and identification of patients with DM
[68]. Several ML processes, such as SVM, regression trees,
k-nearest neighbor, ANN, naïve Bayes, and RF, have been used
in transforming diabetes care [69].

The main uses of ML processes include feature selection and
classification. ML methods require the extraction of features
from signals. However, extracting fiducial points from real-life
signals can be highly challenging [21]. Not only is it difficult
to develop a feature extraction algorithm that can handle diverse

waveform types but there is also a need to assess the quality of
the computed features as the feature extraction algorithm is
unable to effectively operate if the input signal is corrupted [21].

The emergence of DL has facilitated the analysis of large
volumes of data without the need for explicit feature extraction.
However, DL approaches experience limited interpretability,
which can be problematic in a clinical setting where
understanding why and how a pathology was detected is crucial
for validating the diagnosis [21].

Future Research
In different studies, researchers have used various ML
algorithms to construct classification models using derived
feature vectors to evaluate the performance of different
algorithms on the datasets used. Conversely, some researchers
have opted to use a single ML method for their classification
model. However, it is important to note that no single ML
algorithm is universally optimal for all types of input data [70].
Therefore, it is beneficial to test multiple ML algorithms and
determine which one produces the best outcomes for a given
task. Comparisons among different AI models can help identify
the strengths and limitations of each approach, guiding further
improvements in accuracy and performance.

Given the heterogeneity of AI models and input data applied in
each study, it is beyond the scope of this review to ascertain the
best NIBGM system based on performance metrics alone.
Furthermore, the lack of standardized reporting and analysis of
results, leads to heterogeneity that hampers the comparison of
findings across studies. Perhaps a diagnostic accuracy review
may be more suited to address the question of which system is
best suited to be adopted in various settings. As with all AI
studies, efforts should be made to standardize and regulate the
use of AI technologies in diabetes care. Consensus guidelines
and protocols should be developed to ensure the quality and
safety of AI-assisted monitoring systems [71].

Another potential area of research in the field of NIBGM is the
use of digital twin (DT) techniques. DT serves as a digital
representation that mirrors the state of a physical entity or
system by capturing real-time data through sensors and
reflecting it in digital devices [72]. DT offers a powerful solution
for real-time monitoring, accurate diagnosis, and effective
treatment [72]. However, the main challenges include data
acquisition, data privacy, and security concerns [73]. Further
advancement in Big Data is required to develop holistic and
accurate DTs.

Strengths and Limitations
To the best of our knowledge, this is the first study to report the
current state-of-the-art in AI-assisted NIBGM, which informs
the direction of future systematic reviews and interventional
research. To enhance the rigor of the study, we adhered to the
PRISMA-ScR guidelines and had 2 independent reviewers in
the paper selection process.

This study had several limitations. First, as this review limits
in vivo methods of verification (human participants), certain
relevant evidence could have been precluded, such as studies
that use in vitro methods for verification of their AI models
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such as skin models or varied concentrations of glucose
solutions. Second, a simple keyword search strategy and only
papers written in English were retrieved, possibly limiting the
scope of our findings. However, we conducted a hand search
of previous systematic reviews to identify relevant papers.

Conclusions
The use of AI for NIBGM is a promising area of research that
has the potential to revolutionize diabetes management. The

studies reviewed demonstrate that some AI techniques can
accurately predict glucose levels from noninvasive sources while
enhancing comfort and ease of use for patients. However, the
overall range of accuracy is wide due to the heterogeneity of
models and input data. As such, we propose that there is a need
for further efforts to standardize and regulate the use of AI
technologies in diabetes care, as well as develop consensus
guidelines and protocols to ensure the quality and safety of
AI-assisted monitoring systems.
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Abbreviations
AI: artificial intelligence
ANN: artificial neural network
BGM: blood glucose monitoring
CEG: Clarke error grid
ChAMAI: checklist for assessment of medical AI
DL: deep learning
DM: diabetes mellitus
DT: digital twin
ECG: electrocardiography
HbA1c: hemoglobin A1c
MAE: mean absolute error
ML: machine learning
NIBGM: noninvasive blood glucose monitoring
NIRS: near-infrared spectroscopy
NN: neural network
PPG: photoplethysmography
PRISMA-ScR:  Preferred Reporting Items for Systematic Reviews and Meta‐Analyses extension for Scoping
Reviews
RF: random forest
RS: Raman spectroscopy
SVM: support vector machines
UWB: ultrawideband

Edited by A Coristine; submitted 01.04.24; peer-reviewed by S Saeedi, AN Ali; comments to author 21.06.24; revised version received
24.06.24; accepted 08.10.24; published 19.11.24

Please cite as:
Chan PZ, Jin E, Jansson M, Chew HSJ
AI-Based Noninvasive Blood Glucose Monitoring: Scoping Review
J Med Internet Res 2024;26:e58892
URL: https://www.jmir.org/2024/1/e58892
doi: 10.2196/58892
PMID:

©Pin Zhong Chan, Eric Jin, Miia Jansson, Han Shi Jocelyn Chew. Originally published in the Journal of Medical Internet Research
(https://www.jmir.org), 19.11.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in the Journal of Medical Internet Research (ISSN 1438-8871), is properly
cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright
and license information must be included.

J Med Internet Res 2024 | vol. 26 | e58892 | p. 17https://www.jmir.org/2024/1/e58892
(page number not for citation purposes)

Chan et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.jmir.org/2024/1/e58892
http://dx.doi.org/10.2196/58892
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

