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Abstract

Background: Cerebral hemorrhage is a critical medical condition that necessitates a rapid and precise diagnosis for timely
medical intervention, including emergency operation. Computed tomography (CT) is essential for identifying cerebral hemorrhage,
but its effectiveness is limited by the availability of experienced radiologists, especially in resource-constrained regions or when
shorthanded during holidays or at night. Despite advancements in artificial intelligence–driven diagnostic tools, most require
technical expertise. This poses a challenge for widespread adoption in radiological imaging. The introduction of advanced natural
language processing (NLP) models such as GPT-4, which can annotate and analyze images without extensive algorithmic training,
offers a potential solution.

Objective: This study investigates GPT-4’s capability to identify and annotate cerebral hemorrhages in cranial CT scans. It
represents a novel application of NLP models in radiological imaging.

Methods: In this retrospective analysis, we collected 208 CT scans with 6 types of cerebral hemorrhages at Ren Ji Hospital,
Shanghai Jiao Tong University School of Medicine, between January and September 2023. All CT images were mixed together
and sequentially numbered, so each CT image had its own corresponding number. A random sequence from 1 to 208 was generated,
and all CT images were inputted into GPT-4 for analysis in the order of the random sequence. The outputs were subsequently
examined using Photoshop and evaluated by experienced radiologists on a 4-point scale to assess identification completeness,
accuracy, and success.

Results: The overall identification completeness percentage for the 6 types of cerebral hemorrhages was 72.6% (SD 18.6%).
Specifically, GPT-4 achieved higher identification completeness in epidural and intraparenchymal hemorrhages (89.0%, SD
19.1% and 86.9%, SD 17.7%, respectively), yet its identification completeness percentage in chronic subdural hemorrhages was
very low (37.3%, SD 37.5%). The misidentification percentages for complex hemorrhages (54.0%, SD 28.0%), epidural hemorrhages
(50.2%, SD 22.7%), and subarachnoid hemorrhages (50.5%, SD 29.2%) were relatively high, whereas they were relatively low
for acute subdural hemorrhages (32.6%, SD 26.3%), chronic subdural hemorrhages (40.3%, SD 27.2%), and intraparenchymal
hemorrhages (26.2%, SD 23.8%). The identification completeness percentages in both massive and minor bleeding showed no
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significant difference (P=.06). However, the misidentification percentage in recognizing massive bleeding was significantly lower
than that for minor bleeding (P=.04). The identification completeness percentages and misidentification percentages for cerebral
hemorrhages at different locations showed no significant differences (all P>.05). Lastly, radiologists showed relative acceptance
regarding identification completeness (3.60, SD 0.54), accuracy (3.30, SD 0.65), and success (3.38, SD 0.64).

Conclusions: GPT-4, a standout among NLP models, exhibits both promising capabilities and certain limitations in the realm
of radiological imaging, particularly when it comes to identifying cerebral hemorrhages in CT scans. This opens up new directions
and insights for the future development of NLP models in radiology.

Trial Registration: ClinicalTrials.gov NCT06230419; https://clinicaltrials.gov/study/NCT06230419

(J Med Internet Res 2024;26:e58741) doi: 10.2196/58741
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Introduction

Cerebral hemorrhage mainly encompasses intracranial bleeding
resultant from trauma, hypertension, or cerebral vascular
disorders. Typically, it manifests acutely, with severe symptoms
and a prognosis that is often unfavorable, thereby imposing
substantial economic burdens on individuals, families, and
society [1-3]. Hence, the prompt and accurate diagnosis of
cerebral hemorrhage is of paramount clinical and societal
importance.

Computed tomography (CT) scanning stands as the
quintessential diagnostic tool for cerebral hemorrhage. An
expedient and precise diagnosis not only facilitates the
comprehensive evaluation of patient conditions, the optimization
of therapeutic strategies, and the prognostication of outcomes
but also enhances communication between clinicians and
patients or their respective families. Nonetheless, several
challenges persist. First, CT diagnosis of cerebral hemorrhage
often requires experienced radiologists. In low-income areas or
countries, there is a significant shortage of these specialists
[4,5]. Radiologists lacking sufficient experience will lead to
missed or incorrect diagnosis, which can be potentially fatal in
the clinical management of cerebral hemorrhage. Second, CT
diagnosis of cerebral hemorrhage requires rapid reporting, but
even in high-income areas and countries, the substantial
workload makes it difficult for radiologists to provide prompt
and comprehensive radiology reports [6]. Third, cultivating an
experienced radiologist requires a mature medical education
system and a substantial database of imaging resources, which
is currently lacking in China [7].

Artificial intelligence (AI) has emerged as a formidable
instrument in computer-aided diagnosis across various medical
fields, enhancing classification [8], detection [9], and image
segmentation [10]. AI proves particularly beneficial in
supporting decision-making and rapid diagnosis, especially in
underserved rural areas or densely populated regions with a
scarcity of medical imaging experts [11]. Moreover, AI has
substantially advanced medical education [12-14].

Currently, various AI models, including You Only Look Once
and bespoke convolutional neural networks [15-17], have
demonstrated efficacy in detecting cerebral hemorrhages in CT
imagery. However, the construction and utilization of these AI
models necessitate an understanding of computer algorithms.

For most radiologists, the implementation of these models poses
a significant challenge, indicating a need for more intuitive and
accessible AI-driven diagnostic solutions.

The recent introduction of new natural language processing
(NLP) models, such as ChatGPT (OpenAI) and the latest
iteration of GPT-4, has enabled imaging analysis capabilities
without the need for intricate algorithmic knowledge and
extensive training [18,19]. Previously, large language models
faced the challenge of hallucination, presenting presumably
persuasive results that were not based on the input [20,21].
However, many studies suggest that GPT-4 can assist in
generating, extracting, and interpreting radiology reports
[22-24]. GPT-4 can play a role in the diagnosis and treatment
of oral diseases, orthopedic diseases, neurological disorders,
and pulmonary diseases using radiology reports [23,25-27].
GPT-4 is capable of accurately extracting lesion information
from radiology reports, such as identifying metastatic diseases
and generating correct labels for tumor progression [23,24]; it
can integrate radiology reports and medical history to make
diagnoses [27]; and it can even provide some treatment
suggestions based on the radiology reports [26]. However,
current research focuses only on GPT-4’s capabilities with free
text, and its potential for imaging recognition has not yet been
explored.

This work aims to delineate our study by utilizing GPT-4 for
the identification and annotation of cerebral hemorrhages in CT
images, including various types of intracranial bleeding. It is
the first attempt to directly use GPT-4 to identify CT images of
cerebral hemorrhages. It broadens the horizon for GPT-4
applications in the medical field, offering fresh perspectives for
the development of GPT-4 and other NLP models in health care.

Methods

Ethical Considerations
This retrospective study was registered at ClinicalTrials.gov
(NCT06230419) and approved by the Ethics Committee of Ren
Ji Hospital, Shanghai Jiao Tong University School of Medicine
(IIT-2024-0006). This study exclusively utilized CT images,
which do not include personally identifiable information or
sensitive individual data. There was no direct interaction with
patients, complying with the principles of ethical conduct in
research. Meanwhile, the Ethics Committee of Ren Ji Hospital,
Shanghai Jiao Tong University School of Medicine, approved
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the usage of CT images without any identifiable private
information. All the data are securely stored and only accessed
by personnel involved in the research team.

Study Design
As shown in Figure 1, raw CT images of different types of
cerebral hemorrhages were collected between January and
September 2023 from the radiology database of Ren Ji Hospital,
Shanghai Jiao Tong University School of Medicine. Since
GPT-4 cannot recognize continuous CT images, we first
preprocessed the CT images. We chose the horizontal cranial
CT image with the largest volume of hemorrhage in the brain
window (window width: 90, window level: 35) as the
representative image. Representative CT images were exported
to be unified as JPG format files with a size of 700×700 pixels
to minimize the influence from the image format and the image
size.

By employing a predefined question-and-answer mode, we
guided GPT-4 to annotate the hemorrhagic lesions in the
provided images (Multimedia Appendix 1). All CT images of
different types of cerebral hemorrhages were mixed together
and each CT image was sequentially numbered, so all 208 CT
images had their own corresponding number. A random
sequence from 1 to 208 was generated using Python (version
3.8; Python Software Foundation), and all CT images were
inputted into GPT-4 for analysis in the order of the random
sequence. Once GPT-4 finished the analyze process, all
annotated pictures were downloaded and saved as JPG format
files.

All processed CT images were both analyzed by Photoshop
(version 24.3.0; Adobe) and given to 10 radiologists to evaluate
identification completeness, accuracy, and success.

Figure 1. Flowchart of the study design. ASH: acute subdural hemorrhage; CH: complex hemorrhage; CSH: chronic subdural hemorrhage; CT: computed
tomography; EH: epidural hemorrhage; IH: intraparenchymal hemorrhage; SH: subarachnoid hemorrhage.

GPT-4 Update
We utilized the latest updated GPT-4 released by OpenAI in
November 2023, which at present, empowers more powerful
image analysis in GPT-4.

Photoshop Analysis
After all the processed images were collected, the hemorrhage
areas and the annotation areas were isolated from the images
using Photoshop [28]. According to previous studies, the ABC/2
method has been universally applied in clinical medicine to
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estimate cerebral hemorrhage volumes swiftly [29,30]. The
same method was used in the calculation of intraparenchymal
hemorrhage volumes, given that intraparenchymal hemorrhages
typically conform to the assumption of this formula: the
hemorrhages approximate an elliptical shape. After tallying all
intraparenchymal hemorrhage volumes, based on the
corresponding bleeding areas measured using Photoshop, the
hemorrhage volume per pixel was determined and the
hemorrhage volume for each CT image in the other 5 types of
irregular cerebral hemorrhages was calculated.

After the size of the exact image’s bleeding and annotated part
were counted, the identification completeness and
misidentification percentages were calculated through the
following formulas (Figure 2):

Identification completeness percentage = correct
annotated area / total bleeding area × 100%

Misidentification percentage = (total annotated area
– correct annotated area) / total annotated area ×
100%

Figure 2. Calculation methods of identification completeness and misidentification percentage using Photoshop. The 3 pairs of pictures show the
method of using Photoshop to isolate the total bleeding area, the correct annotated area, and the total annotated area.
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Radiologist Evaluation
For the purpose of evaluating the competence of GPT-4 in
cerebral hemorrhage identification, 10 professional radiologists
were invited to compare the original CT images and the
annotated images. We designed a 4-point scale questionnaire.
In this questionnaire, the original image and the annotated image
were compared in pairs, and those pairs of CT images were
shown to the radiologists. To avoid ambiguous and unclear
outcomes, the choices of the questionnaire did not contain
neutral responses. The questionnaire was completed by
radiologists separately and alone. The criteria and groups used
for rating are shown in Multimedia Appendix 2.

Statistical Analysis
The data in this study were all continuous and conformed to
normal distribution and homogeneity of variance; therefore, we
chose the 2-tailed Student t test and 1-way ANOVA for
statistical analysis. SPSS (version 16.0; IBM Corp) was used
to perform all statistical analysis. Summary data are presented
as mean and SD, with statistical significance assessed by 2-tailed
Student t test for 2-group comparisons or 1-way ANOVA for
comparisons with more than 2 groups. P<.05 was considered
statistically significant.

Results

A total of 208 CT scans of different types of cerebral
hemorrhages were collected between January and September
in 2023 from the radiology database. These images consisted
of epidural hematomas (32 images); acute subdural hematomas
(42 images); chronic subdural hematomas (30 images);
subarachnoid hemorrhages (36 images); intraparenchymal
hemorrhages (31 images); and complex hemorrhages, which
included 2 or more different types of intracranial bleeding (37
images).

First and foremost, we were keen to assess whether GPT-4 could
identify cerebral hemorrhages and the completeness of such
detections. In Figure 3A, we present the performance of GPT-4
across 6 different types of hemorrhages, where red indicates
the annotated hemorrhagic lesions identified by GPT-4. The
overall identification completeness percentage for the 6 types
of hemorrhages by GPT-4 reached 72.6% (SD 18.6%). Among
these, GPT-4 demonstrated the highest identification

completeness percentages for epidural and intraparenchymal
hemorrhages, achieving 89.0% (SD 19.1%) and 86.9% (SD
17.7%), respectively. The identification completeness
percentages for acute subdural hemorrhages (74.4%, SD 33.8%),
subarachnoid hemorrhages (71.5%, SD 36.5%), and complex
hemorrhages (76.4%, SD 32.9%) were also relatively high,
whereas it was very low for chronic subdural hemorrhages
(37.3%, SD 37.5%; Figure 3B). Nevertheless, the
misidentification percentages for complex hemorrhages (54.0%,
SD 28.0%), epidural hemorrhages (50.2%, SD 22.7%), and
subarachnoid hemorrhages (50.5%, SD 29.2%) were high
(>50%), whereas they were relatively low (<40%) for acute
subdural hemorrhages (32.6%, SD 26.3%), chronic subdural
hemorrhages (40.3%, SD 27.2%), and intraparenchymal
hemorrhages (26.2%, SD 23.8%; Figure 3C). These results
suggest that GPT-4 has a good capability to recognize some
types of acute hemorrhages but lacks the ability to
comprehensively identify chronic hemorrhages.

Further, we defined identification completeness percentages of
>90%, from 50% to 90%, and ≤50% as high, moderate, and low
identification, respectively. For epidural hemorrhages, the
proportion of high identification reached 66% (21/32), and the
proportion of moderate to high identification reached 91%
(29/32), which further illustrated GPT-4’s strong capability in
identifying epidural hemorrhages (Figure 3D). For
intraparenchymal hemorrhages, the proportion of high
identification was 48% (15/31), and the proportion of moderate
to high identification was 94% (29/31), indicating that GPT-4
also had a good ability to recognize intraparenchymal
hemorrhages (Figure 3D). In the cases of acute subdural
hemorrhages and complex hemorrhages, approximately
one-third of each set of images were categorized into high
(12/42, 29% and 13/37, 37%, respectively), moderate (17/42,
40% and 14/37, 38%), and low (13/42, 31% and 10/37, 27%)
identification; for subarachnoid hemorrhages, there was a
substantial polarization (high identification at 21/36, 58% and
low identification at 12/36, 33%), suggesting that GPT-4’s
recognition of these 3 types of hemorrhages was not stable
(Figure 3D). Finally, in chronic subdural hemorrhages, the
proportion of low identification reached up to 73% (22/30),
further showing GPT-4’s challenges in accurately identifying
chronic subdural hemorrhages (Figure 3D).
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Figure 3. Identification completeness and misidentification in 6 types of cerebral hemorrhages. (A) Representative images of 6 types of cerebral
hemorrhages, separated into the massive and minor bleeding groups using a benchmark of 5 mL for the volume of bleeding. (B and C) Identification
completeness and misidentification percentage of different types of the cerebral hemorrhages (mean and SD); *P<.05, **P<.01, ***P<.001, and
****P<.0001 by 1-way ANOVA with Tukey multiple comparison test. (D) The distribution of different identification completeness percentage groups
in 6 types of cerebral hemorrhages.

We classified cerebral hemorrhages into massive and minor
bleeding, using a benchmark of 5 mL for the volume of bleeding.
Surprisingly, there was no significant difference in the
identification completeness percentages by GPT-4 between
massive and minor bleeding (P=.06), indicating that the bleeding
volume, within a certain range, did not affect GPT-4’s ability

to identify cerebral hemorrhages (Figure 4A). However, the
misidentification percentage was higher for minor bleeding than
for massive bleeding, suggesting that GPT-4 was more adept
at recognizing substantial cerebral hemorrhages (P=.04; Figure
4B).
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Figure 4. Identification completeness and misidentification percentage in the massive and minor bleeding groups. Cerebral hemorrhages were classified
into massive and minor bleeding, using a benchmark of 5 mL for the volume of bleeding (mean and SD); *P<.05 and ns=P>.05 by 2-tailed t test. ns:
no significance.

When we further performed analysis based on the location of
hemorrhage within the brain, it was observed that GPT-4
demonstrated relatively higher identification completeness
percentages and lower misidentification percentages in
identifying hemorrhages in the cerebral ventricles and basal
ganglia (Figure 5A and B). Conversely, the identification
completeness percentage was comparatively lower for
recognizing hemorrhages in the cerebral cisterns, and there was
a higher misidentification percentage for hemorrhages in the

occipitofrontal regions (Figure 5A and B). However, overall,
there were no significant differences in the identification
completeness percentage and misidentification percentage
among different locations (all P>.05; Figure 5A and B). This
indicated that GPT-4 did not show a marked preference for
hemorrhages in specific areas but was relatively more proficient
at identifying hemorrhages within the cerebral ventricles and
basal ganglia.
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Figure 5. Identification completeness and misidentification percentage in the different locations of hemorrhage within the brain. Cerebral hemorrhages
were classified according to different hemorrhagic locations (mean and SD); by 1-way ANOVA with Tukey multiple comparison test.

Based on the aforementioned results, we examined how
radiologists viewed the performance of GPT-4 in identifying
cerebral hemorrhages. Overall, radiologists expressed relative
acceptance in terms of identification completeness (3.60, SD
0.54), accuracy (3.30, SD 0.65), and success ((3.38, SD 0.64;
Figure 6A). Specifically, 89.9% (187/208) of CT images were
accepted in terms of identification completeness; 66.3%
(138/208) of CT images were accepted in terms of identification

accuracy; and 75.5% (157/208) of CT images were accepted in
terms of identification success (Figure 6B). Moreover, at the
same level of identification success, the average rating for
identification completeness was higher than that for
identification accuracy, indicating that radiologists placed more
importance on GPT-4’s ability to fully identify hemorrhagic
lesions and relative tolerance for false positives (Figure 6C).
Generally, whether it was in terms of identification
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completeness, accuracy, or success, the majority of CT scans
were only deemed “relatively acceptable” (from 103/208, 49.5%
to 111/208, 53.4%; Figure 6B). However, the proportion
categorized as “completely unacceptable” was also very low
(from 31/208, 14.9% to 76/208, 36.5%; Figure 6B). Further
analysis was conducted based on different types of hemorrhages.
The identification completeness, accuracy, and success of

intraparenchymal hemorrhages and acute subdural hemorrhages
received the highest acceptance from radiologists. Chronic
subdural hemorrhages and subarachnoid hemorrhages had the
lowest level of acceptance, with the identification completeness
nearly reaching “relatively unacceptable” and both the
identification accuracy and success being rated as “relatively
unacceptable” (Figure 6D).

Figure 6. Evaluation on the CT identification by 10 radiologists. (A) The rating of the identification completeness, accuracy, and success (mean and
SD). (B) The distribution of rating from identification completeness, accuracy and success. (C) The correlation between the identification completeness
(green) or accuracy (red) and success. (D) The rating of identification completeness, accuracy, and success in 6 types of cerebral hemorrhages (mean
and SD); *P<.05, **P<.01, ***P<.001, and ****P<.0001 by 1-way ANOVA with Tukey multiple comparison test. CT: computed tomography.

Discussion

In this study, we explored the possibility of applying GPT-4 to
identify cerebral hemorrhages directly from cranial CT images,
implying that NLP models like GPT-4 could be of clinical and
commercial value in practice.

Overall, GPT-4 can identify most cerebral hemorrhage CT
images after simple language-based training, achieving an
overall identification completeness percentage of 72.6% (SD
18.6%). If chronic subdural hemorrhage is not considered, then
the identification completeness percentage improves to 79.6%
(SD 7.8%). This is significantly higher than our initial
expectations prior to conducting this study, and radiologists
have expressed an acceptable attitude toward this outcome
(Figure 6A).

Specifically, in terms of different types of cerebral hemorrhages,
GPT-4 demonstrates relatively high identification completeness
percentages for epidural and intraparenchymal hemorrhages,
with 89.0% (SD 19.1%) and 86.9% (SD 17.7%), respectively
(Figure 3B). However, its identification completeness percentage
for chronic subdural hemorrhage is very low, at only 37.3%
(SD 37.5%; Figure 3B). The reason for this is that acute
hematomas have a higher CT value compared to normal brain
tissue, making the hematoma on CT images appear “whiter,”
thus easier for GPT-4 to differentiate from normal brain tissue.
In contrast, chronic hematomas have CT values closer to that
of normal brain tissue, making it challenging for GPT-4 to
identify them based on image brightness variations. Radiologists
diagnose chronic subdural hematomas more on the basis of
changes in brain tissue symmetry, hematoma shape, and the

absence of brain sulci and gyri structures in the hematoma,
rather than just changes in CT values [31]. These are aspects
that the current version of GPT-4 struggles to comprehend.
Additionally, this may also be related to the inadequacy of the
prompts provided to GPT-4. We attempted to instruct GPT-4
to recognize changes in the symmetry of brain tissue structures,
but this resulted in even poorer identification completeness for
chronic subdural hemorrhage (data not included). The current
version of GPT-4 may not yet fully grasp human anatomical
structures and their alterations. This suggests that if NLP models
are to be applied in clinical scenarios, they may need enhanced
training in fundamental medical knowledge.

In terms of identification accuracy, GPT-4’s performance was
not consistent. Compared to minor bleeding, GPT-4 was
relatively more accurate in identifying massive bleeding (Figure
4B). This might be because it is challenging for GPT-4 to
distinguish smaller hematomas from normal brain tissue due to
their limited size. GPT-4 demonstrated relatively greater
precision in recognizing hematomas in the cerebral ventricles
and basal ganglia, possibly because these hematomas were
located in the central part of the cranial CT scans, where their
grayscale values were less likely to be negatively affected by
the skull bones (Figure 5B). Therefore, for larger and relatively
isolated hemorrhagic lesions, GPT-4 can identify them with
more accuracy.

However, the current iteration of GPT-4 is not yet ready for
clinical application and has the following limitations. First, the
identification completeness and accuracy for some types of
intracranial hemorrhages are relatively low. This directly
prevents GPT-4 from being applied in clinical settings. Second,
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at present, GPT-4 can only recognize a single CT image plane
and cannot recognize a series of continuous CT images. The
specific choice of which image plane to use still requires a
doctor’s experience to decide. Third, a simple language-based
training is needed before using GPT-4; therefore, inappropriate
prompt words can greatly affect the recognition effectiveness
of GPT-4. Fourth, the use of GPT-4 to identify intracranial
hemorrhage also involves ethical and legal issues, which may
not be universally accepted.

Nevertheless, we believe that the future trend will see AI
assisting clinicians and enhancing efficiency in their work.
Imagine scenarios like this: in hospitals lacking radiologists,
assistants without medical background could upload patients’
head CT images to GPT-4 for preliminary screening; young
radiologists could use GPT-4 to analyze cerebral hemorrhage
CT images, helping to avoid missed diagnoses; and in
extraordinary situations like wars, earthquakes, or maritime
disasters, even laypeople without medical training would not
be perplexed when facing head CT scans. From the evaluation
of 10 radiologists, it appears that they are more concerned about
GPT-4’s ability to identify hematomas, showing more tolerance
toward misidentifications (Figure 6C). After all, for NLP

models, not missing a hematoma holds greater clinical
significance. In addition to clinical work, GPT-4 could
potentially play a more significant role in medical education.
In the traditional learning of CT or other radiologic imaging,
medical students typically only receive images and the correct
answers. Identifying the exact part of the image that represents
the correct answer often leaves students confused. This approach
focuses more on the result than the learning process. However,
GPT-4 can assist in identifying abnormalities in images, and
we can even envisage a future where GPT-4 could provide the
correct diagnosis step by step. This shift would make medical
education more process oriented and efficient.

In conclusion, this study represents the first exploration of
applying GPT-4 to the identification of cerebral hemorrhages
in cranial CT images, as well as the first attempt to utilize GPT-4
in the identification of radiological images. The current version
of GPT-4 is capable of identifying a small portion of cerebral
hemorrhages, indicating that it has a foundation for
computer-assisted diagnosis. We believe that in the future, NLP
models like GPT-4 will demonstrate immense clinical and
commercial value.
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Multimedia Appendix 1
Representative steps of computed tomography (CT) images inputted into GPT-4. (A) The initial natural language prompt is
inputted with the CT image into GPT-4, assisting GPT-4 to inspect the original picture and give the annotation back. Users’
feedbacks help GPT-4 successfully annotate the bleeding area precisely. (B) The training CT image.
[PNG File , 638 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Criteria and categories used for rating of annotated images by radiologists.
[DOCX File , 24 KB-Multimedia Appendix 2]
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