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Abstract

Traditionally, medical research is based on randomized controlled trials (RCTs) for interventions such as drugs and operative
procedures. However, increasingly, there is a need for health research to evolve. RCTs are expensive to run, are generally
formulated with a single research question in mind, and analyze a limited dataset for a restricted period. Progressively, health
decision makers are focusing on real-world data (RWD) to deliver large-scale longitudinal insights that are actionable. RWD are
collected as part of routine care in real time using digital health infrastructure. For example, understanding the effectiveness of
an intervention could be enhanced by combining evidence from RCTs with RWD, providing insights into long-term outcomes
in real-life situations. Clinicians and researchers struggle in the digital era to harness RWD for digital health research in an efficient
and ethically and morally appropriate manner. This struggle encompasses challenges such as ensuring data quality, integrating
diverse sources, establishing governance policies, ensuring regulatory compliance, developing analytical capabilities, and translating
insights into actionable strategies. The same way that drug trials require infrastructure to support their conduct, digital health also
necessitates new and disruptive research data infrastructure. Novel methods such as common data models, federated learning,
and synthetic data generation are emerging to enhance the utility of research using RWD, which are often siloed across health
systems. A continued focus on data privacy and ethical compliance remains. The past 25 years have seen a notable shift from an
emphasis on RCTs as the only source of practice-guiding clinical evidence to the inclusion of modern-day methods harnessing
RWD. This paper describes the evolution of synthetic data, common data models, and federated learning supported by strong
cross-sector collaboration to support digital health research. Lessons learned are offered as a model for other jurisdictions with
similar RWD infrastructure requirements.
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Background

While randomized controlled trials (RCTs) have long been
accepted as the gold standard in evidence-based medicine,
increasingly, there is a need to evolve this practice [1].
Well-designed RCTs are ideal for investigating the safety and
efficacy of an intervention in a highly controlled setting, for
example, treatment effects in drug development [2]. RCTs can
fail to demonstrate the effectiveness of the intervention under
complex, “real-world,” dynamic conditions [3]. This can have
serious cost implications for health systems when the outcomes
promised under RCT conditions fail to deliver during postmarket
surveillance [4]. Increasingly, health decision makers are
focusing on real-world data (RWD) to deliver large-scale
longitudinal insights that are actionable. RWD are collected as
part of routine care in real time using digital health infrastructure
[3,5]. Modern-day health research can capitalize on the benefits
of RWD with a focus on translating the findings into clinical
practice. Together, the findings generated through RCTs and

RWD can bridge evidence gaps to support regulatory
decision-making [6]. RWD “can provide valuable
complementary evidence by answering important questions on
treatment effects in clinical practice that are not answered by
RCTs” [7]. Perspectives in medical research regarding RCTs
as the only source of practice-guiding clinical evidence need to
evolve. Certainly, the use of RWD for regulatory
decision-making must address key considerations to ensure that
the evidence generated is fit for purpose. This includes
evaluation of data relevancy and quality, including accuracy,
completeness, provenance, and transparency of RWD processing
[8]. Steps to address these considerations are evident in the
frameworks and policies emerging over the past decade, for
example, to support the Food and Drug Administration (FDA)
with harnessing RWD for postmarket safety surveillance [9].
Both data obtained through RCTs and RWD have their strengths
and weaknesses (Textbox 1), further emphasizing a
complementary approach to both methods in modern-day health
research.

Textbox 1. Comparing data capture methods for randomized controlled trials (RCTs) versus real-world data (RWD).

Data capture for RCTs

• Demonstrate efficacy under controlled conditions (internal validity)

• Describe effect and causal relationships between an intervention and an outcome

• Data collected in a controlled and scheduled manner in accordance with the clinical trial

• Collected specifically to answer a small number of questions

• Other data regarding comorbidities may be incomplete or contain recall bias

• Intervention compared to either placebo or selected alternative

• Quality assessment tools used to review risk of bias resulting from imperfect RCT methodology

• Data elements centered on a specific research question with limited longitudinal insights

RWD

• Demonstrate effectiveness under real-world conditions (external validity)

• Describe the association or correlation between an intervention and an outcome

• Can be used to derive causal relationships but entail strong assumptions and rigorous methods, including evaluation of the RWD relevancy and
quality

• Data often offer the advantage of being available in real time or near real time (recency of data capture)

• Provide a comprehensive picture of the patient (including details of the illness and social determinants)

• The same data used for clinical care are used for research purposes, noting that RWD can be subject to other forms of bias; for example, the care
received may be a function of socioeconomic resources

• No control arm or intervention compared to standard treatment or care

• Evaluation of data quality is necessary to ensure accuracy, completeness, provenance, and transparency of processing

• Data assets may offer fragmented real-world trajectories across health systems

The interest in RWD for medical research has coincided with
the rapid expansion of health IT (HIT), generating vast volumes
of digital data through a myriad of sources. These include
electronic medical records (EMRs), personal health records,
wearable devices, mobile health, registries, and administrative
data (such as claims and billing activities) [10]. However, the
massive amounts of data now generated across various health
care systems and platforms pose challenges in data integration
and interoperability. The European Commission’s funding

initiatives, such as Horizon Europe and the Innovative Health
Initiative, emphasize the importance of cross-sector
collaboration and data integration to foster improved
interoperability and advance health care research [11,12]. Other
challenges faced by RWD capture for research include privacy
and confidentiality concerns [13]. Using RWD for research
requires the secondary use of the data for purposes other than
those for which they were originally collected [14]. Ethical and
governance considerations must reflect both social license and
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privacy-protecting regulations. However, a difficulty faced by
researchers in the digital era is conforming to regulatory
frameworks established before digitization. While efforts are
underway to integrate access to RWD for secondary use into
updated legislation, novel methods are necessary to harness
“big data” for digital health research. The same way that drug
trials require infrastructure such as research nurses to support
their conduct, digital health and the use of RWD also have
research infrastructure needs [15]. These are not yet present in
most academic institutions.

Health care research urgently requires the transformative power
of data and HIT. Solutions are emerging to capture RWD siloed
across HIT systems while addressing critical challenges such
as interoperability, privacy, security, and effectiveness. This
paper describes the rapid evolution of the medical research
landscape and the ongoing development of modern-day research
infrastructure. Such methods include common data models
(CDMs) [16], federated learning (FL) [17], and synthetic data
generation [18] supported by strong cross-sector collaboration.
These novel methods are explored and, in turn, lessons learned
are offered as a model for other jurisdictions with similar RWD
infrastructure requirements.

Methodology

Health data collection methods have undergone significant
evolution alongside the widespread adoption of HIT systems,
EMRs, and other digital health technologies. To
comprehensively understand this evolution, we conducted a
review and perspective study, tracing the progression from
traditional data capture methods such as RCTs to the integration
of RWD into medical research. Our objective was to provide
both a retrospective examination and a forward-looking
perspective on the evolution of research infrastructure for digital

health over the past 25 years. In our methodology, we outlined
the trends and strategies identified through the rapid review to
overcome barriers to using RWD and enhance health research
infrastructure. We emphasized the incorporation of all available
health data resources to ensure a comprehensive analysis, with
continued attention to data privacy, ethical compliance in digital
health, and mitigation of disclosure risk.

The Right Data for the Right Problem

Overview
To support the evolution of modern-day digital health research,
a multifaceted approach, including synthetic data generation,
mapping to CDMs, FL, and enablers to promote RWD extraction
for research, is proposed. Figure 1 conceptualizes such an
approach using CDM frameworks to support access to routinely
collected health data, synthetic data generation, and FL
infrastructure. Such an approach provides flexibility, offering
the right data for the right problem at hand. Scenarios will
always exist in research that require the extraction of identifiable
or potentially reidentifiable patient information from data
repositories for research purposes. In such circumstances, while
the clinical validity of the data is high, so, too, can be the
disclosure risk. Strict adherence to ethics and governance
research protocols is essential. However, in recent years, there
has been growing interest in alternative methods to harness
RWD while minimizing disclosure risk. Methods to support
RWD access in a deidentified manner, standardizing
terminologies and mitigating the need for data sharing outside
of enterprise structures are of particular focus. In doing so, the
need to access identifiable or potentially reidentifiable patient
health care data is minimized. The strategies identified to deliver
each alternative method, balancing privacy concerns against
clinical usefulness, are outlined in Figure 1.
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Figure 1. Approaches to accessing data for modern-day health research. AI: artificial intelligence; CDM: common data model.

Goal 1: Synthetic Data Generation
Historically, accessing RWD has been associated with many
challenges, such as laborious data access and consent procedures
[19], particularly in environments in which privacy protection
is prioritized and public scrutiny of digital privacy is rising [20].
Synthetic datasets, generated by a model to represent essential
aspects of RWD [21], have been proposed to offer a solution
for both privacy concerns and the need for widespread data
access for analysis [22].

Synthetic datasets are generally classified into 3 broad
categories: fully synthetic, partially synthetic, and hybrid [23].
Fully synthetic datasets entirely synthesize data without original
values, ensuring privacy but compromising data validity [24-26].
In contrast, partially synthetic datasets replace selected attributes
with synthetic values to preserve privacy while retaining original
data, which is beneficial for imputing missing values [24-26].

Hybrid synthetic datasets combine original and synthetic data
for strong privacy preservation, increasing data validity to help
achieve a balance between privacy and fidelity [24-26].
However, there is a more detailed classification by the UK
Office for National Statistics, which describes synthetic data in
6 levels [27], as shown in Figure 1. On the basis of this
classification, a synthetic structural dataset (lowest level),
developed solely from metadata, lacks clinical value and
disclosure risk but is suitable only for basic code testing [27].
Conversely, a replica-level synthetically augmented dataset
(highest level), which preserves format, structure, and patterns,
offers high analytical value but increases disclosure risks due
to its similarity to the original data [27]. The selection of
synthetic data would depend on the nature of the application.

The use of synthetic data has a long-standing history dating
back to the early stages of computing [28]. The early
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foundational work of Stanislaw Ulam and John von Neumann
in the 1940s, particularly focusing on the Monte Carlo
simulation technique [29], is one such example. However, the
notion of fabricating synthetic data to ensure valid statistical
inferences and uphold disclosure control was first suggested by
Rubin (as cited in the work by Raghunathan [22]) as a discussion
of the work by Jabine (as cited in the work by Raghunathan
[22]). Over time, the generation of synthetic data has moved
from the use of statistical methods (eg, multiple data imputation
and Bayesian bootstrap) [23] to more robust algorithms [30]
due to the rise of several novel tools and services [23]. An early
example is the synthetic minority oversampling technique
algorithm, where synthetic data points are generated by selecting
a predetermined number of neighbors for each underrepresented
instance, randomly choosing some minority class instances, and
creating artificial observations along the line between the
selected minority instance and its closest neighbors [31]. This
algorithm underwent maturation over time, leading to the
emergence of several variants [32-35], which predominately
focused on continuous variables but failed to identify nominal
features when applied to datasets with categorical features,
necessitating the creation of new labels for these attributes [36].

The introduction of deep learning methodologies, exemplified
by the inception of variational autoencoders in 2013 and
generative adversarial networks (GANs) in 2014, catalyzed the
evolution of more promising paradigms in the domain of
synthetic data generation [37]. GANs, most importantly [37],
had the potential to generate synthetic data without direct
engagement with the original dataset, a feature with potential
implications for reducing disclosure risk [38]. The GAN model
first proposed by Goodfellow et al [38] considers simultaneously
training two neural network models: (1) a generative model that
captures the data distribution and (2) a discriminative model
that determines where the sample is generated from the model
or data distribution (Figure 2) [39]. Initially, the generative
model commences with noise inputs, devoid of access to the
training or original dataset, relying on feedback from the
discriminative model to generate a data sample [39]. Currently,
GANs have gained a lot of interest due to their capability to
produce high-quality synthetic data that closely match real data,
especially in health care applications [40], including (1)
forecasting and planning, (2) design and evaluation of new
health technology and algorithms, (3) data augmentation, (4)
testing and benchmarking, and (5) education [41].

Figure 2. Generative adversarial network model.

In the domain of published literature, GAN models are
frequently discussed for their role in generating synthetic data
[42-46]. However, various applications and services are now
accessible for creating synthetic data tailored specifically for
health care applications [23]. Among these tools are Synthea,
implemented in Java; DataSynthesizer and SynSys, which are
Python packages; and synthpop and simPop, both packages
based on R [30,47,48]. Synthea uses the PADARSER (publicly
available data approach to the realistic synthetic electronic health
record) framework for synthetic data generation, relying on
publicly available datasets instead of real electronic health
records (EHRs) [49]. The framework emphasizes (1) using
health statistics, (2) assuming no access to real EHRs, (3)
integrating clinical guidelines, and (4) ensuring realistic
properties in synthetic EHRs, as shown in Figure 3 [49].

synthpop uses regression trees for generating variables in a
synthetic population but cannot handle complex data structures

such as sophisticated sampling designs or hierarchical clusters
(eg, individuals within households) [50], whereas simPop
focuses on a modular object-oriented concept that uses various
approaches, such as calibration through iterative proportional
fitting and simulated annealing and modeling or data fusion
through logistic regression, to generate a synthetic population
[50]. In contrast, DataSynthesizer and SynSys use real patient
data for the generation of synthetic datasets. For example, the
DataSynthesizer includes 3 key modules for the generation of
synthetic data: DataDescriber, which analyzes attribute types
and distributions while preserving privacy; DataGenerator,
which uses this analysis to create synthetic data; and Model
Inspector, which provides an intuitive summary for evaluation
and adjustment of parameters [51]. SynSys uses real data to train
Markov and regression models to generate more realistic
synthetic data, as shown in Figure 4 [30].
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Figure 3. PADARSER (publicly available data approach to the realistic synthetic electronic health record) framework reproduced from Walonoski J
et al [49], which is published under Creative Commons Attribution 4.0 International License [52]. EHR: electronic health record.
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Figure 4. SynSys model adapted from Dahmen J et al [30], which is published under Creative Commons Attribution 4.0 International License [53].

Goal 2: CDMs
Sharing clinical data, including clinical trial data, for research
is increasingly recognized as an efficient way to advance
scientific knowledge [54]. However, the sharing of clinical data
in health care is not without its challenges, with research
highlighting concerns related to privacy, security, and
interoperability [55]. While literature exists with regard to
mitigating privacy and security issues in clinical data sharing

for research purposes, interoperability issues persist [56]. One
potential solution that has been touted to limit issues related to
interoperability are CDMs [55].

CDMs are commonly used in research to enable the exchange
or sharing of datasets for specific purposes [57]. The objective
of a CDM is to streamline the conversion of data from diverse
databases into a consistent format with standardized
terminology, thereby enabling systematic analysis [58]. Over
the past decade, several CDMs have been collaboratively
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developed and risen to the level of de facto standards for clinical
research data. These include the Health Care Systems Research
Network (formerly known as the HMO Research Network)
Virtual Data Warehouse, the National Patient-Centered Clinical
Research Network CDM, the Observational Medical Outcomes
Partnership (OMOP) CDM, the Clinical Data Interchange
Standards Consortium (CDISC) Study Data Tabulation Model,
and the Sentinel CDM [59].

The CDISC was one of the oldest known CDMs, established
in 1998, and has been pivotal in streamlining clinical data
acquisition, interchange, and submission processes. With its 12
domains (Textbox 2) and unique variable naming conventions,
the CDISC ensures clarity and consistency in data
representation. However, it mainly aims to provide guidelines
rather than imposing strict data collection requirements, allowing
for flexibility for different study designs and objectives [60].

Textbox 2. Clinical Data Interchange Standards Consortium domains and their data structures [60].

Demographics: 1 record per subject

Disposition: 1 record per subject

Exposure: 1 record per subject per phase or dose

Adverse events: 1 record per subject per adverse event

Concomitant medications: 1 record per subject per medication

Serum chemistry: 1 record per subject per visit per measurement

Hematology: 1 record per subject per visit per measurement

Urinalysis: 1 record per subject per visit per measurement

Electrocardiogram: 1 record per subject per visit

Vital signs: 1 record per subject per visit (per position)

Physical examination: 1 record per subject per examination, body system, or finding

Medical history: 1 record per subject per examination, body system, or condition

Another significant CDM, Sentinel, initiated as part of the
FDA’s Sentinel Initiative to monitor FDA-regulated medical
products on a national scale [61]. It uses standardized concept
codes with 19 tables (Textbox 3) [62], although users may need
to map data due to variations in coding systems [63]. On the
other hand, the Health Care Systems Research Network Virtual

Data Warehouse aims to centralize data extraction and loading
processes across 17 health care systems in the United States
[64]. Its comprehensive structure comprises 7 content areas and
>450 variables spread across 18 tables, as illustrated in Figure
5 [64], enhancing research efficiency by consolidating data
management efforts [64].
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Figure 5. Health Care Systems Research Network Virtual Data Warehouse common data model, modified from Ross TR et al [62], which is published
under a Creative Commons Attribution 4.0 International License [65]. AHFS: American hospital formulary service; DX: diagnostic; EverNDC: Ever
National Drug Code; GPI: generic product identifier; LOINC: Logical Observation Identifiers Names and Codes; MD: medical doctor; NDC: National
Drug Code; Rx: prescription.

J Med Internet Res 2024 | vol. 26 | e58637 | p. 9https://www.jmir.org/2024/1/e58637
(page number not for citation purposes)

Austin et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Textbox 3. Sentinel Common Data Model [62].

Administrative data

• Enrollment

• Demographic

• Dispensing

• Encounter

• Diagnosis

• Procedure

• Prescribing

Mother-infant linkage data

• Mother-infant linkage

Auxiliary data

• Facility

• Provider

Feature engineering data

• Feature engineering

Registry data

• Death

• Cause of death

• State vaccine

Inpatient data

• Inpatient pharmacy

• Inpatient transfusion

Clinical data

• Laboratory test results

• Vital signs

Patient-reported measure (PRM) data

• PRM survey

• PRM survey response

The National Patient-Centered Clinical Research Network was
implemented to support patient-centered studies and stands out
for its expansive data coverage, storing information from >100
million individuals [66] in a common format across its 23
interconnected tables [67]. It incorporates actual dates and a
unique patient identifier for efficient data navigation, ensuring
data integrity and facilitating comprehensive analysis [68]. In
addition, the Observational Health Data Sciences and

Informatics program focused on standardizing medical data
representation across diverse source systems [69]. With its
OMOP CDM comprising 18 tables [70], the Observational
Health Data Sciences and Informatics program integrates data
from >100 databases worldwide [71], addressing the need for
standardized EHR data and consistent patient-level information
in observational databases [69], as shown in Figure 6 [72].
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Figure 6. Observational Medical Outcomes Partnership Common Data Model, reproduced from Jiang G et al [72], which is published under Creative
Commons Attribution 4.0 International License [52].

Figure 7. Extract, transform, and load process adapted from the work published by Abd Al-Rahman SQ et al [73], under the CC-BY-SA license [74].

While most approaches follow a different structure for storing
their data, most of these models use an extract, transform, and
load (ETL) process to map the data from the source database
to the target structure, as shown in Figure 7 [73]. The source
database may come from hospital-wide systems (such as Epic
EMRs, Oracle Health, and Meditech [75]) or departmental
systems (such as MOSAIQ by Elekta [76], ARIA by Varian
[76], picture archiving and communication systems [77],
pathology or laboratory information systems [78], and others).

The ETL process operates via 3 principal stages: extraction,
transformation, and loading [79]. Extraction refers to retrieving
data from relevant sources, often in file formats such as CSV
[79], relational databases such as MySQL [79], nonrelational
databases such as NoSQL [80], graph databases such as Neo4j
[81], or accessed through Representational State Transfer clients

[79]. Transformation entails the refinement and adaptation of
the data to conform to the prescribed schema, encompassing
tasks such as normalization, deduplication, and quality validation
procedures [79]. This stage may also involve aligning the data
with standardized terminologies such as the Systemized
Nomenclature of Medicine–Clinical Terms or the International
Classification of Diseases to ensure semantic consistency and
interoperability across systems [82] or understanding preexisting
standards (such as Digital Imaging and Communications in
Medicine [83], the National Council for Prescription Drug
Programs SCRIPT standard [84], and so on) toward mapping
relevant information. Loading involves the transfer of the refined
data into operational databases, data marts, or data warehouses
for subsequent use [79].
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Goal 3: FL
Traditional centralized machine learning (ML) approaches face
privacy and security risks [85] and limited predictive accuracy
due to single-source data constraints [86]. To limit these
challenges, FL has emerged as a solution by facilitating
distributed model training on local devices. Google introduced
FL in 2016, which uses distributed learning platforms to
leverage enhanced computational abilities of devices, connect
devices executing local training models, and facilitate
cooperation among devices to build consensus global models
of learning [87]. FL offers a secure and efficient approach to
analyzing fragmented health care data [88]. This decentralized
approach reduces the risk of data exposure and vulnerability to
cyberattacks [89].

Over the past years, there has been a notable trend regarding
how medical data are processed and used. EMRs play an
important role in health care data collection and retrieval.
However, strict regulations on data sharing necessitate the
anonymization of sensitive patient attributes [90]. Health care
organizations face challenges in aggregating clinical records
for deep learning models due to privacy, data ownership, and
legal concerns. Balancing data protection with leveraging
collective knowledge is challenging [88]. In health care, FL
initiatives are emerging as a privacy-enhancing approach to
artificial intelligence and ML. These initiatives aim to
collaboratively train predictive models across various institutions
without centralizing sensitive personal data [91]. Recently, FL
has been applied to the health care domain and life science
industry, addressing the need for high-quality models in ML
applications [92,93]. The FL paradigm has gained popularity
for its scalable and privacy-preserving approach to joint training
across federated health data repositories [85,93,94]. FL develops
ML models over distributed datasets in locations such as
hospitals, laboratories, and mobile devices, ensuring data privacy
[88]. FL aims to overcome barriers associated with transferring
sensitive clinical data to a central repository in conventional
centralized artificial intelligence and ML models [85]. This
approach allows for training of ML models on distributed client
nodes, preserving the privacy and integrity of patient data [85].
The core concept of FL involves sharing only the parameters
of the ML model being trained rather than sharing the actual
data [94-96].

The FL methodology involves a network of nodes, each sharing
models instead of raw training data with the central server. FL
is conducted iteratively as follows. Initially, the server
distributes the current global ML model parameters to all
participating edge nodes. Each node then uses its locally stored
data samples to update its own model based on the received
parameters. Subsequently, each node transmits its updated model
parameters back to the server. The server performs a global
aggregation operation, combining and weighting the model

parameters received from each node to generate a new set of
global model parameters. This process is iterated multiple times
until convergence. Importantly, at no stage do the nodes share
their training data with each other or the central server,
enhancing privacy and reducing bandwidth use [87,97,98].

Goal 4: Cross-Sector Collaboration (Enablers to
Promote RWD Access for Research)
The methods outlined previously provide novel approaches to
RWD (or simulated RWD) access to promote digital health
research. While these methods may meet most digital health
research requests, access to ethically approved identifiable RWD
cannot be dismissed. However, a conundrum in the digital era,
with EMRs now generating vast volumes of health care data,
is the limited skilled informaticians trained in data extraction
and analysis. The Joint Science Academies Statement on Global
Issues specific to “Digital Health and the Learning Health
System” noted the basic requirement of developing and
cultivating a digital health workforce, stating that “the training
challenge for leveraging digital health is vast—in health care,
public health and biomedical science” [99]. Those trained in
data extraction are often focused on the operational activities
of the health care organization. Support is needed to streamline
RWD extraction for digital health research. Assigning domain
experts to handle the manual data extraction steps to support
researchers with access to medical RWD is necessary [100].
Academia-industry digital health collaborations can leverage
uniquely skilled resources and networks to benefit both sectors
[101]. Embedding staff with affiliations to both the university
and health care sectors is one potential method. To overcome
barriers related to university-industry collaboration, an
environment fostering the missions of both sectors is necessary
[102]. Being cognizant of the notable differences between the
primary cross-sector objectives is necessary, for example,
feasible timelines and balancing competing demands [103].
This approach is explored further in the use case below.

Use Case

In reviewing the evolution of digital techniques used to harness
RWD, consideration must be given to the application of such
methods to support modern-day research. An illustrative use
case is provided in this section to offer a forward-looking
perspective on where such techniques may be headed.

A center dedicated to digital health research was established in
Queensland, Australia. The center spanned 6 university faculties,
collaborating with external government and industry partners.
To overcome the challenges of harnessing RWD for research,
the center established a service offering a multifaceted approach
to RWD access (Figure 1). The needs and current and future
state of each research infrastructure goal have been summarized
in Table 1.
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Table 1. The needs and current and future state of the research infrastructure goals of a center dedicated to digital health research established in
Queensland, Australia.

Routinely collected health data

(EMRc)
FLbCDMsaSynthetic data

Needs •••• Support clinicians and re-
searchers with access to
RWD

Promote RWD sharing
across organizations while
maintaining data privacy

Ability to collaborate on re-
search both nationally and
internationally using dis-
parate clinical and adminis-
trative datasets

Access to large-scale
RWDd for research, mini-
mizing the risk of patient
disclosure •• Reduce burden on informati-

cians to run bespoke re-
search data extracts through
the establishment of a dedi-
cated team working across
sectors

Enable model training
without centralizing sensi-
tive data, preserving individ-
ual user privacy

• Support for EMR training
and education • Access to large-scale RWD

for research, minimizing the
risk of patient disclosure

• Support for clinical analyt-
ics tool development • Keep data local and share

only model updates, mini-
mizing the risk of data
breaches

•• Reduction of burden on in-
formaticians to run bespoke
research data extracts

Development of AIe
pipelines before RWD ac-
cess

Current
state

•••• Established team of clinical
informaticians and data en-
gineers holding conjoint
positions across both the
university and health care
sectors

Established governance,
ethics, and data custodian
approvals

Local statewide EMR data
transformed to the OMOPf
CDM within the training
(nonproduction) environ-
ment [104]

Semirepresentative data
displaying univariant distri-
butions sourced from pub-
licly available health statis-
tics

• Health databases relevant to
a specific chronic disease
use case standardized to the
OMOP CDM, synthetically
generated and shared with
FL clients to test FL model

• Contractual agreements es-
tablished to demarcate the
roles and responsibilities of
the conjoint staff members
accessing dual networks

Future
state

•••• Continued expansion of the
service to promote digital
health research, including
data extraction beyond the
statewide EMR

Technology established
with the ability to demon-
strate privacy and security
using synthetic data

Local statewide EMR data
transformed to the OMOP
CDM within the production
environment

Representative synthetic
data mirroring multivariant
distributions from the local
statewide EMR

• Scalable and reliable infras-
tructure for FL in health
care designed to handle
large volumes of data from
diverse sources

• Establishment of national
infrastructure for FL in dig-
ital health to generate new
models of care

aCDM: common data model.
bFL: federated learning.
cEMR: electronic medical record.
dRWD: real-world data.
eAI: artificial intelligence.
fOMOP: Observational Medical Outcomes Partnership.

The infrastructure goals highlighted in Table 1 draw upon
techniques emerging in recent decades through the maturation
of digital health technologies and strong cross-sector
collaborations. The use case signifies how organizations are
joining forces to advance modern-day research through RWD
capture. No individual goal was deemed superior, yet through
commitment to drive each approach to RWD access (Figure 1),
this dedicated service is a method for providing researchers with
the right data for the right problem.

Discussion

Overview
The evolution of digital health has seen many health care
organizations shifting beyond the foundational levels of
implementation to established methods of harnessing RWD to
promote a learning health system [105]. A learning health
system needs academic inquiry brought close to the routinely
generated health care data, yet data security and privacy must
remain paramount. While the clinical validity of the data is
always greatest via direct access and extraction from the data
source, so, too, is the disclosure risk. Novel methods have
emerged and evolved to support access to RWD for modern-day
health care research. Application of these techniques over time
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has provided an opportunity to reflect on the emerging needs,
including the strengths and weaknesses of each goal and the
future directions. In addition, the lessons learned for the
described digital health research center case in point (Table 1)
are included for each goal in the following sections.

Synthetic Data Strengths, Weaknesses, and Lessons
Learned
Synthetic data generation has made significant advancements
in recent decades, from statistical methods to robust algorithms
and established applications and services tailored to synthetic
data generation for health care needs. The synthetic data created
by the various models have the potential to reduce costs and
accelerate data generation [106]. As such, synthetic data can
have numerous applications in health care, such as estimating
the impact of policies, augmenting ML algorithms, and
improving predictive public health models [29]. Although
synthetic data hold promise, significant work needs to be done
to make them a clear option to replace RWD [107]. The reason
for this conundrum is the lack of a clear understanding as to
whether such a dataset can be used for decision-making or
whether the final analysis would require original data [108].
Locally, the use of semirepresentative synthetic datasets (Table
1) has been effective in supporting researchers with projects
less reliant on accurate representations within the synthetic data
to enable research to progress while awaiting the necessary
approvals to access production data. Example projects include
the support of qualitative focus group sessions to co-design
clinical analytics tools or development of the infrastructure for
future FL projects. Work continues to explore whether similar
results and accurate conclusions can be drawn from
representative synthetic data when compared to RWD, with
some demonstrating promising results [109,110].

Synthetic data are not free from bias [111], privacy [112], and
data quality assessment [41] issues. Bias, inherent in human
society, especially affects marginalized groups and is reflected
in data access and generation [113]. This poses a risk with ML
algorithm adoption, potentially perpetuating or amplifying
societal biases [111]. Regarding privacy, while synthetic data
have been claimed to be a potential solution for mitigating
privacy concerns, Stadler et al [112] highlight that synthetic
datasets often contain residual information from their training
data, making them vulnerable to ML-based attacks that can
reveal features preserved by the generative model. However, it
is challenging to predict the type of information retained in
synthetic data or the specific features targeted by adversaries,
thereby complicating the assessment of the privacy benefits
provided by synthetic data generation [112]. In addition, Stadler
et al [112] explain that differential privacy, a technique used in
synthetic data generation to inject noise into the original
statistical information for enhanced privacy [114], provides
limited defense against ML-based inference attacks, particularly
for high-dimensional datasets [112]. The evaluation of data
quality is another such issue, which remains an open challenge
[115]. The problem arises from the absence of a standardized
quality metric, which impedes fair and definitive comparisons
between methods, consequently affecting the selection of an
appropriate approach [41]. As a consequence of these issues,
there is a crucial need for tailored regulations on synthetic data

use in medicine and health care to ensure quality and minimize
potential risks [116].

Synthetic data frequently reside in a regulatory gray zone
concerning their use [117], and existing data protection laws
such as the General Data Protection Regulation and Health
Insurance Portability and Accountability Act (HIPAA) have
constraints in adequately addressing all potential risks linked
to synthetic data [29]. For instance, HIPAA’s privacy rule
considers the creation of deidentified data as a health care
operation, thus exempting them from the need for patient
consent, a principle similarly applied in the General Data
Protection Regulation [117]. However, synthetic health data,
while not deidentified, closely replicate real data, raising
questions about whether they should be classified as protected
health information and require informed consent and research
ethics review [117]. Some studies have demonstrated the use
of synthetic data in research, eliminating the need for an ethics
review [118]. Whether this is a scalable future direction for
synthetic data use in research remains to be seen.

CDM Strengths, Weaknesses, and Lessons Learned
The past 2 decades have seen the emergence of numerous CDMs
to support collaborative health care research through data
standardization. For example, the use of the OMOP CDM to
conduct observational studies has grown extensively in recent
years (from 14 publications in 2016 to 57 publications in 2020)
[119], and its utility has been demonstrated in numerous,
large-scale, multinational studies, such as estimating
comparative drug safety and effectiveness [120-122]. The
benefits are obvious for observational research in the digital
era, when research questions can be addressed through
combining databases with different underlying models, different
information types, and different coding systems. What must not
be overlooked is the potential for different biases to exist within
different datasets and these nuances to be lost during translation
to the CDM. Due to the complex transformations between
sources and targets with varying schemas, databases, and
technologies, the ETL implementations are considered prone
to faults or issues [123].

According to Nwokeji and Matovu [124], these issues include
complexity, cost, data heterogeneity, lack of automation,
maintenance, standardization, and time. First, the growing
complexity of data structures presents formidable obstacles to
devising streamlined strategies [124]. In addition, the
cost-intensive nature of ETL solution development imposes
significant financial burdens [120]. Data heterogeneity,
stemming from diverse sources and formats, further complicates
the integration process [124]. Many existing ETL solutions
continue to rely on manual procedures or necessitate human
intervention, indicating an incomplete transition toward
automation [124]. A lesson learned through the local mapping
of the statewide EMR to the OMOP CDM within a
nonproduction environment [104] (Table 1) highlighted the
requirement for a joint clinical and technical venture.
Establishing appropriate governance structures with input from
clinical and technical staff is necessary to clearly articulate and
endorse CDM implementation and ongoing maintenance
decisions. Maintenance of ETL solutions is rendered demanding
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by the variety of data schemas and the dynamic nature of
application requirements [124]. Furthermore, the absence of
standardized methodologies for modeling ETL processes and
executing workflows exacerbates these challenges [124]. Finally,
the protracted process of designing, developing, implementing,
and executing ETL solutions entails considerable time
investments [124]. Despite these challenges, a multitude of
commercial tools, including Microsoft SQL Server Integration
Services, Oracle Warehouse Builder, IBM InfoSphere, and
Informatica PowerCenter, alongside open-source alternatives
such as Talend Open Studio and Pentaho Kettle, serve to
facilitate and simplify these processes [79].

To address interoperability issues, the use of CDMs continues
to expand within the health domain. Areas of future focus
include the ongoing development of CDMs, their vocabularies,
and tools to support their use. Further work is warranted to
establish guidelines for CDM development [125] and achieving
consensus on governance practices across institutions using
RWD for secondary purposes [104].

FL Strengths, Weaknesses, and Lessons Learned
Of the goals discussed, FL is the most recent technique emerging
in the field of RWD access. This technology allows for learnings
to be obtained from health data across organizations and
locations without attempting traditional integration [87,97]. The
adoption of FL in the health care domain addresses the
challenges of data privacy, confidentiality, and security while
still enabling efficient model training [126]. Existing works on
FL in the health sector reveal a diverse range of applications
categorized into prognosis, diagnosis, and clinical workflow.
Prognosis-related applications encompass endeavors such as
stroke prediction and prevention, brain data meta-analysis, and
brain tumor segmentation [88,127,128]. Diagnosis-related
applications include COVID-19 diagnosis, morphometry for
Alzheimer disease, and heart disease predictions from EHRs
[88,129,130]. In addition to prognosis and diagnosis, FL holds
significant potential in optimizing clinical workflows within
the health care sector. These applications encompass various
aspects, such as drug sensitivity prediction, integration of
medical data, and clinical decision support systems [88,131,132].
These advancements highlight FL in streamlining clinical
workflow efficiencies, enhancing patient care, and fostering
innovation in health care delivery [88]. The application of FL
demonstrates its potential to enhance health care outcomes while
preserving data privacy and security, highlighting the
significance of interdisciplinary research and innovative
solutions in advancing FL across scientific domains.

Despite the numerous advantages of FL, this methodology
presents several challenges that must be addressed for its
effective implementation in scientific settings. The challenges
facing FL can be categorized into several critical domains. First,
privacy and security concerns arise from compromised servers
or clients, potentially jeopardizing data integrity and
confidentiality, with active and passive attacks posing threats
to overall data security [87,88,91,133,134]. The distributed
nature of FL gives rise to potential new privacy and security
issues that must be avoided, including the leakage of sensitive
patient information (privacy) and poisoning of data (security)

[135]. Second, communication bottlenecks exacerbate these
challenges, hindering seamless data exchange between clients
and servers and raising issues regarding network state and
protocol efficacy [87,88,91]. Third, addressing the heterogeneity
in data distribution poses significant challenges, particularly in
handling nonindependent and non–identically distributed data
[88,91,136]. Fourth, the rising computing costs, especially
considering the varied capabilities of devices, highlight the
critical need to address challenges related to asymmetric
computing and mitigate concerns regarding energy consumption
in scenarios involving on-device training [85,88,91]. Moreover,
the reliability of central servers responsible for managing local
training and updates is also uncertain, increasing the likelihood
of data leakage and security breaches [87,88,137]. Finally, the
development of new FL computing frameworks, which include
redundant servers, hardware accelerators, and decentralized
training models, necessitates a comprehensive and thorough
investigation [87,138]. These multifaceted challenges highlight
the urgent need for interdisciplinary research and innovative
solutions to facilitate the successful implementation and
advancement of FL across scientific domains.

FL offers a novel approach to collaborative training across health
care data repositories, bypassing the need for data sharing and
safeguarding sensitive medical information [139]. In the use
case provided in this paper (Table 1), the process involved a
combination of approaches. Standardizing the data from health
databases such as EMRs and health registries via a CDM was
necessary, including provision to the FL client to then test the
FL model using a synthetically generated dataset. This
innovative method has the potential to address various health
care issues by using distributed datasets across health care
facilities. By doing so, it creates opportunities for pioneering
research and business opportunities in the future of health care.
Researchers will focus on integrating FL into upcoming medical
devices such as intelligent implants and wearables. This will
lead to the development of new eHealth services, improving
patient well-being.

Personalization is key in preventive health care and chronic
disease management through tailored interventions. It is
expected that FL will drive precision medicine and elevate
health care standards in the coming years. FL also stands to
transform health care delivery, offering improved precision,
accessibility, and patient-centered care [85,88,97,139].

Looking ahead, challenges such as ensuring data quality and
incorporating expert knowledge into FL models need attention.
Designing effective incentive mechanisms is crucial to
encourage users of mobile and wearable devices to participate
in the FL process. This participation involves these devices
collecting high-quality data locally, training local models, and
sharing model updates with a central server.

Cross-Sector Collaboration: Enablers to Promote
RWD Access for Research
Digitization can accelerate RWD access through the novel
technical methods emerging in recent decades. However, a
holistic approach is necessary to support modern-day research
in a system as multifaceted as that of digital health. The types
of collaboration between the university and industry or health
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care sectors to drive digital transformation are varied [140].
Human factors are as important as the technologies themselves.
Rybnicek and Königsgruber [141] identified 4 categories to
drive the success of these cross-sector collaborations:
institutional factors, relationship factors, output factors, and
framework factors. The illustrative use case (Table 1) supports
this approach. Embedding staff members across both types of
organizations with access to both academic and health care
networks and governed by the policies and procedures of the
health care sector was key to supporting RWD access for
research. Contractual agreements were critical to outline the
key roles and responsibilities of conjoint staff, the governance
frameworks by which they must abide, and clear reporting lines
across both organizations. Colocation was deemed essential to
build the relationship and trust. This takes both time and
commitment from both sectors. As organizations continue to
strive for advancements in HITs, it is the interpersonal relations
that are fostering this growth. “As much as we talk about
technology, at the end of the day collaboration is about people”
[140].

Conclusions
The past 25 years have seen a maturation in digital health at
large. HITs are opening new and efficient ways to deliver patient

care. This evolution of patient care delivery and its ability to
digitally capture data through routine care has underpinned the
progression of medical research techniques. A shift in
perspective is necessary, moving away from the emphasis on
RCTs as the only source of practice-guiding clinical evidence
to include the use of RWD. Novel methods are necessary to
harness the vast volumes of RWD now generated through these
digital platforms. Techniques such as synthetic data generation,
CDMs, FL, and collaborations between the health care and
university sectors all support this common goal. Appropriate
policies and frameworks are essential to address the challenges
of using RWD for research. We demonstrated how, by mapping
health care data to a CDM and generating a synthetic dataset,
these approaches facilitate the establishment of FL
infrastructure, highlighting the interoperability of these
methodologies across various research environments. To achieve
a learning health system, a new and disruptive research
infrastructure must be established, maintained, and enhanced
to expedite the translation of research findings into clinical
practice. This infrastructure, equipped with emerging digital
health techniques and supported by strong cross-sector
collaborations, advances research by enabling more effective
RWD capture, providing researchers with “the right data for
the right problem.”
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