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Abstract

Background: The concept of digital twins, widely adopted in industry, is entering health care. However, there is a lack of
consensus on what constitutes the digital twin of a patient.

Objective: The objective of this scoping review was to analyze definitions and characteristics of patient digital twins being
developed for clinical use, as reported in the scientific literature.

Methods: We searched PubMed, Scopus, Embase, IEEE, and Google Scholar for studies claiming digital twin development or
evaluation until August 2023. Data on definitions, characteristics, and development phase were extracted. Unsupervised classification
of claimed digital twins was performed.

Results: We identified 86 papers representing 80 unique claimed digital twins, with 98% (78/80) in preclinical phases. Among
the 55 papers defining “digital twin,” 76% (42/55) described a digital replica, 42% (23/55) mentioned real-time updates, 24%
(13/55) emphasized patient specificity, and 15% (8/55) included 2-way communication. Among claimed digital twins, 60%
(48/80) represented specific organs (primarily heart: 15/48, 31%; bones or joints: 10/48, 21%; lung: 6/48, 12%; and arteries: 5/48,
10%); 14% (11/80) embodied biological systems such as the immune system; and 26% (21/80) corresponded to other products
(prediction models, etc). The patient data used to develop and run the claimed digital twins encompassed medical imaging
examinations (35/80, 44% of publications), clinical notes (15/80, 19% of publications), laboratory test results (13/80, 16% of
publications), wearable device data (12/80, 15% of publications), and other modalities (32/80, 40% of publications). Regarding
data flow between patients and their virtual counterparts, 16% (13/80) claimed that digital twins involved no flow from patient
to digital twin, 73% (58/80) used 1-way flow from patient to digital twin, and 11% (9/80) enabled 2-way data flow between
patient and digital twin. Based on these characteristics, unsupervised classification revealed 3 clusters: simulation patient digital
twins in 54% (43/80) of publications, monitoring patient digital twins in 28% (22/80) of publications, and research-oriented
models unlinked to specific patients in 19% (15/80) of publications. Simulation patient digital twins used computational modeling
for personalized predictions and therapy evaluations, mostly for one-time assessments, and monitoring digital twins harnessed
aggregated patient data for continuous risk or outcome forecasting and care optimization.

Conclusions: We propose defining a patient digital twin as “a viewable digital replica of a patient, organ, or biological system
that contains multidimensional, patient-specific information and informs decisions” and to distinguish simulation and monitoring
digital twins. These proposed definitions and subtypes offer a framework to guide research into realizing the potential of these
personalized, integrative technologies to advance clinical care.

(J Med Internet Res 2024;26:e58504) doi: 10.2196/58504

J Med Internet Res 2024 | vol. 26 | e58504 | p. 1https://www.jmir.org/2024/1/e58504
(page number not for citation purposes)

Drummond & GonsardJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:david.drummond@aphp.fr
http://dx.doi.org/10.2196/58504
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

patient simulation; cyber-physical systems; telemonitoring; personalized medicine; precision medicine; digital twin

Introduction

Each industrial revolution has transformed the practice of
medicine. The first 2 led to the development of new techniques
for the industrial collection of new data (biological, imaging,
etc) on the human body. The third—or digital—revolution
transformed this analogue data into digital data, accelerating
the exchange of information, and allowing the emergence of
computer models to propose a diagnosis, establish a prognosis,
and recommend a treatment [1-3].

For some contemporaries, we are currently in the midst of the
fourth industrial revolution, which is the merging of the physical
and digital worlds, based on 3 pillars: the internet of things,
increasing connectivity, and machine learning–based decisions
[4,5].

Digital twins are emblematic of this new industrial revolution.
Grieves [6] introduced the concept in 2002 as a system
consisting of a physical product, its virtual counterpart, and
2-way data exchange between the 2 entities. However, the term
“digital twin” was first used and defined in 2010 by NASA
(National Aeronautics and Space Administration) engineers as
“an integrated multi-physics, multi-scale, probabilistic
simulation of a vehicle or system that uses the best available
physical models, sensor updates, fleet history, etc., to mirror
the life of its flying twin” [7]. Following the popularization of
the concept of the fourth industrial revolution in 2015, digital
twins attracted interest from all industries [5]. With the objective
of reducing production times through monitoring, coordination,
and control of production systems, the manufacturing industry
became the most active sector in terms of research and
implementation of digital twins [8]. Digital twins also extended
to construction, energy, transport, smart cities, agriculture,
education, and health [8].

In the health sector, the concept of digital twins attracted interest
from industry, scientists, clinicians, and patients [9-11]. Besides
digital twins of hospitals, there is a strong rationale for the
development of digital twins of patients, as these systems could
offer personalized medicine through information gathered by
the internet of things, real-time adaptation of treatments through
efficient connectivity, and even automation of certain aspects
of medical management through predictions based on machine
learning [12]. An increasing number of scientific publications
claim to be developing or to have developed “digital twins” of
organs, physiological systems, or patients. However, when the
term “digital twin” is used in this context, it remains unclear
whether it corresponds to the definitions used in industry, or
whether unique concepts and characteristics emerge for patient
digital twins.

The 3 previous systematic literature reviews related to digital
twins in health did not focus on patient digital twins [12-14].
To contribute to the understanding of patient digital twins, we
conducted a scoping review to systematically map research in
this area. The following research question was formulated:
“What are the definitions and characteristics of digital twins

provided by research teams claiming to develop patient digital
twins for clinical applications, as reported in the scientific
literature?”

Methods

Overview
We conducted this scoping review in accordance with the Joanna
Briggs Institute guidelines for scoping reviews [15-17] and
reported it following the PRISMA-ScR (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews) checklist (Multimedia Appendix 1) [18]. The
authors received training on the methodology of scoping reviews
using the Joanna Briggs Institute Reviewers’Manual 2020 [19].
We registered the protocol for this review at the Open Science
Framework [20].

Search Strategy
We created search strategies with a medical librarian to identify
published papers on patient digital twins. Our initial search was
conducted in MEDLINE via PubMed, using the terms “digital
twin” or “digital twins,” combined with a broad range of
medical-related terms pertaining to patients and precision
medicine. We then adapted this search strategy for each included
database and information source, namely, PubMed, Scopus,
Embase, IEEE, Web of Science, and Google Scholar. When
searching Google Scholar, we used incognito mode to minimize
effects of past search histories and screened the first 500 results.
Full search strategy is reported in Multimedia Appendix 2.

Selection Process
We collated the identified citations from the comprehensive
search and uploaded them into Rayyan, a web-based review
tool [21]. Two independent reviewers (DD and AG) removed
duplicates and screened titles and abstracts for inclusion. All
screening was performed in a masked, duplicate fashion. Any
disagreements between reviewers were resolved through
discussion. Reasons for exclusion at the stage of full-text
screening were recorded.

Inclusion and Exclusion Criteria
We included peer-reviewed research papers in which the authors
claimed to be developing or to have developed or tested a digital
twin in health care, subsequently referred to as a “claimed digital
twin” (CDT). Only literature published in English, French, or
German was included up to August 31, 2023. Finally, to match
the context of this review, we restricted included research to
papers focused on developing or testing digital twins specifically
representing patients, or components of patients.

Exclusion criteria were (1) animal studies, abstracts only,
conference papers, reviews, editorials or correspondence, and
non–peer-reviewed papers; (2) studies in languages other than
English, French, or German; (3) studies unrelated to health; (4)
digital twins not representing patients or part of a patient; and
(5) studies limited to proposing a framework for a digital twin
with no case study.
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Data Charting
Two reviewers (DD and AG) jointly developed a data charting
form using Microsoft Excel to determine which variables to
extract. For each included study, we extracted the following
characteristics: study title, publication year, first author name,
country of the corresponding author, and journal. We compiled
the definitions of digital twins provided by the study authors
and summarized their various dimensions (eg, digital replica,
high-fidelity representation, and 2-way data exchange). Drawing
from NASA’s digital twin definition, we assessed whether the
developed digital twins were multiscale, integrated multiphysics
modeling, and multiple data sources. We incorporated additional
descriptors specific to digital twins for patient care, including
medical discipline, organs or systems represented, categorization
of whether the models constituted anatomical representations
(eg, 3D) and models of physiological systems, and the study’s
objective (simulation, prediction, monitoring, visualization, and
generation of synthetic patients). Technical digital twin
characteristics extracted included types of patient data used,
approach used (mechanistic, data-driven, and hybrid), whether
the digital twin included analytics and advanced visualization,
constituted a model for simulations versus a simulation itself,
capacity and frequency of updates, inclusion of none, 1-way or
2-way data exchange with the patient, and for 2-way exchange,
the nature of feedback (recommendation or other type). Finally,
we determined the clinical research phase of each digital twin
by deriving the clinical research phases developed for artificial
intelligence in medicine (phase 0: discovery and invention;
phase 1: technical performance and safety; phase 2: efficacy
and side effects; phase 3: therapeutic efficacy; and phase 4:
safety and effectiveness) [22]. Additional information on each
variable is given in Multimedia Appendix 2.

To ensure consistency, 2 reviewers (AG and DD) independently
extracted data from the first 10 papers prior to full data
extraction. Any disagreements were resolved through discussion.
Following this pilot extraction and adaptation of the data
charting form, we extracted data from the remaining studies in
a masked, duplicate manner. Studies not meeting inclusion
criteria were excluded. Any disagreements between reviewers
were resolved through discussion.

Unsupervised Classification of CDTs
To perform unsupervised classification of CDT, we analyzed
dissimilarities by using the Gower distance metric on a subpart
of our data set (the variables included are marked with an
asterisk in Multimedia Appendix 2) [23]. The optimal cluster
count was identified using the Partitioning Around Medoids
method, guided by silhouette width analysis across 2-10 clusters
[24]. We then used t-Distributed Stochastic Neighbor
Embedding for dimensionality reduction to facilitate
visualization in a 2D space. These analyses were performed in
R (version 4.2.3) with the packages cluster, Rtsne, and ggplot2.
We finally compared the characteristics of the CDTs of each
cluster using the package gtsummary.

Results

Characteristics of Included Studies
A total of 7224 citations were identified from the search
strategies (Figure 1).

After removing duplicates and screening titles and abstracts,
154 papers were examined in full text, and 68 papers were
excluded (see Multimedia Appendix 2 for a full list of excluded
full-text reviews with exclusion reasons). Finally, 86 papers
[25-110] representing 80 unique CDTs were included in this
scoping review. The full results, with individual data for each
study, can be viewed in tabular form [20].

The first publications of CDTs appeared in 2019. Since then,
publication volume increased yearly from 3 papers in 2019
rising to 23 papers in 2022 and 32 papers in the partial 2023
year (Multimedia Appendix 2). Although incomplete, 2023
totals through August 31 still reflect rising publication volume.

The included publications originated from 22 countries
(Multimedia Appendix 2). The United States was the most
common country of origin, with 25% (22/80 papers) of included
publications. At the continental level, Europe was leading with
49% (43/80) publications, followed by North America with
29% (25/80) and Asia with 18% (16/80). No papers from South
America or Africa were found.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart.

Definitions of Digital Twin Provided by Authors
Definitions of “digital twin” were provided in 63% (55/80
papers) of publications (Multimedia Appendix 2). Among papers
with definitions, a digital twin was defined as a digital replica

of a real object in 76% (42/55) of publications, with real-time
update in 42% (23/55), a patient-specific approach in 24%
(13/55), and a 2-way communication between the real and the
digital object in 15% (8/55; Figure 2).
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Figure 2. Dimensions of digital twins included in definitions provided by authors (gray) and included in the claimed digital twins (black). Created with
BioRender [111] which is published under Creative Commons Attribution 4.0 International License [112].

Medical Domains
Of the 80 CDTs identified, 60% (48/80) represented specific
organs or anatomical regions, while 14% (11/80) embodied
biological systems (eg, immune system). The remaining 26%
(21/80) of publications described other types of CDTs (eg,
systems for emotion recognition, fetal heart monitoring, etc).
Among the 48 publications with CDT representing specific
organs, the most widely modeled organs were the heart (15/48
CDTs, 31%), the bones and joints (10/48, 21%), the lung (6/48,

12%), and the arteries (5/48, 10%; Figure 3 and Multimedia
Appendix 2).

Approximately 6% (3/48) of CDTs involved multiple organs.
Among the 11 CDTs representing biological systems, the
endocrine (4/11, 36%) and the immune system (3/11, 27%)
were the most widely involved (Multimedia Appendix 2). The
most highly represented medical disciplines were cardiology
(16/80 CDTs, 20%), oncology (10/80, 13%), and orthopedics
(9/80, 11%; Multimedia Appendix 2).
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Figure 3. Distribution of organs or systems modeled in the claimed digital twins identified. N=48 claimed digital twin representing specific organs.
Created with BioRender [111] which is published under Creative Commons Attribution 4.0 International License [112].

Characteristics of the Claimed “Digital Twins”
The patient data used to develop and run the 80 unique CDTs
encompassed data from clinical notes (15/80 CDTs, 19% of
publications), laboratory test results (13/80 CDTs, 16%),
medical imaging examinations (35/80 CDTs, 44%), wearable
device data (12/80 CDTs, 15%), and other data modalities such
as electrocardiography, optical tracking, diet data, and
intraoperative hemodynamic measurements (in 32/80 CDTs,
40%; Multimedia Appendix 2). Multimodal data incorporation,
synthesizing various data types and sources, was present in 49%
(39/80) of CDTs. Nearly all CDTs (78/80, 98%) involved data
analytics and 36% (29/80) involved some form of advanced
visualization. Moreover, 10% (8/80) of CDTs involved
multiphysics and 11% (9/80) were multiscale. In terms of
implementation, 50% (40/80) of CDTs followed a mechanistic
approach, 28% (22/80) followed a data-driven approach, 21%
(17/80) combined both approaches, and 1% (1/80) none of these
approaches. Most of the CDTs developed (56/80, 70%)
corresponded to models for simulation, that is, entities (organ
and biological system) that can be used to simulate different
states.

In terms of medical approach, 12% (10/80) of CDTs were
categorized as anatomical, 28% (22/80) as physiological, and
35% (28/80) combined anatomical and physiological features.
The objectives of CDTs were prediction (61/80, 76% CDTs),
simulation (52/80, 65% CDTs), monitoring (11/80, 14% CDTs),
visualization (10/80, 12% CDTs) and generation of synthetic
patient data (8/80, 10% CDTs).

Among the 80% (64/80) of total patient-specific CDTs, 69%
(44/80) were static models, whereas 31% (20/80) were designed
as dynamic models with regular data inputs or outputs on a
daily, hourly, or real-time basis (Multimedia Appendix 2).

Data flow topology characterizes the exchange of information
between patient and digital twin. Moreover, 16% (13/80) of
CDTs involved no flow from patient to their virtual counterpart,
73% (58/80) used 1-way flow from patient to their virtual
counterpart, and 11% (9/80) enabled 2-way data flow between
patient and their virtual counterpart (Figure 2). Within the nine
2-way digital twins, automated feedback occurred via
recommendations to the patient or the physician in 6 cases and
via direct feedback during surgical navigation in 3 cases.

Finally, regarding the clinical research phase of the CDTs, 98%
(78/80) were categorized as phase 0 or 1 (preclinical phases)
and only 2% (2/80) involved clinical assessments and thus
reached phase 2. No CDT corresponded to phase 3 or 4.

Unsupervised Classification of CDTs
Three clusters were identified using the Partitioning Around
Medoids method (Figure 4 and Multimedia Appendix 2). The
highest average silhouette width was observed for a 3-cluster
solution (average silhouette width=0.39), indicating that 3
clusters provided the best separation and cohesion for our data.

Cluster 1 included 43 unique CDTs, which corresponded to
patient-specific organs or systems models for simulations and
predictions, which we will refer to as “simulation digital twins.”
Indeed, 98% (42/43) were models to perform simulations, of
an organ or system, and these were anatomical and physiological
models in 100% (43/43) cases relying on a mechanistic approach
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in 95% (41/43) cases. The output of these CDTs was
patient-specific in 98% (42/43) cases, and their use was planned
for onetime use in 84% (36/43) cases rather than for dynamic
use.

Cluster 2 included 22 CDTs and mainly corresponded to
prediction models and monitoring systems, which we will refer
to as “monitoring digital twins.” In this category, the CDT most
often did not involve an anatomical or physiological model of
the patient (18/22, 82% CDTs). The approach was mainly
data-driven (20/22, 91% CDTs). These CDTs were often

dynamic (13/22, 59% CDTs) and provided feedback in 23%
(5/22) of cases.

Cluster 3 included 15 CDTs and usually corresponded to models
not linked to patients but designed for research, which we will
refer to as “research-oriented models.” Indeed, in this group,
only 7% (1/15) of CDTs were patient-specific [67]. Most CDTs
were models for simulation (12/15, 80%) and involved a
mechanistic approach (9/15, 60% CDTs). Examples of such
CDTs are models of the immune response to vaccines [66] but
also CDTs that corresponded to the generation of synthetic
patients for in-silico trials [107] (5/15, 33% CDTs).

Figure 4. Clusters of claimed digital twins identified. Each point and its associated number correspond to 1 study and its study identification number.
Cluster 1: simulation digital twins; cluster 2: monitoring digital twins; cluster 3: research-oriented models.

Discussion

Principal Findings
This scoping review highlights the growing interest in the
concept of patient digital twins while at the same time revealing
the lack of a uniform vision of this same concept among research
teams.

The publication of scientific papers on digital twins across all
sectors has experienced exponential growth, starting from 1
paper in 2014 to more than 1000 papers per year in 2022,
predominantly in the manufacturing industry [113,114]. Studies
focusing on the development and evaluation of patient digital
twins emerged later, from 2019 onward, but have seen the same
growth, particularly in Europe and North America.

Lack of Consensus in Definitions of Digital Twins and
Patient Digital Twins
Despite growing interest, there is no consensus definition of the
digital twin concept. Depending on the research teams and fields
of application, the definitions and characteristics of digital twins
differ [114], and this is also reflected in our study, with a
diversity of definitions and types of CDTs.

If one were to strictly import the digital twin definition used by
Grieve [6] and NASA [7] from the manufacturing industry and
aerospace sector to patients, a digital twin of a patient would
be an integrated multiscale, probabilistic simulation of a patient
that uses the best available models, sensor updates, medical
history, and so forth, to mirror the health status of the patient
in real time and act on them. But this definition is not currently
achievable since no patient digital twin is able to capture the
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complexity of the human body in real time. Indeed, creating a
patient’s digital twin is different from creating a digital twin of
an object such as an airplane. An airplane is designed and
developed entirely by humans, who have mastery over the
composition and physical properties of each part of an airplane,
the assembly of all these parts, and the interaction of the whole.
In contrast, we still have an imperfect understanding of the
functioning of the human body and the interaction of its different
organs and systems. It is therefore simpler to model an airplane
than the human body with a high degree of fidelity and in a
multiscale way. It is also easier to integrate additional sensors
and actuators on an airplane’s controls than to have patients
continuously wear or have implanted sensors or actuators to
obtain the 2-way, real-time data exchange between the plane or
patients and their digital twin. Moreover, while the digital twin
of the airplane relies essentially on the physical properties of
the aircraft, the digital twin of a patient will have to go beyond
anatomical and physiological models of the patient’s various
organs and systems to include models of the patient’s cognitive
and emotional functioning [115]. Finally, concerning the
practical use of the term “patient digital twin,” they must be
able to echo patients’ own perceptions of what a digital twin is.
These terms are not neologisms, but each refers to concepts
already used in everyday language by patients. Because twin
refers to a multiple birth, it is likely that the patients picture a
digital twin as a realistic avatar of themselves in the same health
state. This implies that in the mind of a clinician or patient not
well versed in computer science, the first representation of a
patient digital twin will be that of a 3D representation of the
patient’s body and its functioning.

A Practical Definition for Patient Digital Twins
For all these reasons, the concept of a digital twin, which is
appropriate in manufacturing, could be considered inappropriate
in medicine. However, on the basis of the various papers in this
review, we believe that this concept actually corresponds to
current advances brought by the multiplication of data sources,
data analysis, and the visualization of patients’ state of health.
It could also be a useful educational tool for the communication
with patients when discussing models and predictions made
from their data. Since it is currently not feasible to bring together
all the characteristics of the digital twin in manufacturing, we
propose the following definition of a patient digital twin: “A
patient digital twin is a viewable digital replica of a patient,
organ, or biological system that contains multidimensional,
patient-specific information and informs decisions.” This
definition is based on the characteristics of the digital twins
identified in this review (digital replica, multidimensional, and
patient-specific) and aligns with the broader definition of the
National Academies of Sciences, Engineering, and Medicine,
which defines a digital twin as “a set of virtual information
constructs that mimics the structure, context, and behaviour of
a natural, engineered, or social system (or system-of-systems),
is dynamically updated with data from its physical twin, has a
predictive capability, and informs decisions that realize value”
[116].

The advantage of our definition is that it can exclude what is
not a patient digital twin: generic models of cells, tissues, organs,
or biological systems not linked to a patient but used to study

disease progression or drug development [33,58,84], which
corresponded to our cluster 3 (research-oriented models); pure
cyber-physical systems, that is, systems such as implantable
cardioverter-defibrillators, or artificial pancreas, which do not
use a representation of the patient and therefore not a “viewable”
digital replica of the patient; digital patient data created from
patient databases for in-silico trials [51,103,107]; often using
generative adversarial networks, which we propose to call
“synthetic patients” instead; data sets from another patient,
similar to those of the index patient [81]; machine
learning–based classifiers, trained on a population to predict a
diagnosis [73]; and patient models built from a single data
source, such as demographic characteristics or imaging
[35,51,53].

Simulation and Monitoring Patient Digital Twins
This definition of patient digital twins also encompasses the 2
major trends revealed by this study. On one hand, digital twins
offering a high degree of fidelity, combining advanced
anatomical and physiological models, based on mechanistic
approaches or combining mechanistic and data-driven
approaches [47,70,109]. However, their limitation is their
common reliance on hospital-acquired data such as imaging
data (computed tomography and magnetic resonance imaging)
or intraoperative hemodynamic data. They are therefore
generally restricted to onetime purposes and not in a dynamic
form. On the other hand, digital twins corresponding to real-time
representations of patients through home-based data collection
via wearable, using machine learning techniques for analysis
and alert detection [29,31]. This type of digital twin is dynamic,
can be 2-way by giving recommendations to patients or by
modifying a biological parameter of the patient via medical
devices, but often offers little or no information on the patient’s
anatomy or physiology. For it to be differentiable from a
cyber-physical system or a telemonitoring system, it must
integrate different data sources, data analysis systems, and a
visualization of the patient organ, system, or body. We thus
propose 2 major categories of patient digital twins based on our
clustering analysis (Figure 5).

Simulation patient digital twins (derived from cluster 1):
personalized, static, viewable digital replicas of patients’
anatomy and physiology based on computational modeling to
run simulations predicting outcomes in hypothetical scenarios
or evaluating therapeutic approaches. These digital twins are
mostly used for onetime assessments rather than continuous
monitoring.

Monitoring patient digital twins (derived from cluster 2):
personalized, dynamic, viewable digital replicas of patients
leveraging aggregated health data and analytics to enable
continuous predictions of risks and outcomes over time and
provide feedback for optimizing care. These digital twins are
mostly focused on continuous tracking rather than detailed
mechanistic simulation.

An emblematic example of a simulation patient digital twin is
a personalized cardiac model that integrates a patient’s
anatomical and physiological data to create a 3D virtual
representation of his or her heart [61]. Computational
simulations are then performed on this digital twin to predict
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outcomes or optimize treatments, such as evaluating different
ablation strategies for atrial fibrillation. These digital twins
enable onetime, patient-specific assessments through detailed
mechanistic modeling.

An emblematic example of a monitoring patient digital twin
would be a personalized representation of the bronchi of a child

with asthma based on real-time data from connected objects
such as smart inhalers, spirometers, and portable air quality
monitors [117]. This may allow prediction of the risk of an
asthma attack and enable children to visualize the targets of the
asthma treatments they are taking, namely, bronchial
inflammation and bronchoconstriction.

Figure 5. Proposed definitions and characteristics of patient digital twins. PDT: patient digital twin. Created with BioRender [111] which is published
under Creative Commons Attribution 4.0 International License [112].

Future Directions
As technical progress is made, it is likely that these 2 types of
patient digital twins will converge, combining both mechanistic
models and increasingly efficient continuous data collection
and data-driven approaches [118]. However, currently, only 14
CDTs from this review would meet the definition of patient
digital twins combining multidimensional, patient-specific data,
data analytics, and advanced visualization, all being simulation
patient digital twins [27,38,41,47,52,61,62,65,70,74,92,

102,109,110]. Digital twins for surgical navigation systems are
the most advanced, with 3 teams presenting patient digital twins
combining both a mechanistic approach and a dynamic real-time
adaptation [62,92,110].

The main benefit expected from these patient digital twins is to
offer increasingly personalized medicine, taking into account
all the available data and patient-specific simulations and
predictions. This would make it possible, for example, to choose
the most appropriate drug treatment based on the patient’s
medical history, allergies, comorbidities, and genetic profile
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[26]; the most appropriate stent for the configuration of the
aortic dilatation [27]; and the least risky surgical approach
thanks to preoperative simulations. But the benefits could also
be for patient education and engagement: patients would interact
with their digital replica to better understand their own body,
health conditions, and influence of behaviors, and collaborate
more with providers.

Strengths and Limitations
The strength of this review is to be the first to have carried out
a systematic analysis of the literature concerning patient digital
twins and to have been able to identify the major trends. We
also acknowledge several limitations. First, in the absence of a
consensual definition of the digital twin concept, we chose to
include all papers in which the authors claimed that they had
developed a digital twin or part of a digital twin. This approach
undoubtedly led us to exclude some papers that embody the
concept of a digital twin but did not use that specific term, such
as works from the Physiome Project [119] or the Virtual
Physiological Human initiative [120]. Conversely, it may have
resulted in the inclusion of some papers that, in fact, did not
develop a digital twin but only a simple prediction model. To
mitigate this limitation, we proposed our own definition and
typology of patient digital twins, derived from characteristics
found in the reviewed health care literature and aligned with
well-established definitions from other fields, such as NASA’s
definition. This approach ensures that our definition is grounded
in current health care applications and fundamental digital twin
principles, enhancing its robustness and adaptability.

Second, we realized that some characteristics of digital twins
were not appropriate for consistent assessment, either because
they were too industry-specific, such as the “multiphysic”
characteristic, or because they did not allow for consistent
categorization. For example, we often struggled to determine
whether a presented digital twin was at phase 0 or phase 1 of
development and chose to merge these 2 categories into a single

“preclinical” category. This may have affected the granularity
of our analysis. Future research could develop more precise and
universally applicable criteria for classifying digital twin
characteristics.

Third, we did not include papers written in languages other than
English, French, or German. This language limitation may have
led to underrepresentation of work from regions where other
languages are predominant, potentially biasing our findings
toward research conducted in these languages.

Fourth, we did not include conference papers. This exclusion
might have omitted recent or preliminary findings that are often
first presented at conferences, possibly affecting the
comprehensiveness of our review.

Finally, our cluster analysis has limitations due to potential
sensitivity to variable selection and the choice of clustering
methods, which may influence the results. In addition, the
relatively small sample size of 80 CDTs could affect the stability
and generalizability of the clusters identified. Although we
carefully selected variables and methods, these factors may still
influence the findings. Therefore, our analysis provides valuable
insights, but these should be interpreted with caution. Future
research with larger sample sizes and exploration of different
clustering techniques could enhance the reliability and
generalizability of such analyses.

Conclusions
We propose that a patient digital twin be defined as “a viewable
digital replica of a patient, organ, or biological system that
contains multidimensional, patient-specific information and
informs decision.” We currently identify 2 categories, simulation
patient digital twins and monitoring patient digital twins. In the
future, we envisage a fusion of these 2 types of digital twins
that will combine a high degree of fidelity based on anatomical
and physiological models with real-time updating and feedback
to the patient.
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