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Abstract

Background: The rising prevalence and swift spread of multidrug-resistant gram-negative bacteria (MDR-GNB), especially
Klebsiella pneumoniae (KP), present a critical global health threat highlighted by the World Health Organization, with mortality
rates soaring approximately 50% with inappropriate antimicrobial treatment.

Objective: This study aims to advance a novel strategy to develop an artificial intelligence-clinical decision support system
(AI-CDSS) that combines machine learning (ML) with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF MS), aiming to significantly improve the accuracy and speed of diagnosing antibiotic resistance, directly addressing
the grave health risks posed by the widespread dissemination of pan drug-resistant gram-negative bacteria across numerous
countries.

Methods: A comprehensive dataset comprising 165,299 bacterial specimens and 11,996 KP isolates was meticulously analyzed
using MALDI-TOF MS technology. Advanced ML algorithms were harnessed to sculpt predictive models that ascertain resistance
to quintessential antibiotics, particularly levofloxacin and ciprofloxacin, by using the amassed spectral data.

Results: Our ML models revealed remarkable proficiency in forecasting antibiotic resistance, with the random forest classifier
emerging as particularly effective in predicting resistance to both levofloxacin and ciprofloxacin, achieving the highest area under
the curve of 0.95. Performance metrics across different models, including accuracy, sensitivity, specificity, positive predictive
value, negative predictive value, and F1-score, were detailed, underlining the potential of these algorithms in aiding the development
of precision treatment strategies.

Conclusions: This investigation highlights the synergy between MALDI-TOF MS and ML as a beacon of hope against the
escalating threat of antibiotic resistance. The advent of AI-CDSS heralds a new era in clinical diagnostics, promising a future in
which rapid and accurate resistance prediction becomes a cornerstone in combating infectious diseases. Through this innovative
approach, we answered the challenge posed by KP and other multidrug-resistant pathogens, marking a significant milestone in
our journey toward global health security.
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Introduction

The World Health Organization (WHO) has highlighted
antibiotic resistance as a grave global health threat, particularly
emphasizing the challenge posed by multidrug-resistant
Klebsiella pneumoniae (MDR-KP) [1]. Bacteremia caused by
MDR-KP is linked to mortality rates as high as 47%, underlining
the critical impact of multidrug resistance [2-4]. Initially,
quinolones were highly effective against such infections due to
their unique mechanism of action, distinct from β-lactams,
targeting different bacterial processes [3,4]. However, increasing
quinolone resistance among KP, driven by mutations in key
enzyme regions, efflux pump overexpression, and
plasmid-mediated mechanisms, undermines quinolone
effectiveness, complicating infection management and
underscoring the adaptability of bacterial resistance [3,4].

The emergence of quinolone resistance in KP strains within
clinical settings indicates the critical demand for novel
diagnostic techniques [2-7]. Rapid and accurate detection of
antibiotic-resistant pathogens in patients is essential for
controlling resistance spread [8,9]. Thus, the slow pace of
culture-based diagnostics in addressing antibiotic resistance
required shifting toward new, more agile strategies, emphasizing
the need for quicker, more effective treatment options to
navigate the challenges of rapidly evolving infections [10].

The dynamic battle against antibiotic resistance necessitates
quick-to-adapt diagnostic tools for effective management [10].
Matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS) is indispensable for the rapid
and accurate identification of microorganisms [11,12]. Its
application extends to the detection of virulence factors in
antibiotic-resistant strains yet often transcends standard
procedural bounds [11,12]. Combining machine learning (ML)
with MALDI-TOF MS ushers in a novel paradigm for predicting
antibiotic resistance [13], specifically targeting
quinolone-resistant KP.

Our study introduces the development of an artificial
intelligence-clinical decision support system (AI-CDSS)
designed to enhance the clinical decision-making process
regarding the use of quinolones as a potential antibiotic option.
Integrating the precision of MALDI-TOF MS technology with
advanced ML algorithms, our system aims to equip health care
professionals with quick and evidence-based recommendations
for the optimal use of antibiotics tailored to individual patient
needs. This innovative approach not only improves the rapidity
and precision of identifying antibiotic resistance but also offers
clinicians valuable insights, enabling prompt and well-informed
treatment choices. Consequently, this facilitates improved
patient outcomes and more effective combat against the
proliferation of antibiotic resistance.

Methods

Study Designs and Data Collection
From January 2021 to December 2023, a comprehensive
research project was undertaken by the Tri-Service General
Hospital alongside 4 district hospitals, examining 165,299
bacterial specimens using advanced MALDI-TOF MS
technology provided by bioMérieux, France. This study
identified 11,996 specimens as KP, which were further subjected
to antibiotic sensitivity testing (AST) for levofloxacin (LEV)
and ciprofloxacin (CIP) using the VITEK 2 system
(bioMérieux). This system is claimed to be precise in such
assessments. The analysis of the AST results strictly adhered
to the clinical breakpoints defined by the Clinical and Laboratory
Standards Institute, ensuring that the study aligned with the
established microbiological norms [14,15].

The objective of this extensive analysis was to develop 2
predictive models: one to ascertain resistance to LEV and the
other to CIP. The exclusion of 869 specimens from the LEV
resistance analysis was necessary because of intermediate AST
results, which refined the focus to 11,127 specimens for
thorough investigation. Similarly, for CIP resistance, 373
specimens were excluded because of intermediate results,
concentrating the analysis on 11,623 specimens. This detailed
and systematic process emphasizes the rigor of the study and
its commitment to deliver precise and reliable evaluations of
antibiotic resistance among microbial specimens. The dataset
was strategically divided as follows: samples collected from
January to September were designated for training the models,
whereas those collected from October to December served as
the validation set. This temporal split was performed to simulate
the application of the models in real-world settings.

Data Preprocessing and Feature Extraction
Our research was initiated by extracting mass-to-charge (m/z)
ratios and intensity values from MALDI-TOF MS data to
establish an essential foundation. We addressed data imbalance
through a resampling strategy using sklearn.utils, applying
downsampling to over-represented classes and upsampling for
underrepresented classes, thus balancing the dataset to diminish
model bias and enhance generalization. In feature engineering,
we segmented m/z ranges into 1-unit intervals, allowing a ±
2-unit tolerance for grouping similar observations. We then
extracted and logarithmically transformed the peak intensity
values for both the antibiotic-resistant and antibiotic-susceptible
strains within these segments. This crucial step normalizes the
data, improves strain comparability, and enables precise
identification of resistance pattern variations. We filtered out
segments with a feature importance value below 0.01 as
background noise, focusing our model on significant attributes
to optimize performance and achieve our research objectives.
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ML Model Development and Training
To detect LEV and CIP resistance in KP, we selected an array
of sophisticated algorithms including Logistic Regression,
Linear Discriminant Analysis, Random Forest, Gradient
Boosting Classifier, AdaBoost Classifier, XGBoost, and light
gradient boosting machine (LGBM). This diverse selection was
aimed at leveraging their distinct strengths for a more precise
and comprehensive analysis. Our goal was to thoroughly explore
antibiotic resistance patterns to improve treatment strategies
and provide valuable insights into the management of microbial
resistance. A grid search was performed for each model to
determine the optimal parameters, enhancing accuracy and
performance. The best parameters identified for each model are
detailed in Multimedia Appendix 1.

Model Evaluation
To assess the accuracy of our predictive models, we used several
key metrics, including receiver operating characteristic (ROC)
curves, area under the curve (AUC), sensitivity, specificity,
positive predictive value (PPV), negative predictive value
(NPV), and F1-score. These metrics provide a detailed
evaluation of the effectiveness of the model and ensure that the
findings are reliable and robust. Such a comprehensive
evaluation method is vital for predicting antibiotic resistance.

Clinical Validation
To affirm the applicability of our models in real-world clinical
settings, we conducted clinical validation at Tri-Service General

Hospital using the validation dataset. During the validation
period, we specifically validated 3339 cases of LEV resistance
and 3487 cases of CIP resistance against traditional
culture-based AST. We evaluated the predictive accuracy by
analyzing sensitivity, specificity, PPV, NPV, and F1-score.

AI-CDSS Deployment
We created a web-based AI-CDSS specifically designed for
health care professionals. This system leverages cutting-edge
ML algorithms to quickly determine the resistance to LEV and
CIP. The process began with the collection of a culture sample,
which the AI-CDSS then analyzed to predict resistance patterns.
For a clear understanding of our process, The flowchart in Figure
1 represents the systematic process behind the development of
the AI-CDSS, which commenced with a comprehensive data
collection phase, acquiring 165,299 bacterial specimens from
January 2021 to December 2023. Post identification of
Klebsiella pneumoniae within the samples, they were subjected
to AST. Specimens yielding intermediate AST results were
excluded, resulting in 11,127 for LEV and 11,623 for CIP
resistance analyses, thus forming a training dataset. Subsequent
data preprocessing involved meticulous feature extraction and
log transformation of mass spectrometry data to eliminate noise
and standardize the dataset. This dataset was then used to train
robust ML models, such as Random Forest, LGBM, and
XGBoost, to accurately predict antibiotic resistance. The
AI-CDSS, by leveraging these models, facilitates rapid and
precise predictions of LEV and CIP resistance, ultimately aiding
health care professionals in informed clinical decision-making.

Figure 1. AI-CDSS development workflow. AI-CDSS: artificial intelligence-clinical decision support system; AST: antibiotic susceptibility testing;
LEV: levofloxacin; CIP: ciprofloxacin; RF: random forest; LGBM: light gradient boosting machine; XGB: XGBoost.

Ethical Considerations
This retrospective study adhered to the ethical standards outlined
in the Declaration of Helsinki and relevant local regulations for
human subject protection. The institutional review board of
Tri-Service General Hospital, Taipei, Taiwan, approved the
research (TSGHIRB No. C202305073). Due to the study's
retrospective design, the requirement for informed consent was
waived. All analyzed data were anonymized to ensure patient
confidentiality.

Results

ML Model Development Using MS Data
MS analyses revealed distinct spectral differences that
differentiated antibiotic-resistant KP strains from their
susceptible counterparts. Figure 2 shows the average intensity
distributions across m/z segments for KP strains, with CIP
resistance shown in blue and susceptibility in red. The top graph
(A) highlights the m/z segments that differ between CIP-resistant
and susceptible strains, whereas the bottom graph (B) depicts
analogous distributions for LEV resistance. These graphs
provide a stark visual comparison of the spectral differences,
emphasizing the distinct spectral markers associated with
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antibiotic resistance that can be instrumental for rapid resistance detection.

Figure 2. Differential mass spectrometry profiles for CIP and LEV resistance in Klebsiella pneumoniae. (A) Average intensity distribution for
CIP-resistant and susceptible Klebsiella pneumoniae. (B) Average intensity distribution for LEV-resistant and susceptible Klebsiella pneumoniae. CIP:
ciprofloxacin; LEV: levofloxacin; m/z: mass-to-charge.

MS data for KP showed a consistent array of the top 15 spectral
features in strains resistant to both CIP and LEV. These features
span m/z ratio ranges of 2035-2040, 2067-2072, 2166-2171,
2180-2185, 2688-2695, 2759-2764, 3143-3152, 4363-4368,
4567-4572, 5278-5283, 5379-5384, 7238-7253, 7703-7708,
9136-9145, and 9532-9544. The shared features across CIP-
and LEV-resistant strains suggest a universal mechanism of
resistance despite the different modes of action of antibiotics.

This is graphically represented in the heat maps in Figure 3A
for ciprofloxacin and Figure 3B for levofloxacin, where the
correlation between each m/z ratio range and resistance status

are color-coded for clarity. The intensity of the color correlates
with the strength of the association; the redder the hue, the
stronger the correlation with resistance. These heat maps provide
a visual summary of the data, emphasizing the features most
strongly associated with resistance, thus informing future
molecular studies and aiding in the development of new
approaches to combat antibiotic resistance. In Figure 3, The top
graph (A) shows the correlation between the top 15 m/z
segments and CIP resistance, whereas the bottom graph (B)
illustrates these correlations for LEV resistance. The heatmaps
transition from blue to red, indicating an increasing strength of
correlation from weaker to stronger, respectively. These patterns
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highlighted the top 15 differential m/z segments that were most indicative of antibiotic resistance.

Figure 3. Correlation heatmaps of Top 15 m/z features for CIP and LEV resistance in Klebsiella pneumoniae. (A) Correlation heatmap for CIP resistance.
(B) Correlation heatmap for LEV resistance. m/z: mass-to-charge; CIP: ciprofloxacin; LEV: levofloxacin.

Model Performance Metrics, Validation Results, and
ROC Curve Analyses
To assess the efficacy of ML models in predicting antibiotic
resistance in KP, we evaluated several algorithms across 2
different drug resistances. The model performance metrics,
including the AUC, accuracy, sensitivity, specificity, PPV, NPV,

and F1-score, are detailed in Tables 1 and 2 for CIP and LEV
resistance, respectively. For CIP resistance, the Random Forest
demonstrated the highest testing AUC at 0.95, indicative of its
robust predictive power, with Gradient Boosting Classifier and
XGBoost also performing notably well with AUCs of 0.95 and
0.94, respectively. These models are particularly useful in
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identifying CIP-resistant KP strains with high accuracy and precision.

Table 1. Performance metrics of machine learning models for ciprofloxacin resistance.

F1-scoreNPVcPPVbSpecificitySensitivityAccuracyTesting AUCTraining AUCaModels

0.850.910.810.860.880.870.950.99RFd

0.880.920.870.910.880.900.950.99LGBMe

0.860.930.800.840.920.870.950.99GBCf

0.850.920.820.860.890.870.950.99XGBoost

0.740.850.690.740.810.770.870.99AdaBoost

0.740.830.710.780.770.780.840.91LRg

0.740.840.690.750.800.770.800.96LDAh

aAUC: area under the curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dRF: random forest.
eLGBM: light gradient boosting machine.
fGBC: gradient boosting classifier.
gLR: logistic regression.
hLDA: linear discriminant analysis.

Table 2. Performance metrics of machine learning models for Levofloxacin resistance.

F1-scoreNPVcPPVbSpecificitySensitivityAccuracyTesting AUCTraining AUCaModels

0.870.860.860.820.890.860.950.99RFd

0.880.850.890.860.880.870.950.99GBCe

0.860.830.870.850.860.850.930.99XGBoost

0.860.820.870.850.840.850.920.99LGBMf

0.860.830.870.840.850.850.900.99AdaBoost

0.700.640.680.570.740.660.730.77LRg

0.710.650.630.430.810.640.680.72LDAh

aAUC: area under the curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dRF: random forest.
eGBC: gradient boosting classifier.
fLGBM: light gradient boosting machine.
gLR: logistic regression.
hLDA: linear discriminant analysis.

The LEV resistance models displayed a similar trend, with the
Random Forest classifier again showing exceptional
performance, with an AUC of 0.95. The gradient boosting
classifier and XGBoost showed similar effectiveness, with
AUCs of 0.95 and 0.93. These algorithms proved effective in
distinguishing LEV-resistant and LEV-susceptible strains with
considerable accuracy. The ROC curves, as presented in Figures
4A and B, visually encapsulate the model performance, with
the Random Forest, XGBoost, and Gradient Boosting classifiers
exhibiting steep ascents toward the upper left corner, denoting

high true-positive rates and low false-positive rates. Although
logistic regression and Linear Discriminant Analysis showed
lower AUC values, their inclusion offered a broad perspective
and contributed to the ensemble approach in model evaluation.
In Figure 4, the 2 charts display the performance of various ML
models in classifying Klebsiella pneumoniae strains as resistant
or susceptible to 2 antibiotics: CIP and LEV. The top panel (A)
displays the ROC curves for models predicting CIP resistance,
with the Random Forest classifier achieving an AUC of 0.95,
indicating its excellent predictive ability. The bottom panel (B)
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displays the ROC curves for models predicting LEV resistance,
where the random forest (RF) classifier also achieves a high
AUC of 0.95, demonstrating consistently high performance
across different antibiotic resistances. The curves plot each

model's true positive rate (sensitivity) against its false positive
rate (1-specificity), with the diagonal line representing a random
chance. The closer a curve follows the left-hand border and then
the top border of the ROC space, the more accurate the test.

Figure 4. ROC curves for predicting antibiotic resistance in Klebsiella pneumoniae. (A) ROC curves for CIP resistance prediction. (B) ROC curves
for LEV resistance prediction. ROC: receiver operating characteristic; CIP: ciprofloxacin; LEV: levofloxacin; RF: random forest; GBC: gradient boosting
classifier; LGBM: light gradient boosting machine; LR: logistic regression; LDA: linear discriminant analysis.

Despite their range of performance metrics, our ensemble of
models collectively provided a robust method for assessing KP
resistance to CIP and LEV. This comprehensive approach, which

leverages the strengths of multiple predictive algorithms, offers
valuable insights into antibiotic resistance patterns, aiding the
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development of precision treatment strategies using our
AI-CDSS.

Integration of AI-CDSS in the Clinical Process
The integration of our AI-CDSS platform into the antibiotic
resistance–testing workflow represents a significant
advancement in the treatment of infectious diseases. This system
streamlines the evaluation process from the initial culture of
samples to the final decision-making in clinical settings. Using
advanced ML algorithms, the platform rapidly predicts
resistance to antibiotics, such as LEV and CIP, providing
clinicians with precise and efficient analyses that inform
treatment strategies. This is particularly critical for managing
cases of KP, for which timely intervention is crucial. The
platform’s predictive capabilities allow for resistance
determination for approximately 3 days, a notable improvement
over the conventional 4-day timeline required for standard AST.
By accelerating the decision-making process, the AI-CDSS
contributes to improved patient outcomes and enhances
antibiotic stewardship efforts, ensuring that treatments are both
appropriate and effective. The workflow diagram clearly
contrasts the AI-CDSS with traditional AST methods,
highlighting the reduction in time to clinical decisions and
underscoring the benefits of real-time data in the management
of infectious diseases.

Discussion

Principal Findings
This investigation of the predictive capabilities of ML and
MALDI-TOF MS for identifying quinolone-susceptible KP and
quinolone-resistant KP signifies a groundbreaking development
in the expedited diagnosis of infectious diseases. The synergy
between MALDI-TOF MS and ML provides an innovative
approach to detecting and managing antibiotic-resistant
pathogens. This advancement is particularly relevant for low-
and middle-income countries (LMICs), where the WHO has
noted a rapid escalation in antibiotic use, presenting challenges
to access and stewardship [1,16]. Our findings are of significant
value in LMICs, as they propose a strategic balance between
antibiotic availability and stewardship, which could influence
policy adaptations aimed at fulfilling WHO objectives and
strengthening global health security against antimicrobial
resistance.

The increasing prevalence of antibiotic resistance, notably in
quinolone-resistant KP strains, necessitates novel diagnostic
methods [2-9]. Traditional methods fail to swiftly identify these
bacteria, thereby prolonging the initiation of suitable treatments
and containment actions [10]. Previous research on ML with
MALDI-TOF for discerning quinolone-resistant KP has used
a modest number of isolates. Our study compiles an
unprecedentedly large dataset for a ML model to detect
quinolone-resistant KP, demonstrating the potential of advanced
technologies in predicting resistance with high precision, thereby
expediting accurate diagnoses and enabling effective treatments.
The incorporation of algorithms such as Random Forest and
XGBoost has shown high efficacy in differentiating between
resistant and susceptible KP strains, playing a pivotal role in

informed antibiotic selection and combating the spread of
resistance.

Comparative Advantages of MALDI-TOF MS and
Next-Generation Sequencing in Clinical Settings
In clinical practice, KP was identified using MALDI-TOF MS
and subsequently tested for antibiotic susceptibility with the
VITEK 2 system. In our study, we used artificial intelligence
to analyze MALDI-TOF MS spectra and predict KP as resistant
or susceptible phenotypes. Although next-generation sequencing
(NGS) is commonly used for genotype analysis in other studies,
genotypic data may not always align with phenotypic
expressions. Antibiotic resistance typically develops through
genetic alterations, either by the acquisition of resistance genes
or mutations in elements crucial for antibiotic activity. However,
resistance can also occur without any genetic changes, a
phenomenon known as phenotypic resistance illustrating the
challenges of predicting antibiotic resistance based solely on
genetic information [17-19]. Discrepancies may arise from
pseudogenes in low antibiotic environments, where nonlethal
mutations persist in contrast to the rapid elimination of
ineffective genes in high antibiotic environments [18]. In
addition, gene interactions, regulatory mechanisms, and
expression levels significantly impact resistance gene
functionality [19-21]. Our study emphasizes the ability of
MALDI-TOF MS to quickly provide crucial, actionable
resistance profiles for urgent clinical decisions [22,23]. NGS
can provide a detailed analysis of resistance genes; however,
its longer processing times limit its use in emergencies [19-21].
In contrast, MALDI-TOF MS can detect these mechanisms
through its protein expression analysis, proving invaluable in
clinical settings that require rapid decision-making [22,23].

Speeding Up Pathogen Diagnostics With AI and
MALDI-TOF MS
Our integration of AI-CDSS with MALDI-TOF MS technology
offers a significant improvement in diagnostic speed and
efficiency that answers the need for rapid diagnostics for
infectious diseases, particularly those involving drug-resistant
pathogens such as KP. Our approach reduces the time needed
to determine antibiotic resistance to approximately 72 hours
from the initial culture. Traditional culturing methods, while
reliable, require up to 96 hours—72 hours for culturing and
identification and an additional 24 hours for AST interpretation,
potentially delaying critical treatment decisions [10,24]. In
comparison, polymerase chain reaction (PCR) and sequencing
methods still require 72 hours for the initial pathogen
identification by MALDI-TOF MS, followed by 1-2 days for
PCR and 3-4 days for sequencing, depending on the complexity
of the analysis [20,21,25,26]. Comparisons of the timelines for
each method were provided in Multimedia Appendix 2.
Therefore, our study demonstrates that the integration of
AI-CDSS with MALDI-TOF MS not only significantly speeds
up the diagnostic process but also improves the timeliness of
clinical responses, crucial for managing severe infections.

Impact and Future Directions
In addition to the advancements detailed above, the integration
of an AI-CDSS is a groundbreaking enhancement of our
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diagnostic capabilities. The AI-CDSS, which leverages the
predictive power of ML models, offers clinicians real-time,
data-driven insights, significantly improving the
decision-making process in the treatment of infections caused
by LEV- and CIP-resistant KP. This system can rapidly interpret
complex diagnostic data, recommend personalized treatment
options, and predict potential resistance patterns, thereby
streamlining the diagnostic workflow and facilitating a more
targeted approach to antibiotic therapy. The introduction of
AI-CDSS into our methodology underscores our commitment
to harness cutting-edge technology to combat antibiotic
resistance, representing a vital step forward in the optimization
of clinical outcomes and advancement of antibiotic stewardship.

Limitations
This study underscores the intricacies involved in dataset
balancing and the pivotal role of feature selection within the
domain of ML algorithms. A comprehensive approach to data
preprocessing, feature extraction, and the subsequent training
of models delineates the multifaceted nature of constructing
dependable predictive frameworks. In addition, intermediate
results often present challenges in predictive models due to the
uncertainty they introduce, which can potentially skew the
model’s outcomes. Consequently, the exclusion of specimens
with intermediate AST results (869 for LEV and 373 for CIP)
allowed for a more focused study but potentially omitted
significant data, affecting model generalizability for these
intermediate cases. Future research should focus on enhancing
these models by incorporating intermediate cases, as well as
diverse data modalities, to broaden their applicability and
encompass a wider array of antibiotic-resistant organisms.
Furthermore, the significance of this investigation transcends
the boundaries of immediate clinical use and serves as a
cornerstone for informing public health policies and shaping
infection control methodologies. This study makes a substantial

contribution to international efforts aimed at combating
antimicrobial resistance by providing a swift, precise, and
economically viable mechanism to identify antibiotic resistance.
This issue remains a global public health priority and requires
continued attention and action.

Comparison With Previous Work
Previous studies used conventional PCR-based methods to
identify quinolone resistance genes among KP clinical isolates
[27,28]. ML techniques combined with MALDI-TOF of
discrimination of carbapenem-resistant KP with limited sample
isolates [29,30]. To date, there are no studies discussing the use
of ML combined with MALDI-TOF for the rapid identification
of quinolone resistance in KP. Our research establishes the most
extensive collection of isolates to date for constructing a ML
model aimed at identifying LEV and CIP resistance. The
methodological innovation of this study, through the analysis
of approximately 12,000 KP cultures, demonstrates the
feasibility and accuracy of using advanced technologies to
predict resistance patterns. This approach not only enhances the
precision of diagnostics but also significantly reduces the time
required to identify resistant strains, facilitating timely and
targeted therapeutic interventions.

Conclusions
MALDI-TOF MS is a swift, accurate, and cost-efficient method
for identifying bacteria, including its application in the detection
of antibiotic resistance. This study highlights the successful
AI-CDSS with the application of a ML-enhanced MALDI-TOF
approach for predicting quinolone-resistant KP. However,
certain constraints exist, particularly when resistance
mechanisms are not mediated at the protein-peptide level or fall
outside the m/z ratio range of 2000-20,000. Future studies are
required to validate the results further.

Acknowledgments
We would like to thank Editage for its English language editing service.

The grants awarded by the hospital (grant numbers TSGH-D-113105 and TSGH-D-113106) were pivotal in facilitating our
research.

Data Availability
The datasets generated during and/or analyzed during this study are available from the corresponding author on reasonable request.

Authors' Contributions
M-JJ contributed to the conceptualization, formal analysis, investigation, data curation, and writing of the original draft. T-HL
was involved in formal analysis, data interpretation, and writing – review and editing. H-YC contributed to data curation and
data interpretation. C-KC was responsible for conceptualization and investigation. C-LP focused on data curation. F-YC contributed
to data interpretation. H-SS was involved in conceptualization, supervision, methodology, investigation, project administration,
and writing – both the original draft and review & editing. All authors contributed to the manuscript preparation and approved
the final version.

Conflicts of Interest
None declared.

J Med Internet Res 2024 | vol. 26 | e58039 | p. 9https://www.jmir.org/2024/1/e58039
(page number not for citation purposes)

Jian et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 1
Parameters of machine learning models for predicting Levofloxacin and Ciprofloxacin resistance.
[DOCX File , 22 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Workflow comparison of diagnostic techniques for antibiotic resistance detection.
[PNG File , 112 KB-Multimedia Appendix 2]

References

1. WHO. WHO Publishes List of Bacteria For Which New Antibiotics Are Urgently Needed. 2017. URL: https://www.who.int/
news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed [accessed 2017-02-27]

2. Capone A, Giannella M, Fortini D, Giordano A, Meledandri M, Ballardini M, et al. High rate of colistin resistance among
patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality. Clin Microbiol
Infect. 2013;19(1):E23-E30. [doi: 10.1111/1469-0691.12070] [Medline: 23137235]

3. Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic
resistance. FEMS Microbiol Rev. 2017;41(3):252-275. [doi: 10.1093/femsre/fux013] [Medline: 28521338]

4. Lautenbach E, Metlay JP, Bilker WB, Edelstein PH, Fishman NO. Association between fluoroquinolone resistance and
mortality in escherichia coli and klebsiella pneumoniae infections: the role of inadequate empirical antimicrobial therapy.
Clin Infect Dis. 2005;41(7):923-929. [doi: 10.1086/432940] [Medline: 16142655]

5. Hooper DC, Jacoby GA. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring
Harb Perspect Med. 2016;6(9):a025320. [doi: 10.1101/cshperspect.a025320] [Medline: 27449972]

6. Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM, Piddock LJV, et al. Multidrug efflux pumps: structure, function
and regulation. Nat Rev Microbiol. 2018;16(9):523-539. [doi: 10.1038/s41579-018-0048-6] [Medline: 30002505]

7. Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci. 2015;1354(1):12-31.
[doi: 10.1111/nyas.12830] [Medline: 26190223]

8. Müller L, Srinivasan A, Abeles SR, Rajagopal A, Torriani FJ, Aronoff-Spencer E. A Risk-Based clinical decision support
system for Patient-Specific antimicrobial therapy (iBiogram): design and retrospective analysis. J Med Internet Res.
2021;23(12):e23571. [doi: 10.2196/23571] [Medline: 34870601]

9. Tseng YJ, Wu JH, Ping XO, Lin HC, Chen YY, Shang RJ, et al. A Web-based multidrug-resistant organisms surveillance
and outbreak detection system with rule-based classification and clustering. J Med Internet Res. 2012;14(5):e131. [doi:
10.2196/jmir.2056] [Medline: 23195868]

10. Garcia E, Diep JK, Sharma R, Rao GG. Model-based learn and confirm: designing effective treatment regimens against
multidrug resistant Gram-negative pathogens. Int J Antimicrob Agents. 2024;63(4):107100. [doi:
10.1016/j.ijantimicag.2024.107100] [Medline: 38280574]

11. Weis C, Cuénod A, Rieck B, Dubuis O, Graf S, Lang C, et al. Direct antimicrobial resistance prediction from clinical
MALDI-TOF mass spectra using machine learning. Nat Med. 2022;28(1):164-174. [doi: 10.1038/s41591-021-01619-9]
[Medline: 35013613]

12. Yu J, Tien N, Liu YC, Cho DY, Chen JW, Tsai YT, et al. Rapid identification of Methicillin-Resistant staphylococcus
aureus using MALDI-TOF MS and machine learning from over 20,000 clinical isolates. Microbiol Spectr.
2022;10(2):e0048322. [doi: 10.1128/spectrum.00483-22] [Medline: 35293803]

13. Jang KS, Kim YH. Rapid and robust MALDI-TOF MS techniques for microbial identification: a brief overview of their
diverse applications. J Microbiol. 2018;56(4):209-216. [doi: 10.1007/s12275-018-7457-0] [Medline: 29492868]

14. Wayne P, CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. Pennsylvania. Clinical and
Laboratory Standards Institute; 2018.

15. Humphries RM, Abbott AN, Hindler JA. Understanding and addressing CLSI breakpoint revisions: a primer for clinical
laboratories. J Clin Microbiol. 2019;57(6):e00203. [FREE Full text] [doi: 10.1128/JCM.00203-19] [Medline: 30971460]

16. Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, et al. Global increase and geographic convergence
in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A. 2018;115(15):E3463-E3470. [doi:
10.1073/pnas.1717295115] [Medline: 29581252]

17. Hughes D, Andersson DI. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance.
FEMS Microbiol Rev. 2017;41(3):374-391. [doi: 10.1093/femsre/fux004] [Medline: 28333270]

18. Davis MA, Besser TE, Orfe LH, Baker KNK, Lanier AS, Broschat SL, et al. Genotypic-phenotypic discrepancies between
antibiotic resistance characteristics of escherichia coli isolates from calves in management settings with high and low
antibiotic use. Appl Environ Microbiol. 2011;77(10):3293-3299. [doi: 10.1128/AEM.02588-10] [Medline: 21421795]

19. Deekshit VK, Srikumar S. 'To be, or not to be'-The dilemma of 'silent' antimicrobial resistance genes in bacteria. J Appl
Microbiol. 2022;133(5):2902-2914. [doi: 10.1111/jam.15738] [Medline: 35882476]

20. Johansen Taber KA, Dickinson BD, Wilson M. The promise and challenges of next-generation genome sequencing for
clinical care. JAMA Intern Med. 2014;174(2):275-280. [doi: 10.1001/jamainternmed.2013.12048] [Medline: 24217348]

J Med Internet Res 2024 | vol. 26 | e58039 | p. 10https://www.jmir.org/2024/1/e58039
(page number not for citation purposes)

Jian et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v26i1e58039_app1.docx&filename=d61fc7095eb4188cb5ba333992796650.docx
https://jmir.org/api/download?alt_name=jmir_v26i1e58039_app1.docx&filename=d61fc7095eb4188cb5ba333992796650.docx
https://jmir.org/api/download?alt_name=jmir_v26i1e58039_app2.png&filename=34b71f47e16e4a636c7b60feda5f7a8d.png
https://jmir.org/api/download?alt_name=jmir_v26i1e58039_app2.png&filename=34b71f47e16e4a636c7b60feda5f7a8d.png
https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
http://dx.doi.org/10.1111/1469-0691.12070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23137235&dopt=Abstract
http://dx.doi.org/10.1093/femsre/fux013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28521338&dopt=Abstract
http://dx.doi.org/10.1086/432940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16142655&dopt=Abstract
http://dx.doi.org/10.1101/cshperspect.a025320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27449972&dopt=Abstract
http://dx.doi.org/10.1038/s41579-018-0048-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30002505&dopt=Abstract
http://dx.doi.org/10.1111/nyas.12830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26190223&dopt=Abstract
http://dx.doi.org/10.2196/23571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34870601&dopt=Abstract
http://dx.doi.org/10.2196/jmir.2056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23195868&dopt=Abstract
http://dx.doi.org/10.1016/j.ijantimicag.2024.107100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38280574&dopt=Abstract
http://dx.doi.org/10.1038/s41591-021-01619-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35013613&dopt=Abstract
http://dx.doi.org/10.1128/spectrum.00483-22
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35293803&dopt=Abstract
http://dx.doi.org/10.1007/s12275-018-7457-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29492868&dopt=Abstract
https://europepmc.org/abstract/MED/30971460
http://dx.doi.org/10.1128/JCM.00203-19
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30971460&dopt=Abstract
http://dx.doi.org/10.1073/pnas.1717295115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29581252&dopt=Abstract
http://dx.doi.org/10.1093/femsre/fux004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28333270&dopt=Abstract
http://dx.doi.org/10.1128/AEM.02588-10
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21421795&dopt=Abstract
http://dx.doi.org/10.1111/jam.15738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35882476&dopt=Abstract
http://dx.doi.org/10.1001/jamainternmed.2013.12048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24217348&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


21. Reis-Filho JS. Next-generation sequencing. Breast Cancer Res. 2009;Suppl 3(Suppl 3):S12. [doi: 10.1186/bcr2431] [Medline:
20030863]

22. Sow D, Fall B, Ndiaye M, Ba BS, Sylla K, Tine R, et al. Usefulness of MALDI-TOF mass spectrometry for routine
identification of candida species in a Resource-Poor setting. Mycopathologia. 2015;180(3-4):173-179. [doi:
10.1007/s11046-015-9905-2] [Medline: 26016846]

23. Duncan MW, Nedelkov D, Walsh R, Hattan SJ. Applications of MALDI mass spectrometry in clinical chemistry. Clin
Chem. 2016;62(1):134-143. [doi: 10.1373/clinchem.2015.239491] [Medline: 26585930]

24. Chang KW, Cheng HW, Shiue J, Wang JK, Wang YL, Huang NT. Antibiotic susceptibility test with Surface-Enhanced
raman scattering in a microfluidic system. Anal Chem. 2019;91(17):10988-10995. [doi: 10.1021/acs.analchem.9b01027]
[Medline: 31387345]

25. Martineau F, Picard FJ, Grenier L, Roy PH, Ouellette M, Bergeron MG. Multiplex PCR assays for the detection of clinically
relevant antibiotic resistance genes in staphylococci isolated from patients infected after cardiac surgery. the ESPRIT trial.
J Antimicrob Chemother. 2000;46(4):527-534. [doi: 10.1093/jac/46.4.527] [Medline: 11020248]

26. Li B, Yan T. Next generation sequencing reveals limitation of qPCR methods in quantifying emerging antibiotic resistance
genes (ARGs) in the environment. Appl Microbiol Biotechnol. 2021;105(7):2925-2936. [doi: 10.1007/s00253-021-11202-4]
[Medline: 33738553]

27. El-Badawy MF, Tawakol WM, El-Far SW, Maghrabi IA, Al-Ghamdi SA, Mansy MS, et al. Molecular identification of
aminoglycoside-Modifying enzymes and plasmid-Mediated quinolone resistance genes among clinical isolates recovered
from Egyptian patients. Int J Microbiol. 2017;2017:8050432. [FREE Full text] [doi: 10.1155/2017/8050432] [Medline:
28638412]

28. Swedan S, Alabdallah EA, Ababneh Q. Resistance to aminoglycoside and quinolone drugs among clinical isolates from
northern Jordan. Heliyon. 2024;10(1):e23368. [FREE Full text] [doi: 10.1016/j.heliyon.2023.e23368] [Medline: 38163217]

29. Yu J, Lin YT, Chen WC, Tseng KH, Lin HH, Tien N, et al. Direct prediction of carbapenem-resistant,
carbapenemase-producing, and colistin-resistant klebsiella pneumoniae isolates from routine MALDI-TOF mass spectra
using machine learning and outcome evaluation. Int J Antimicrob Agents. 2023;61(6):106799. [doi:
10.1016/j.ijantimicag.2023.106799] [Medline: 37004755]

30. Zhang YM, Tsao MF, Chang CY, Lin KT, Keller JJ, Lin HC. Rapid identification of carbapenem-resistant klebsiella
pneumoniae based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry and an artificial neural
network model. J Biomed Sci. 2023;30(1):25. [FREE Full text] [doi: 10.1186/s12929-023-00918-2] [Medline: 37069555]

Abbreviations
AI-CDSS: artificial intelligence-clinical decision support system
AST: antibiotic sensitivity testing
AUC: area under the receiver operating characteristic curve
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KP: Klebsiella pneumoniae
LEV: levofloxacin
LGBM: light gradient boosting machine
LMIC: low- and middle-income country
m/z: mass-to-charge ratio
MALDI-TOF MS: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
MDR-GNB: multidrug-resistant gram-negative bacteria
MDR-KP: multidrug-resistant Klebsiella pneumoniae
ML: machine learning
NGS: next-generation sequencing
NPV: negative predictive value
PCR: polymerase chain reaction
PPV: positive predictive value
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