
Original Paper

Development and Validation of Deep Learning–Based Infectivity
Prediction in Pulmonary Tuberculosis Through Chest Radiography:
Retrospective Study

Wou young Chung1*, MD, MS; Jinsik Yoon2*, BS; Dukyong Yoon3,4,5*, MD, PhD; Songsoo Kim3, MD, MS; Yujeong

Kim3, PhD; Ji Eun Park1, MD, PhD; Young Ae Kang6, MD, PhD
1Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Republic of Korea
2Department of Integrative Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
3Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
4Institute for Innovation in Digital Healthcare, Severance Hospital, Seoul, Republic of Korea
5Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin, Republic of Korea
6Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
*these authors contributed equally

Corresponding Author:
Young Ae Kang, MD, PhD
Department of Internal Medicine
Yonsei University College of Medicine
50-1 Yonsei-ro, Seodaemun-gu
Seoul, 03722
Republic of Korea
Phone: 82 2 2228 1954
Email: mdkang@yuhs.ac

Abstract

Background: Pulmonary tuberculosis (PTB) poses a global health challenge owing to the time-intensive nature of traditional
diagnostic tests such as smear and culture tests, which can require hours to weeks to yield results.

Objective: This study aimed to use artificial intelligence (AI)–based chest radiography (CXR) to evaluate the infectivity of
patients with PTB more quickly and accurately compared with traditional methods such as smear and culture tests.

Methods: We used DenseNet121 and visualization techniques such as gradient-weighted class activation mapping and local
interpretable model-agnostic explanations to demonstrate the decision-making process of the model. We analyzed 36,142 CXR
images of 4492 patients with PTB obtained from Severance Hospital, focusing specifically on the lung region through segmentation
and cropping with TransUNet. We used data from 2004 to 2020 to train the model, data from 2021 for testing, and data from
2022 to 2023 for internal validation. In addition, we used 1978 CXR images of 299 patients with PTB obtained from Yongin
Severance Hospital for external validation.

Results: In the internal validation, the model achieved an accuracy of 73.27%, an area under the receiver operating characteristic
curve of 0.79, and an area under the precision-recall curve of 0.77. In the external validation, it exhibited an accuracy of 70.29%,
an area under the receiver operating characteristic curve of 0.77, and an area under the precision-recall curve of 0.8. In addition,
gradient-weighted class activation mapping and local interpretable model-agnostic explanations provided insights into the
decision-making process of the AI model.

Conclusions: This proposed AI tool offers a rapid and accurate alternative for evaluating PTB infectivity through CXR, with
significant implications for enhancing screening efficiency by evaluating infectivity before sputum test results in clinical settings,
compared with traditional smear and culture tests.

(J Med Internet Res 2024;26:e58413) doi: 10.2196/58413
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Introduction

Pulmonary tuberculosis (PTB) is a global health concern that
continues to challenge public health systems. In 2022, it affected
approximately 10.6 million people, with an incidence rate of
133 per 100,000 people. Notably, it has claimed the lives of
approximately 1.13 million patients who are HIV negative and
167,000 patients who are HIV positive, underscoring its high
mortality rate [1].

Many people are infected with the tuberculosis bacteria, but not
all develop active tuberculosis. Identifying this asymptomatic
infection is a major challenge in public health [2]. Traditional
tuberculosis diagnostic methods include smear and culture tests,
which may be time-consuming or exhibit low sensitivities,
resulting in missed early diagnosis. As tuberculosis bacteria are
airborne, quickly identifying and isolating patients with active
tuberculosis is crucial for preventing further spread. In addition,
rapid diagnosis allows for the timely and appropriate treatment
of patients, increasing the success rate and minimizing
complications [3].

The sensitivity of traditionally used smear tests is highly
variable, ranging from 50% to 60% [4]. Thus, these tests may
not detect PTB, particularly when there are low bacterial loads,
and are unreliable for early diagnosis. This problem can increase
the risk of missing PTB in its early stages and result in patients
with asymptomatic or mild symptoms not receiving appropriate
diagnosis and treatment [5].

Although culture tests exhibit a high sensitivity of approximately
80% [6], they require several weeks and sophisticated laboratory
facilities, which may not be readily available, especially in
resource-limited settings. However, these delays can hinder the
proper initiation of treatment for people with active PTB, which
can eventually lead to poorer health and increased mortality.
When a rapid and accurate diagnosis is not made, PTB can
easily spread to others, imposing a significant burden on public
health and complicating control and management efforts [7].
Furthermore, traditional sputum testing has exhibited a
sensitivity of 52% for patients undergoing treatment [8].

Computed tomography (CT) is an important diagnostic tool that
provides detailed information of lung structures for lung disease
evaluations, particularly PTB [9]. However, despite its
diagnostic use, using CT for PTB diagnosis has several critical
issues, including limited availability, high costs, and radiation
exposure concerns [10]. For example, a lack of imaging facilities
necessary for CT scans may exist in resource-limited countries.
This limitation restricts access to crucial diagnostic imaging,
delaying the diagnosis and treatment of patients in these regions.
Consequently, health crises may be exacerbated by allowing
diseases to spread more widely without timely intervention.
Recent advancements in medical imaging, specifically chest
radiography (CXR), have contributed significantly to the early
detection and management of PTB. The use of CXR as a primary

PTB screening tool has been reaffirmed by its high sensitivity
despite its specificity limitations. Various studies have
demonstrated that CXR is instrumental for identifying PTB,
especially in vulnerable populations that exhibit a notably higher
disease prevalence than the general population [11,12].

The use of CXR for assessing PTB infectivity offers several
key advantages over CT as x-ray equipment is more widely
available and simple to operate. In addition, it enables swift
diagnosis and timely treatments, which is particularly
advantageous for regions with limited access to advanced
medical equipment. Moreover, CXR involves significantly less
radiation exposure than CT, which is crucial for sensitive groups
such as pregnant women and children, who are more susceptible
to the adverse effects of radiation. CXR is also highly suitable
for large-scale screening. Thus, its rapid processing and cost
efficiency make it ideal for mass PTB screening initiatives that
are vital for curbing the spread of tuberculosis.

The advent of deep learning technologies has opened new
avenues for enhancing the diagnosis and management of patients
with PTB [13]. Our study leverages these advancements to
differentiate infectious and noninfectious PTB cases using CXR,
which is critical for determining appropriate quarantine measures
and controlling the spread of tuberculosis [14]. Conventional
PTB detection approaches are primarily used to identify the
presence or absence of the disease. However, the infectious
status of PTB plays a crucial role in public health, particularly
for making quarantine decisions and preventing its spread [15].

This study was motivated by the need for diagnostic tools that
can provide insights into the infectivity of PTB cases beyond
mere detection. The aim of our artificial intelligence (AI) tool
is to bridge the gap in PTB management in resource-limited
countries by using CXR to evaluate the infectivity of patients
with PTB more quickly and accurately than when using smear
and culture tests. The proposed tool can significantly impact
public health strategies and offer a more targeted approach for
quarantine decisions.

Methods

Patients and Infectivity Labeling
The cohort comprised patients who met the following criteria:
(1) first PTB diagnosis between January 2004 and June 2023,
(2) underwent sputum examinations, (3) CXR performed within
–60 to +180 days from the initial diagnosis date, (4) at least 1
positive sputum sample (smear or culture), and (5) received a
successful 6-month treatment course (no treatment after the
seventh month).

For positive labels, infectious CXR images were defined as
those obtained from the initial diagnosis date to the last positive
sputum test result. For negative labels, we used CXR images
obtained after the conversion date, which was the day when the
sputum test result changed from positive to negative.
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Specifically, a 1-month gray zone was established following
the next sputum test date after the conversion date, that is, the
CXR image obtained after the second negative sputum test result
post conversion was classified as noninfectious.

We used data from Severance Hospital for the training dataset.
Internal validation was performed using temporal validation,
and external validation was conducted using data from Yongin
Severance Hospital, which has different geographical and scale
characteristics compared with Severance Hospital. The data of
patients with PTB who visited Severance Hospital, which is a
2437-bed tertiary teaching hospital in Seoul, between 2004 and
2020 (31,260 CXR images) were used for model training.
Subsequently, data from patients who visited in 2021 (1855
CXR images) were used for testing, while data from those who
visited between 2022 and 2023 (3027 CXR images) were used

for internal validation. The total data included 4492 patients
and 36,142 CXR images (18,557 negative and 17,585 positive).
In addition, data from Yongin Severance Hospital, which is a
separate 708-bed general hospital located in Yongin, were used
for external validation. These included 299 patients and 1978
CXR images, with 863 negative and 1115 positive cases. Figure
1 illustrates the selection process, highlighting the distinct
contributions of each institution.

We also used a lung segmentation dataset comprising 704 CXR
images, sourced from the National Library of Medicine, National
Institutes of Health, United States [16], and the Third People's
Hospital of Shenzhen, China [17]. We divided the dataset into
3 subsets, allocating 60% for training, 20% for testing, and 20%
for validation.

Figure 1. Systematic flowchart of the patient selection criteria and process used in this study. CXR: chest radiography.

Segmentation Model and Cropping Lung Region
We developed a lung segmentation model based on TransUNet
[18] to focus the analysis on lung parenchyma in the CXR
images. Figure 2 shows an example CXR image, where only

the lung region is segmented. Following segmentation, only the
cropped lung regions were used in the analysis. Further details
regarding the segmentation model are provided in Multimedia
Appendix 1.
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Figure 2. Lung area segmentation and cropping in chest radiographs to enhance tuberculosis infectivity assessment. Left: original chest radiographs;
center: segmented and cropped lung area; right: chest radiographs used for analysis.

Convolutional Neural Network and Its
Decision-Making Process
We selected the DenseNet121 [19] architecture, which was
pretrained using the CheXNet [20] dataset, for developing an
infectivity evaluation model. Detailed information regarding
the infectivity evaluation model is provided in Multimedia
Appendix 2.

In addition, we incorporated gradient-weighted class activation
mapping [21]. It visually illustrates the CXR sections on which
the neural network focuses during the prediction process through
a heat map, highlighting the most influential areas for the
predictions. Furthermore, we used local interpretable
model-agnostic explanations [22] to segment the CXR images
and elucidate the regions that contributed most significantly to
its predictions, thereby providing additional insights into its
decision-making process.

Statistical Analysis
This study presents the quantitative data as mean values with
SD and categorical data as frequencies and percentages.

In the baseline characteristics, for the analysis of categorical
variables, the Fisher exact test was used for “Leukemia” only,
whereas the remaining variables were statistically tested using
the chi-square test. In addition, “Age” was tested through the
Mann-Whitney U test. In all statistical tests, a P value of <.05
was considered statistically significant. The accuracy, area under
the receiver operating characteristic curve (AUROC), area under
the precision-recall curve (AUPRC), sensitivity, specificity,
positive predictive value (PPV), and negative predictive value

(NPV) were used to evaluate the performance of the AI model.
We used 1000 bootstrap iterations to compute the 95% CIs for
the above metrics.

All analyses were performed using Python (version 3.10.9;
Python Software Foundation), TensorFlow-GPU (version 2.10.0;
Google), and R (version 4.3.1; R Foundation for Statistical
Computing).

Ethical Consideration
This study adhered to the Declaration of Helsinki guidelines
and was approved by the institutional review board of Severance
Hospital (4-2023-0679). Owing to its retrospective design, the
requirement for individual patient consent was waived by the
institutional review board. In addition, we adhered to the
Guidelines for Developing and Reporting Machine Learning
Predictive Models in Biomedical Research: A Multidisciplinary
View [23] throughout our study.

Results

Baseline Characteristics
The baseline characteristics of the patients from both hospitals
are summarized in Table 1. The proportion of male patients was
slightly higher at Severance Hospital (2718/4492, 60.51%) than
at Yongin Severance Hospital (178/299, 59.53%), although the
difference was not statistically significant (P=.91). In addition,
the average ages of patients at Severance Hospital and Yongin
Severance Hospital were 65 (SD 18.95) years and 66.14 (SD
18.84) years, respectively. This difference in age distribution
was not statistically significant (P=.22). However, there were
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significant differences in the prevalence of certain conditions.
Chronic obstructive pulmonary disease was more prevalent in
the Yongin Severance Hospital group (89/299, 29.77%) than
in the Severance Hospital group (914/4492, 20.34%), with a P
value of <.001.

Similarly, the prevalence of lung cancer and all cancer types
was significantly higher in the Severance Hospital group (lung
cancer: 255/4492, 5.68%; all cancers: 1200/4492, 26.71%) than
in the Yongin Severance Hospital group (lung cancer: 4/299,
1.34%; all cancers: 28/299, 9.36%), both with P values of <.001.
Other conditions such as drug-induced interstitial lung disease,

connective tissue diseases, end-stage renal disease, and diabetes
showed no statistically significant differences between the 2
groups (all P>.05). In addition, the prevalence of leukemia and
pulmonary edema was similar between the 2 groups (leukemia:
Severance Hospital 73/4492, 1.63%; Yongin Severance Hospital
6/299, 2%; pulmonary edema: Severance Hospital 78/4492,
1.74%; Yongin Severance Hospital 4/299, 1.34%), with P values
of .78. Overall, these findings suggest that although there were
some statistically significant differences in the prevalence of
certain conditions between the patients from the 2 hospitals,
other baseline characteristics such as sex, age, and the
prevalence of several other conditions were similar.

Table 1. Baseline characteristics.

P valueYongin Severance Hospital
(n=299)

Severance Hospital
(n=4492)

Characteristics

.91178 (59.53)2718 (60.51)Male, n (%)

.2266.14 (18.84)65 (18.95)Age (years), mean (SD)

<.00189 (29.77)914 (20.35)Chronic obstructive pulmonary disease, n (%)

<.0016 (2.01)109 (2.43)Drug-induced interstitial lung disease, n (%)

<.0014 (1.34)255 (5.68)Lung cancer, n (%)

.095 (1.67)170 (3.78)Connective tissue disease, n (%)

.9938 (12.71)560 (12.47)End-stage renal disease, n (%)

.0988 (29.43)1057 (23.53)Diabetes, n (%)

.786 (2.01)73 (1.63)Leukemia, n (%)

<.00128 (9.36)1200 (26.71)All cancers, n (%)

.784 (1.34)78 (1.74)Pulmonary edema, n (%)

Infectivity Evaluation
The performance of the infectivity evaluation model was
assessed using both internal and external validation sets. The
results are summarized in Figure 3 and Table 2. In the internal
validation set, the model exhibited an accuracy of 73.27% and
a sensitivity of 67.55%, indicating its ability to identify true
positive cases correctly, and a specificity of 78.15%, reflecting
its effectiveness in identifying true negative cases. Its PPV and
NPV were 72.50% and 73.86%, respectively. Its AUROC, which
indicates the overall diagnostic ability, was 0.79, whereas its
AUPRC was 0.77 (Figure 4A). In the external validation set,
the model exhibited an accuracy of 70.29%, a sensitivity of
72.87%, a specificity of 66.98%, and PPV and NPV of 73.94%
and 65.75%, respectively. In addition, it achieved AUROC and
AUPRC values of 0.77 and 0.8 (Figure 4B), respectively,

demonstrating robust performance in differentiating between
positive and negative cases on an external validation. We
performed calibration plotting to assess how well the predicted
probabilities matched the actual outcomes and further evaluate
the model. The Brier score, which measures the accuracy of
probabilistic predictions, was 0.18 for internal validation and
0.2 for external validation, indicating high levels of calibration
and reliability of the probability estimates of the model (Figure
4C). We performed a decision curve analysis to demonstrate
clinical use. At nearly all thresholds, the net benefit of using
the AI model was higher than that of other strategies. This
indicates that the AI model operates effectively across various
thresholds, with the highest net benefit observed in the midrange
probability thresholds (Figure 4D). The results of comparing
the model to other architectures are presented in Multimedia
Appendices 3 and 4.
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Figure 3. Confusion matrices for (A) internal and (B) external validation of the infectivity evaluation model at a threshold of 0.5.

Table 2. Infectivity evaluation performance of the artificial intelligence model.

NPVdPPVcSpecificitySensitivityAUPRCbAUROCaAccuracy

0.74 (0.72-0.76)0.73 (0.70-0.75)0.78 (0.76-0.80)0.68 (0.65-0.70)0.77 (0.75-0.80)0.79 (0.78-0.81)0.73 (0.72-0.75)Severance Hospital
(internal valida-
tion), mean (95%
CI)

0.66 (0.63-0.69)0.74 (0.72-0.77)0.67 (0.64-0.70)0.73 (0.70-0.76)0.8 (0.77-0.82)0.77 (0.75-0.79)0.7 (0.68-0.73)Yongin Severance
Hospital (external
validation), mean
(95% CI)

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cPPV: positive predictive value.
dNPV: negative predictive value.
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Figure 4. Performance evaluation of the model: internal and external validation results. (A) ROC curve of the model, illustrating the trade-off between
sensitivity and specificity, with AUROC values for internal and external validation; (B) PR curve of the model, highlighting precision-recall trade-offs
with AUPRC values; (C) calibration plot with Brier scores, showing the agreement between predicted probabilities and observed outcomes; and (D)
decision curve analysis, evaluating the net benefit across different threshold probabilities. AUPRC: area under the precision-recall curve; AUROC: area
under the receiver operating characteristic curve; PR: precision-Recall; ROC: receiver operating characteristics.

Visualizing the Decision-Making Process of the AI
Model
In the visualization of the decision-making process of the AI
model, it was observed that the model focuses particularly on
the left and right lung apex regions. This is consistent with
previous findings that the high oxygen concentration and poor

lymphatic drainage in the lung apex provide a suitable
environment for PTB growth [24]. Thus, it helped in
understanding the features that were most indicative of
infectivity within the lung regions (Figure 5). These visualization
techniques made the model predictions transparent, ensuring
that the decision-making process aligned with clinical
expectations and knowledge.
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Figure 5. Left: chest radiographs used for the analysis; middle: results of GradCAM; and right: results of LIME. Both the upper and lower panels
display chest radiographs that were accurately identified as positive by the model. The analysis in the upper figure focuses on the left lung apex, while
the analysis in the lower figure concentrates on the right lung apex, visualizing the areas of frequent tuberculosis occurrences. GradCAM: gradient-weighted
class activation mapping; LIME: local interpretable model-agnostic explanations.

AI Performance in Evaluating Pulmonary Tuberculosis
Infectivity Across Subgroups and Hospitals
Subgroup analyses were conducted among disease groups that
showed differences in prevalence in the baseline characteristics,
such as chronic obstructive pulmonary disease (COPD) and all
cancers between the 2 hospitals, to ascertain whether the model
was affected by a particular disease group. The drug-induced
interstitial lung disease and lung cancer groups could not be
analyzed owing to the presence of only negative cases and the
small number of patients in the external validation set. Detailed
results for the COPD and all cancers groups between hospitals
are presented in Multimedia Appendix 5.

In the analysis between the COPD and non-COPD groups, the
AI model exhibited lower sensitivity for both hospitals in the
COPD group compared with the non-COPD group. In the
comparison between the all cancers and noncancer groups, the
all cancers group exhibited higher scores than the noncancer
group in several metrics, except for specificity and NPV, at both
hospitals.

Discussion

Principal Findings
The proposed deep learning model that uses CXR images to
evaluate PTB infectivity can facilitate clinical decisions
regarding quarantine or discharge as well as assist in evaluating
the success of antituberculosis treatments. Furthermore, the
ability to differentiate active lesions from healed, old lesions
or those being healed can help to avoid unnecessary treatments

or evaluations of inactive lesions, which is often an issue in
countries with high PTB incidence rates [25,26].

CXR is an important tool for PTB screening, and the World
Health Organization recommends its use for this purpose.
However, many countries with a high PTB burden have a
shortage of trained CXR specialists [27-29]. Therefore, AI-based
screening of active PTB could provide these regions with a
useful tool to protect public health and enhance PTB control.
In addition, according to Kazemzadeh et al [27], deep
learning–based, automatic, active PTB screening tools have the
potential to offer significant cost savings of 40% to 80% in
settings with a prevalence of 1% to 10%.

Furthermore, in countries with moderate to high PTB
prevalence, it is common to encounter patients who have been
treated or who have spontaneously healed from PTB [28]. Our
study focused on distinguishing active, infective PTB, thereby
equipping such countries with a more usefully adjusted tool for
better PTB control.

Patients who are smear or culture positive for PTB are isolated
until their sputum microbiological tests return negative, which
can take several weeks for confirmation [30]. Our
infectivity-targeted model offers the potential for immediate
assessment, which could facilitate quicker decisions regarding
discharge from the hospital or return to the workplace,
potentially benefiting the socioeconomic situation of the region.

The proposed model exhibited consistent and reliable
performance in both internal and external validations,
highlighting its clinical applicability for determining PTB
infectivity. By achieving a crucial balance between sensitivity
and specificity, it effectively differentiated infective and
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noninfective cases, which holds significant clinical importance.
Moreover, the integration of visualization techniques improved
its transparency by elucidating the specific areas that influenced
its decisions. Thus, the proposed model can aid in PTB
management and assessment by leveraging broadly accessible
CXR images.

Traditionally used smear tests have low sensitivity, which can
lead to missed diagnoses, especially in cases of early infections
with low bacterial loads. Although culture tests are considered
standard, they can be slow, requiring several weeks to produce

results. Thus, diagnostic decision-making must be improved
through more efficient methods. Table 3 lists the benefits and
limitations of the smear, culture, and CXR tests, providing
insights into their performance, speed, and overall efficacy for
diagnosing PTB. Evidently, the proposed CXR test can produce
diagnosis results within several seconds, enabling rapid
decision-making for quarantine. Moreover, it is noninvasive,
cost-effective, and widely accessible and features minimal
patient discomfort. In addition, advances in AI have enabled
automated analyses, which reduce clinician workloads and
improve diagnostic accuracy.

Table 3. Comparison of smear, culture, and chest radiography tests.

Chest radiography (ours)Smear [32]Culture [31]

67.6%46.2%80.8%Sensitivity

78.2%99.3%99.0%Specificity

Within secondsWithin hoursWithin weeksResult time

Automated, rapid test resultsHigh specificityHigh sensitivityAdvantages

Low specificityLow sensitivity, low bacterial loadLong test results, contaminationLimitations

CT has also been used to differentiate PTB cases. Gao et al [33]
developed and evaluated TBINet, a deep learning model that
uses CT images to determine the infectivity of patients with
PTB. It achieved AUROC scores of 0.82 and 0.75 for the
validation and external validation sets, respectively, thereby
outperforming traditional deep learning methods. However, the
limitations of CT include high costs, limited facilities, and
radiation exposure [34]. Our approach overcomes these
limitations by using the more accessible and safer CXR, which
is performed similarly to CT-based models. Choi et al [35] and
Lee et al [28] have demonstrated the potential of CXR to
effectively distinguish between patients with active PTB and
healthy patients. Their findings, highlighted by AUROC scores
ranging from 0.83 to 0.98, underscored the high accuracy of
CXR-based techniques for identifying PTB. Existing studies
have primarily focused on using AI for the diagnosis of PTB
using CXR [36,37], but the potential of AI to monitor the
progress of patients undergoing treatment has been relatively
less explored. Unlike the studies mentioned above, which
compared healthy patients against patients with PTB, our study
differentiated between infectious and noninfectious cases to
assess infectivity. Our study proposes the potential use of AI
models to analyze CXR images of patients undergoing treatment,
enabling the monitoring of treatment progress. In addition, our
model can aid in determining the appropriate timing for lifting
unquarantined measures. By assessing whether a patient remains
infectious, health care providers can make more informed
decisions about when it is safe to release patients from
quarantine. This not only helps prevent the disease transmission
but also reduces the psychological and social burden on patients
who may otherwise face longer periods of quarantine than
necessary.

Our model facilitates faster decision-making by capitalizing on
the quick and accessible nature of CXR, which allows imaging
within minutes, and the capability of the proposed model to
evaluate CXR images in less than a second. This rapid
turnaround time can lead to faster patient discharge or quarantine

decisions, emphasizing its efficiency and effectiveness in clinical
settings. Given the distinct challenges addressed in this study,
comparing our AUROC scores directly with those of other
studies may not fully capture its unique value and contributions,
which lie in its innovative focus on distinguishing between PTB
infectivity stages, rather than merely identifying active cases.

In addition, this study focused on the lung regions in CXR
images and used a refined method for segmentation and cropping
to accurately target the areas of interest. Thus, it not only
improves the diagnostic accuracy by providing a clearer view
of the lung regions but also significantly minimizes the impact
of irrelevant factors on the decision-making process of the AI
model. Building on the groundwork laid by Zaidi et al [38],
who showed that lung segmentation can enhance the
classification results of CXR analysis by reducing noise and
improving efficiency, this study achieved further performance
enhancements by exclusively concentrating on segmented and
cropped lung areas. Thus, it demonstrated the substantial
potential of focused image analysis for improving the accuracy
and reliability of AI-driven diagnostics using medical images.

Moreover, our study used large-scale data that were collected
over a broad time span, from 2004 to 2023, which was
advantageous for analyzing temporal changes and trends in PTB
diagnoses and treatments. In addition, data from almost 2
decades allowed us to draw more accurate and reliable
conclusions, providing a robust foundation for the AI model to
learn and predict with precision. Thus, it offers significant
advancements in AI applications to medical imaging,
particularly for PTB diagnosis and management, and provides
a reliable and clinically applicable tool.

Furthermore, we established a 1-month gray zone following a
change in the sputum test results of the patient for labeling
purposes. This was necessary to enhance the certainty of the
infection status of the patient after the sputum test result became
negative because a negative sputum test result does not
immediately indicate that the patient is no longer infected. We
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excluded CXR images obtained during this period to enhance
the accuracy for determining when the likelihood of the
contagion decreased to aid in patient treatment and management.
This 1-month period was selected based on its relevance
compared with 2, 4, 6, and 8 weeks. However, it is important
to recognize that using this gray zone could potentially reduce
the discriminative power of the model owing to the overlap of
continuous and minor changes in images throughout the
treatment process. Although extending the gray zone could
improve the discrimination power, we elected not to extend it
beyond 1 month, which is the minimum interval for follow-ups
to assess the infectivity reduction during treatment.

The results of the decision curve analysis demonstrated that the
AI model maintained the highest net benefit across most
threshold probabilities. This indicates that the AI model is
effective in accurately identifying patients with infectious PTB
while reducing unnecessary treatments. These findings suggest
that the model can significantly contribute to public health
efforts in reducing the spread of PTB.

According to the subgroup analysis comparing the model
evaluation for the COPD and non-COPD groups, the sensitivity
of the model was lower in patients with COPD than in the
non-COPD group. This may be because COPD has different
pathological features in CXR, including various degrees of
inflammation of the lungs, hyperinflation and emphysema, and
consolidations and bronchiolitis, which are causes of acute
exacerbation episodes [39]. When these features are overlaid
with typical CXR findings of PTB infectivity, it may be difficult
for AI models to evaluate PTB infectivity, which means that
the presence of COPD may disrupt markers of PTB infectivity
[40,41], leading to reduced sensitivity.

In the comparison of the all cancers and noncancer groups, we
found that the model’s evaluation for the noncancer group was
lower than that for all cancers for most metrics, except for
specificity and NPV. This is because most patients with cancer
had been treated with, or were receiving, chemotherapeutic
agents. These treatments may impair their cellular and humoral
immune systems. Moreover, lung cancer could adversely affect
the immune response to PTB [42,43], potentially exacerbating
PTB [44], which leads to pronounced changes on CXR [45].
Thus, the AI model may have been better equipped to evaluate
signs of infectivity in the CXR images of these patients. In
addition, active tuberculosis can increase the risk of cancer, and

a cancer diagnosis can also heighten the risk of tuberculosis
owing to a mutual interaction [46]. Consequently, the higher
sensitivity of AI in detecting PTB in patients with cancer could
assist in the screening of tuberculosis in these patients.

Limitations
Although the proposed AI model exhibited notable performance,
it has certain limitations. First, although interpretation techniques
aid in understanding the decisions of the AI model and provide
valuable insights, their interpretations can be complex. While
these methods effectively highlight regions significant to the
AI decision-making process, such as the right and left upper
lobes commonly affected by PTB, they sometimes focus on
areas that pose challenges for straightforward clinical
correlation. This indicates that although the areas of focus of
the proposed AI model were aligned with known PTB-affected
regions, these techniques underscore the need for further
research to elucidate specific infectivity biomarkers in images.
In addition, in some CXR images, the model focused on regions
with foreign objects, such as sternotomy suture material,
Electrocardiogram leads, and pacemakers, interpreting them as
positive cases. These objects may act as confounders. Figure 6
depicts some of these CXRs.

Second, although a 1-month gray period was used to evaluate
changes in the infection status, it remains uncertain whether
this timeframe is universally applicable to all patients or offers
adequate flexibility for diverse scenarios.

Third, although this study emphasized the PTB diagnosis
accuracy of the model, acknowledging the inherent constraints
of retrospective research, it did not assess the long-term effects
on patient outcomes following the application of the AI tool,
indicating the necessity for future prospective studies.

Fourth, it included only patients who were successfully treated
through a 6-month short-course treatment regimen; this
methodology omits a range of treatment outcomes, including
delayed response, treatment failure, and multidrug-resistant
tuberculosis, and may therefore fail to encompass all phases of
the tuberculosis treatment continuum.

Finally, the model may have a bias toward Koreans as the study
patients were only Korean. Further experiments with
multicountry data, including different ethnicities, are required
to address this.
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Figure 6. The upper, middle, and lower cases are all positive. The AI evaluated the upper case as positive due to the sternotomy suture material, the
middle case due to the pacemaker region, the lower left case due to the EKG leads, and the lower right case due to the chemoport catheter. AI: artificial
intelligence; EKG: electrocardiogram.

Conclusion
In conclusion, this study represents a step forward in tackling
the challenges associated with PTB diagnosis by introducing
an AI tool that uses CXR images to assess PTB infectivity. The
proposed AI model and interpretation techniques can evaluate
PTB infectivity and elucidate its decision-making process,
thereby aiding in decisions regarding patient discharge or
quarantine.

Therefore, the proposed approach aims to minimize the spread
of PTB by identifying individuals who pose a risk of infection.
Importantly, it offers a more accurate and expedited screening
process than conventional smear tests and provides quicker
results than culture methods, with the potential to significantly
enhance the efficiency and effectiveness of PTB diagnosis and
management.
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