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Abstract

Background: Clinical narratives are essential components of electronic health records. The adoption of electronic health records
has increased documentation time for hospital staff, leading to the use of abbreviations and acronyms more frequently. This
brevity can potentially hinder comprehension for both professionals and patients.

Objective: This review aims to provide an overview of the types of short forms found in clinical narratives, as well as the natural
language processing (NLP) techniques used for their identification, expansion, and disambiguation.

Methods: In the databases Web of Science, Embase, MEDLINE, EBMR (Evidence-Based Medicine Reviews), and ACL
Anthology, publications that met the inclusion criteria were searched according to PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) guidelines for a systematic scoping review. Original, peer-reviewed publications focusing
on short-form processing in human clinical narratives were included, covering the period from January 2018 to February 2023.
Short-form types were extracted, and multidimensional research methodologies were assigned to each target objective (identification,
expansion, and disambiguation). NLP study recommendations and study characteristics were systematically assigned occurrence
rates for evaluation.

Results: Out of a total of 6639 records, only 19 articles were included in the final analysis. Rule-based approaches were
predominantly used for identifying short forms, while string similarity and vector representations were applied for expansion.
Embeddings and deep learning approaches were used for disambiguation.

Conclusions: The scope and types of what constitutes a clinical short form were often not explicitly defined by the authors.
This lack of definition poses challenges for reproducibility and for determining whether specific methodologies are suitable for
different types of short forms. Analysis of a subset of NLP recommendations for assessing quality and reproducibility revealed
only partial adherence to these recommendations. Single-character abbreviations were underrepresented in studies on clinical
narrative processing, as were investigations in languages other than English. Future research should focus on these 2 areas, and
each paper should include descriptions of the types of content analyzed.
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Introduction

Background and Significance
Clinical narratives, that is, free text authored by health
professionals, are a core component of electronic health records
(EHRs) within health care information systems. Today, findings
reports, progress notes, surgery reports, and discharge
summaries nearly seamlessly document the delivery of health
care for every patient. However, with the adoption of EHRs,
documentation times appear to increase for hospital staff [1-3],
and this added time pressure often results in brevity in both
documentation and communication. This explains the frequent
use of short-form content (ie, abbreviations and acronyms) in
routine documentation. While such jargon is generally well
understood within a clinical specialty, professionals from other
fields, and especially patients, often have to infer the meaning
of these short forms in context. In-depth analyses of clinical
narratives have highlighted the semantic and lexical ambiguities
introduced by the use of short forms. This highlights the
dilemma that, while clinical narratives present key information
in a compact manner, overly cryptic formulations, if
misunderstood, may severely impact patient safety [4-6].

This situation is further complicated when lexicon lookups for
short forms yield multiple possible expansions. For example,
the abbreviation “MS” in clinical narratives can stand for
“morphine sulfate,” “multiple sclerosis,” or “mass
spectrometry.” Determining the correct long form requires
understanding the context. The complexity increases further
with the ad hoc creation of many short forms and their use being
restricted to particular institutions. The fact that the same short
form can have entirely different meanings across medical
specialties or health care institutions significantly influences
the choice of processing methodology [4]. As a result of time
pressures, clinicians rarely provide the long form alongside the
first occurrence of the short form, as is customary in scientific
publications and textbooks.

Natural language processing (NLP) has proposed several
solutions to address this issue. The complexity of NLP
applications varies across languages, depending not only on
their grammatical and morphological characteristics (including
those of clinical sublanguages) but also on the availability of
lexical resources for each (sub)language. In most cases,
low-resource languages have insufficient lexical coverage
compared with high-resource languages, particularly English.
The limited availability of clinical corpora for research is one
reason many studies focus on similar data sets that have been
released for research purposes after deidentification and ethics
approval, such as Medical Information Mart for Intensive Care
(MIMIC)-III [7].

In combination with NLP techniques, researchers have utilized
existing methodologies to automatically identify, expand, and
disambiguate short forms using data-driven shallow and deep
learning (DL) approaches. However, current research does not
clearly identify which methodologies are most effective in
supporting short-form identification, expansion, and
disambiguation. This scoping review, therefore, examines these
3 tasks, which represent distinct yet interconnected

methodological aspects of each study, as they are closely linked
to determining the correct long form for each short form.

This review covers a 5-year period and focuses on the narrative
content of clinical data sets, the processing of short forms using
state-of-the-art methodologies, and the short forms themselves.
To the best of the authors’knowledge, this is the first systematic
scoping review to address these specific aspects of short-form
processing in clinical narratives.

Objective
This scoping review was conducted to identify relevant original
research papers that apply NLP techniques to process short
forms, such as acronyms and other abbreviations, in clinical
narratives. All described methodologies need to be evaluated
or validated in some form.

The objective of this review is to provide a systematic and
structured overview of the literature on (1) short forms in clinical
narratives and (2) methods used for their identification,
expansion, and disambiguation.

Methods

Study Design
The study design adhered to the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guidelines
[8] for conducting a systematic scoping review (Multimedia
Appendix 1).

Eligibility Criteria
Eligible articles were full-text, original, peer-reviewed
publications that focused on machine learning (ML) or NLP
techniques for the identification, expansion, or disambiguation
of short-form content.

Identification focuses on detecting short-form content in clinical
narratives, such as recognizing the acronym “RA” using the
regular expression [A-Z]{2,}. Expansion involves generating
possible long forms for short forms, such as expanding “RA”
to “rheumatoid arthritis,” “right atrium,” or “room air.” Finally,
disambiguation pertains to methods that determine the correct
expansion for a short form. For example, in the context of
“hypertension with RVSP of 46+ RA pressure,” the correct
expansion is “right atrium” [9].

Papers under review were required to be written in either English
or German, as all members of the review team are proficient in
both languages. Additionally, the methodologies applied
required each paper to focus on human clinical narratives,
specifically textual content produced by clinicians in human
medicine. This selection is based on the complex wording and
structure of these narratives, which often include elements from
different languages, such as Latin names for body parts or
diseases, or untranslated foreign terms, adding complexity to
text processing. Papers that did not focus on short forms were
excluded.

Meta-analyses, case reports, collections, abstracts, surveys of
patient-reported outcomes, papers lacking performance
evaluation and validation, those that did not apply any ML or
NLP methodology, and all types of reviews were excluded.
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Search Strategies
From January 1, 2018, to February 22, 2023, the literature
databases Web of Science, Embase, MEDLINE, EBMR
(Evidence-Based Medicine Reviews), and ACL Anthology were
searched for relevant papers for this systematic scoping review.
Web of Science was accessed through the official Clarivate
website [10]. MEDLINE, Embase, and EBMR were searched
via Ovid [11], while papers from ACL Anthology were retrieved
using a custom Python (Python Foundation) search function,
as the integrated ACL search does not support the operators
NEAR or ADJ (adjacent). The search field operators assigned
in each query, such as “TS” for “topic” or “.mp.” for “multiple
purposes,” enable precise selection of papers from specific fields
within the database records, thereby improving the accuracy

and relevance of the search results. Examples of these fields are
titles, abstracts, keywords, and subject headings. For ACL
Anthology, a full-text search was conducted for all articles
within the specified timeframe.

The search strategy primarily focused on short-form content
and did not include “natural language processing” as a keyword,
as this might have been too restrictive for capturing all relevant
short-form content processing. Instead, the search terms were
selected to cover all types of clinical narratives using MeSH
(Medical Subject Headings) terms. Processing of any type of
human clinical narrative was relevant to this scoping review.
Table 1 presents a comprehensive list of search terms and
strategies for each database, and the review process can be found
in the Results section in a flow diagram.

Table 1. Search queries per database.

Search queryDatabase and query number

Web of Science and ACL Anthology

TS=((medic* OR clinic* or allerg* OR androlog* OR anesthesiolog* OR anaesthesiolog* OR bariatric* OR bio-
pharmaceutic* OR cardiolog* OR cardiovascul* OR chiropractic* OR cytopatholog* OR dental OR dentistr* OR
dermatolog* OR dietetic* OR emergenc* OR endocrinolog* OR endodontic* OR ethnopharmacolog* OR forensic*
OR gastroenterolog* OR genomic* OR geriatric* OR gerontolog* OR geroscienc* OR gynaecolog* OR gynecolog*
OR haematolog* OR hematolog* OR immunolog* OR immunopatholog* OR microbiolog* OR midwife* OR
nanomedic* OR neonatolog* OR nephrolog* OR neurolog* OR neuropatholog* OR neuropharmacolog* OR
neuropsychiatr* OR neuroradiolog* OR neurosurg* OR neurotolog* OR nursing OR nutrigenomic* OR obstetric*
OR occupational* OR oncolog* OR ophthalmolog* OR optometr* OR orthodontic* OR orthopedic* OR orthoptic*
OR otolaryngolog* OR otolog* OR otorhinolaryngolog* OR paramedic* OR patholog* OR pediatric* OR perina-
tolog* OR periodontic* OR pharmacogenetic* OR pharmacolog* OR pneumolog* OR pneumonolog* OR podiatr*
OR proctolog*  OR prosthodontic* OR psychiatr* OR psychopharmacolog* OR pulmonolog* OR radiolog* OR
radiology*  OR rehabilitati* OR rheumatolog* OR surgery OR surgic* OR telemedic* OR telepatholog* OR tel-
eradiolog* OR telerehabil* OR toxicolog* OR traumatolog* OR urolog* OR venereolog*) NEAR/4 (text* or
narrati* or document* or summar* or note* or report*) )

#1

TS=(abbrev* OR  acronym*  OR  ( short* NEAR/2 form* ) OR ( (single OR two OR three OR four)   NEAR/2  
(character or characters)) OR  ellips* OR  initialism*)

#2

DOP=(2018-01-01/2023-02-22)#3

#1 AND #2 AND #3#4a

MEDLINE, Embase, and all EBMRb reviews

((medic* OR clinic* or allerg* OR androlog* OR anesthesiolog* OR anaesthesiolog* OR bariatric* OR biophar-
maceutic* OR cardiolog* OR cardiovascul* OR chiropractic* OR cytopatholog* OR dental OR dentistr* OR
dermatolog* OR dietetic* OR emergenc* OR endocrinolog* OR endodontic* OR ethnopharmacolog* OR forensic*
OR gastroenterolog* OR genomic* OR geriatric* OR gerontolog* OR geroscienc* OR gynaecolog* OR gynecolog*
OR haematolog* OR hematolog* OR immunolog* OR immunopatholog* OR microbiolog* OR midwife* OR
nanomedic* OR neonatolog* OR nephrolog* OR neurolog* OR neuropatholog* OR neuropharmacolog* OR
neuropsychiatr* OR neuroradiolog* OR neurosurg* OR neurotolog* OR nursing OR nutrigenomic* OR obstetric*
OR occupational* OR oncolog* OR ophthalmolog* OR optometr* OR orthodontic* OR orthopedic* OR orthoptic*
OR otolaryngolog* OR otolog* OR otorhinolaryngolog* OR paramedic* OR patholog* OR pediatric* OR perina-
tolog* OR periodontic* OR pharmacogenetic* OR pharmacolog* OR pneumolog* OR pneumonolog* OR podiatr*
OR proctolog*  OR prosthodontic* OR psychiatr* OR psychopharmacolog* OR pulmonolog* OR radiolog* OR
radiology*  OR rehabilitati* OR rheumatolog* OR surgery OR surgic* OR telemedic* OR telepatholog* OR tel-
eradiolog* OR telerehabil* OR toxicolog* OR traumatolog* OR urolog* OR venereolog*) adj4 (text* or narrati*
or document* or summar* or note* or report*) ).mp.

#1

(abbrev* OR  acronym*  OR  ( short* adj2  form* ) OR ( (single OR two OR three OR four)   adj2   (character or
characters)) OR  ellips* OR  initialism*).mp.

#2

#1 AND #2#3

limit 3 to yr=”2018-2023”#4a

aQuery number #4 is the final applied query, which incorporates all other queries #1, #2, and #3.
bEBMR: Evidence-Based Medicine Reviews.

J Med Internet Res 2024 | vol. 26 | e57852 | p. 3https://www.jmir.org/2024/1/e57852
(page number not for citation purposes)

Kugic et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Selection of Studies
For the scoping review, database records were imported into
Citavi (Swiss Academic Software GmbH) [12], version 6.
During the deduplication stage, these records were reviewed
independently by 4 team members (AK, IM, LM, and PP). Each
team member was assigned a portion of the records for
deduplication: IM, LM, and PP each reviewed 20%, while AK
reviewed 40%. After deduplication, AK conducted the merging
and final review of all papers. In the screening stage, 4 team
members were assigned portions of records to screen titles and
abstracts for eligibility. Papers marked for exclusion were moved
to a separate directory in Citavi. Each directory was reviewed
for validation by at least one supervisor from the review team
(MB, MK, or SS). In the eligibility stage, full-text papers were
reviewed by 4 team members in pairs (AK and PP/IM and LM).
If any team identified reports that matched the exclusion criteria,
these were reviewed again by AK and one of the 3 supervisors.
Any disagreements were discussed with additional team
members until a consensus was reached.

Data Extraction
After the final inclusion decision, all eligible papers were read
by all team members to validate the extracted information, which
was recorded in a Google Spreadsheet (Alphabet Inc./Xxvi
Holdings Inc.). The extracted data included the following
information: publication title, authors, year of publication, short
task description, setting (where the study was performed), study
type, data set description, data set language, type of clinical
narrative, scope of clinical narrative, study population, NLP
methodologies, experimental setup, benchmarks or ground truth
or gold standard, baselines, evaluation and validation, results,
performance metrics, limitations, and conceptual description
of short forms.

Data Synthesis
Publications were categorized based on (1) the type of short
forms being processed and (2) the research methodology. For

each type of short form, all processed data sets, data set
descriptions, preprocessing methods, and examples provided
in the full-text articles were synthesized to determine if any
restrictions were placed on the data set before processing. This
involved allocating specific restrictions for data set processing,
from which short-form types could be derived, or determining
if no restrictions were applied. For categorizing research
methodologies, the 3 target objectives for short-form processing
(identification, expansion, and disambiguation) were extracted
from each publication, along with assigning multidimensional
research methodologies to each objective. Additional objectives
included differentiating between languages studied, noting NLP
study recommendations, and identifying applied data sets,
inspired by the scoping review by Kersloot et al [13].
Information was extracted from each article, and the
characteristics were assigned accordingly. Overall occurrence
rates were used for narrative description and summarization.

Results

Overview
Figure 1 illustrates the workflow of this scoping review. A total
of 6579 records were identified that matched the search criteria
via literature databases. After deduplication, 3878 records
proceeded to the screening stage. Reviewing titles and abstracts
reduced this number to 81 papers, which were then assessed for
eligibility by reading their full texts. An additional manual
citation search was conducted using BibliZap [14] based on the
included studies, yielding 50 more full-text articles for eligibility
screening. A thorough analysis during the eligibility stage
resulted in 19 articles being included in the final analysis.

The results were divided into 5 sections, covering (1) types and
processing of short forms, (2) applied data sets, (3) languages
under investigation, (4) adherence to NLP recommendations,
and (5) overall findings.
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Figure 1. PRISMA diagram for systematic scoping review. EBMR: Evidence-Based Medicine Reviews; NLP: natural language processing; PRISMA:
Preferred Reporting Items for Systematic Reviews and Meta-Analyses; WOS: Web of Science.

Types of Short Forms
The exact type of short-form content was not explicitly stated
in all included articles. It had to be extracted through examples
provided, data set evaluations and descriptions, or inference.
Unfortunately, a clear typology of short forms does not exist,
leading to varying definitions and interpretations of short-form
types depending on the data set language used in each article.

In this scoping review, the term “short form” is used as a general
category for all types of abbreviations. It includes not only
classical acronyms or initialisms, such as “ECG,” “5-FU,” and
“AIDS,” but also all types of abbreviations, including
single-character abbreviations such as “N” for “nerve” or
“neoplasm.” Additionally, short forms encompass unfinished
words, also known as ad hoc abbreviations, such as “pat” for
“patient” or “neonat” for “neonatology.” In contrast to
acronyms, these short forms are not capitalized and, depending
on the language, may end with a dot, for example, “chron.”
(chronic) or “Dr.” (doctor).

Acronyms, such as “RA” for “rheumatoid arthritis,” are terms
for shortened words or phrases that are written in uppercase
letters and are defined based on their pronunciation. However,
the inclusion of these acronyms in NLP tasks cannot always be
guaranteed, as articles may define short forms in a manner that
provides reliable results only for a subset of the data set. For
example, only acronyms of 3 characters in length may be
processed and evaluated.

Additionally, the occurrence of specialized abbreviations varies
depending on the data set language. For example,

single-character abbreviations, such as “A” for “arteria” or
“aorta,” are common in German clinical narratives but less
frequent in other languages, such as English. Uppercase letters
followed by a period are prevalent in German, such as “M.” for
“muscle” or “morbus” (disease), and “V.” for “vein” or “vulnus”
(wound). By contrast, English clinical narratives often use
uppercase letters followed by “x,” such as “Hx,” “Dx,” and
“Fx” for medical history, diagnosis, and fracture.

Data Set Restrictions
Any restrictions placed on the data set before processing short
forms are crucial for evaluating the effectiveness of
methodologies for different types of short forms. For example,
a restriction might involve analyzing only acronyms within a
data set and excluding all other types of short forms.

As many as 7 of the 19 (37%) included papers [15-21] had no
restrictions regarding the evaluation of short forms, meaning
their investigation of identification, expansion, and
disambiguation was not preemptively focused on specific types
of short forms. By contrast, the majority (12/19, 63%) of papers
[22-33] did impose restrictions on the type of short form, either
through length restrictions, such as rule-based filters, or
preprocessing guidelines. For example, regarding
single-character abbreviations, 1 (5%) article [28] included only
a few such abbreviations while excluding others. In 2 (11%)
papers [23,26], the inclusion or exclusion of single-character
abbreviations was unclear and could not be determined. Table
2 provides a full list of short-form types and the restrictions
placed on data sets.
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Table 2. Restrictions placed on the data set and selection of types of short forms before being processed.

Types of short forms selectedRestrictions on short formsPaper reference

AcronymsYesAdams et al [22]

Shortened words, abbreviations followed by a period character, physician-specific abbre-
viations, and common abbreviations

YesAvdic et al [23]

Acronyms and abbreviations (at least half of the letters of a word need to be uppercase
to be defined as an abbreviation)

YesEgorov and Funkner [24]

Acronyms and abbreviations (defined as a short form of a word or phrase)YesJaber and Martínez [30]

Acronyms and abbreviations (defined as a short form of a word or phrase)YesJaber and Martínez [25]

N/AaNoLuo et al [15]

Acronyms and abbreviations (without consideration of the casing of the word, all in
lowercase)

YesSkreta et al [26]

N/ANoGrossman et al [16]

N/ANoGrossman Liu et al [17]

N/ANoWang et al [18]

Acronyms: 2 characters in lengthYesLink et al [27]

Abbreviations (mostly user-specific word truncation): length less than 3 characters ex-
cluded, but hand-selection and inclusion of 2 single-character and 2 two-character abbre-
viations

YesKhaleghi et al [28]

Acronyms: more than 2 characters in lengthYesKashyap et al [29]

N/ANoJoopudi et al [19]

N/ANoRajkomar et al [20]

Ad hoc abbreviationsYesMykowiecka and Marcini-
ak [31]

N/ANoBáez et al [21]

AcronymsYesSeneviratne et al [32]

AcronymsYesAgrawal et al [33]

aN/A: not applicable.

Processing of Short Forms
Various methods are applied to process clinical narratives across
the 3 steps: identification, expansion, and disambiguation of
short forms. The first section provides an overview of all
methodological classes and their functionalities found in the
articles. The second section discusses the methods applied to
each of the 3 processing steps.

Overview of Methodologies
The methods described in the selected articles can be roughly
categorized into 8 classes: handcrafted rules, classical ML, DL,
language modeling, human-in-the-loop, text representations,
feature extraction, and software packages. Table 3 presents the
classification of methodologies for processing short forms.
Predominantly, classical ML techniques are used in combination
with handcrafted rules for short-form processing, followed by
applications of DL and language modeling. The
human-in-the-loop approach is mentioned in only 1 article [18].
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Table 3. Methods used for short-form processing.

Software
packages

Feature ex-
tractions

Text repre-
sentations

Human-in-
the-loop

Language
modeling

Deep
learning

Classical
machine
learning

Handcrafted rulesPaper reference

N/AN/A✓N/A✓✓N/AN/AaAdams et al [22]

N/AN/AN/AN/AN/AN/A✓✓Avdic et al [23]

N/AN/A✓N/AN/AN/A✓✓Egorov and Funkner [24]

N/A✓✓N/AN/AN/A✓N/AJaber and Martínez [30]

N/AN/A✓N/A✓✓N/AN/AJaber and Martínez [25]

✓✓✓N/A✓✓✓✓Luo et al [15]

N/AN/A✓N/AN/AN/A✓N/ASkreta et al [26]

✓✓N/AN/AN/AN/AN/A✓Grossman et al [16]

✓✓N/AN/A✓✓✓✓Grossman Liu et al [17]

✓✓N/A✓N/AN/A✓N/AWang et al [18]

✓N/A✓N/AN/AN/A✓✓Link et al [27]

N/A✓✓N/AN/AN/A✓✓Khaleghi et al [28]

N/AN/AN/AN/AN/AN/A✓✓Kashyap et al [29]

N/A✓✓N/AN/A✓✓✓Joopudi et al [19]

N/A✓N/AN/A✓✓✓✓Rajkomar et al [20]

✓✓✓N/AN/A✓N/A✓Mykowiecka and Marciniak [31]

✓N/A✓N/AN/A✓✓N/ABáez et al [21]

N/AN/A✓N/A✓✓N/A✓Seneviratne et al [32]

N/AN/AN/AN/A✓✓N/A✓Agrawal et al [33]

aN/A: not applicable.

Handcrafted rules involve the manual implementation of
rule-based approaches, such as regular expressions, for specific
tasks during text processing. For example, a regular expression
might be used to identify acronyms in clinical texts.

Classical ML methods primarily involve supervised statistical
modeling techniques, including support vector machines
(SVMs), naïve Bayes classifiers, and decision tree classifiers,
as well as unsupervised clustering approaches. These methods
are used to classify data points into distinct categories, whether
they are seen or new.

Statistical modeling techniques, such as conditional random
fields [34], hidden Markov models [35], and logistic regression
[36], use statistical functions to learn from the data set and
generate predictions based on given dependencies. For instance,
logistic regression performs binary classification by applying
weights, a sigmoid function, and probabilistic interpretation to
train a model for the classification task.

SVMs [37] map data points to a feature space to find the best
hyperplane that separates different classes in the data set.
Support vectors are the data points closest to this hyperplane.
SVMs aim to maximize the margin between support vectors,
which enhances the model’s performance on unseen data and
makes it more reliable and robust to irregularities or outliers in
the data set.

Naive Bayes [38] is a probabilistic classifier based on Bayes’
theorem, with the “naive” assumption that features are
independent of each other. It calculates the probability of
existing features to determine the likelihood that unseen features
belong to predetermined groups.

Decision tree classifiers [39], including methods such as random
forest [40] and gradient boosting [41], use a tree structure with
nodes and branches to represent decisions based on features.
Internal nodes represent decisions based on feature sets,
branches represent possible outcomes of those decisions, and
leaf nodes represent the final predictions. This tree structure
facilitates traceable and interpretable classifications, allowing
the decision path to be traced back to the root node, which aids
in the explainability of the model.

DL methods, such as recurrent neural networks, convolutional
neural networks (CNNs), sequence-based models, and transfer
learning, use artificial neural networks with multiple layers of
interconnected nodes. Four key features distinguish DL from
classical ML: feature engineering, model complexity, data
requirements, and interpretability. In classical ML, features are
typically hand-selected or integrated through domain knowledge
by engineers, and the trained models have simpler structures.
With fewer features, classical ML models need less data and
offer more interpretable classifications. By contrast, DL models
automatically extract complex features from data sets, reducing
the need for manual feature engineering. These models are more
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complex due to their multiple layers of interconnected neurons
and a larger number of parameters. As a result, DL models
require larger data sets and more resources for training compared
with classical ML models. Additionally, DL models are often
considered “black boxes” and lack interpretability.

Language modeling is closely related to DL. It encompasses
techniques that use pretrained language models created from
large corpora of text using various NLP algorithms, such as
Bidirectional Encoder Representations from Transformers
(BERT) [42] and Efficiently Learning an Encoder that Classifies
Token Replacements Accurately (ELECTRA) [43]. These
models use methods such as masked language modeling and
bidirectional encoders. Fine-tuning or adapting pretrained
language models to specific problem domains with
domain-specific data sets can further enhance their performance
for NLP tasks, such as classification or prediction. The purpose
of language modeling is to capture the statistical properties of
language to improve the contextual understanding of texts. A
recent advancement in this field is the development of large
language models (LLMs), such as generative pretrained
transformers (GPTs) [44,45]. A prominent example is ChatGPT
[46], which encompasses GPT models developed by OpenAI
that generate and synthesize text based on input prompts.

Human-in-the-loop methods [47] integrate human expertise or
feedback into the ML process, applicable in both classical ML
and DL settings. Examples are active learning, where human
input guides the selection of labels or features during training;
and model evaluation, where human feedback is used to interpret
predictions and improve the model.

Text representations involve transforming textual input before
data processing, significantly impacting overall performance
depending on the chosen methodology. Examples are
bag-of-words, word embeddings, and n-grams.

Bag-of-words represents text as a collection of individual words,
disregarding grammar and word order. In this approach, only
the presence of words is considered, while word sequences and
sentence structure are ignored.

Word embeddings are vector representations of words in a
continuous vector space, capturing the similarity between words
based on their context and meaning. Each word is represented
as a vector with a fixed dimension, and words with similar
meanings or contexts are positioned close together in the vector
space. This representation preserves semantic information and
the context of the input.

N-grams are contiguous sequences of n items (or words) from
a text. The input text is divided into consecutive sequences of
n items, which can be words, characters, or similar structures.
This representation scheme captures the word order and context
within the text.

Feature extraction methods involve extracting or calculating
features from text segments. Examples are string similarity
metrics, such as those introduced by Levenshtein [48] or
Needleman and Wunsch [49], part-of-speech tagging, and
sectioning clinical narratives using section header information.

Software packages include implemented techniques and
algorithms used by authors either as a baseline or integrated
into their own workflow for short-form processing.

Methodologies for Identification, Expansion, and
Disambiguation
Table 4 describes the methods for processing short forms,
including identification, expansion, or disambiguation. Because
of the variability in the objectives of each paper, not all papers
addressing expansion also cover disambiguation, and not all
papers focusing on disambiguation address identification or
expansion of short-form content.

In our review, 14 of the 19 (74%) articles apply methods for
identification, 12 (63%) for expansion, and 15 (79%) for
disambiguation of short-form content. Of these, only 2 of 14
(14%) identification methods, 2 of 12 (17%) expansion methods,
and 15 of 15 (100%) disambiguation methods provide
performance metrics.
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Table 4. Methodologies for the identification, expansion, and disambiguation of short forms.

DisambiguationExpansionIdentificationPaper reference

Gaussian embedding drawn from both word and
metadata prior densities, Bayesian skip-gram model,

N/AN/AaAdams et al [22]

variational distribution over latent meaning cell, and

deep learning (BERTb, embeddings from language
models)

N/AN/ARules, lookup in custom lexical
resource, baselines, support vector

Avdic et al [23]

machine, random forest, tree tag-
ger, naive Bayes, and variations of
methodologies

Random forest, logistic regression, extreme gradient
boosting, stochastic gradient descent, CatBoost (gradi-

Bag-of-characters vectors, 2 TF-

IDFc vectorizers

Rules and lookup in custom lexical
resource

Egorov and Funkner
[24]

ent boosting on decision trees), and support vector
classification

Feature extraction, embedding vectors utilized from
pretrained models, support vector machine, and naive
Bayes skip-gram models

N/AN/AJaber and Martínez
[30]

BERT language models, no fine-tuning, context and
expansions fed into models as input, token-type IDs,
and binary mark IDs

N/AN/AJaber and Martínez
[25]

Feature vectors, cosine distances, edit distances, simi-
larity, and plus combinations

Lookup and ranking with ma-
chine learning

Rules, string similarity (Leven-
shtein [48]), regular expressions

Luo et al [15]

Convolutional neural network and max pool over time

for local context, IDFd-weighted embedding average
for global context, and combination of both outputs

N/AN/ASkreta et al [26]

N/AHarmonization of different
repositories into 1, cross-map-

CARDe framework [50] (combina-
tion of regular expressions and
string similarity approaches)

Grossman et al [16]

ping synonymous record with
filtering, string similarity, and
MetaMap [51]

Feed-forward dense neural network, gradient-boosted
model, and transformer model

Harmonization of different
repositories into 1, cross-map-
ping synonymous record with

CARD framework [50] (combina-
tion of regular expressions and
string similarity approaches)

Grossman Liu et al
[17]

string similarity, rule-based text
feature replacement, and meta
inventory potential pair selection

Instance selection is shown to the human annotator if
the classifier is unable to select a sense, compared with

Dynamic feature representation
combined with parameter estima-

Interactive learning, human anno-
tator input (context + sense, fea-
ture + sense)

Wang et al [18]

random sampling, active learning, ReQuery-ReClassify
expert method (Wang et al [52]), and feature engineer-
ing

tion (logistic regression) = prob-
ability predictions

Averaging predicted probabilities for final probability
selection, prevalence estimation with probability cut-

Random forest for noisy labels,
target sense classification, and
word embeddings

Rule-based selection of notes with
acronyms

Link et al [27]

off, and baselines include most-frequent sense and
knowledge-based method (Finley et al [53])

N/AString similarity Levenshtein
matrix, plus updated matrix, hier-

Regular expressions (filtering),
lemmatization, tokenization,

Khaleghi et al [28]

archical agglomerative cluster-stemming, and string similarity
(Levenshtein [48]) ing, empirical selection of cut-off

distance, heuristic cluster-
ing—sorting the hierarchical ag-
glomerative clustering based on
intercluster distances

Logistic regression modelLookup in the PubMed database
for text and possible expansions

Regular expressionsKashyap et al [29]
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DisambiguationExpansionIdentificationPaper reference

Support vector machine, convolutional neural network,
and baseline including most-frequent sense

String matching, feature vectors
for each entity (bag-of-words,
part-of-speech, clinical note,
section, n-gram), assignment of
each abbreviation to appropriate
cluster, and proportional sam-
pling of sentences from all clus-
ters

Regular expressionsJoopudi et al [19]

Reverse substitution of abbreviations on web data,
transfer learning, and chained inference technique to
overcome domain shift

Needleman and Wunsch [49]
global sequence alignment (token
level)

Regular expressionsRajkomar et al [20]

Word2vec models, bidirectional long-short term
memory, and baseline including most-frequent sense

Lookup in self-created resources
generated through rules, cluster-
ing via the Chinese Whispers al-
gorithm [56], and cosine similar-
ity

Rules, part-of-speech tagger
(Concraft2 [54]), and morphologic
analyzer (Morfeuz2 [55])

Mykowiecka and
Marciniak [31]

N/AN/ANamed entity recognition via Flair
framework (bidirectional long-
short term memory-conditional
random fields architecture) and
application of clinical word embed-
dings

Báez et al [21]

Triplet networks, triplet loss, modeled as a binary
classification problem, and baseline including acronym
span prediction via pretrained language models
(SciBERT and BioBERT)

Lookup, replacement of
acronyms in sentences with pos-
sible expansions to create sen-
tence embeddings

RulesSeneviratne et al [32]

Generative pretrained transformer GPTf-3 as LLMg;
LLM prompting for the resolution, postprocessing
LLM answer with rules, weak supervision with data
set filtering, and fine-tuned PubMedBERT [57] model
for evaluation of output

N/AN/AAgrawal et al [33]

aN/A: not applicable.
bBERT: bidirectional encoder representations from transformers.
cTF-IDF: term frequency-inverse document frequency.
dIDF: inverse document frequency.
eCARD: Clinical Abbreviation Recognition and Disambiguation.
fGPT: generative pretrained transformer.
gLLM: large language model.

Identification
The most common NLP approaches for short-form identification
(12/14, 86%) include rules and regular expressions, lookups in
lexical resources (either custom-created or freely available),
and string similarity calculations. Lemmatization, tokenization,
and stemming combined with rules were used only by Khaleghi
et al [28]. By contrast, Wang et al [18] applied a supervised
method, incorporating human annotation input to develop a
logistic regression model, rather than using these NLP
techniques. Similarly, Mykowiecka and Marciniak [31] used
rules in combination with part-of-speech taggers and
morphological analyzers to identify ad hoc abbreviations, such
as unfinished words, in Polish clinical narratives.

Performance metrics for short-form identification were reported
by only 2 studies. Avdic et al [23] conducted the identification
and labeling of terms in their Serbian clinical corpus, where
12.9% of the words were abbreviations. By using normalization,
stemming, cut-offs, and custom dictionaries, they improved the

labeling of Serbian medical terms (including diagnoses,
symptoms, medications, etc) to achieve an F1-score of 0.908.

Báez et al [21] developed the Chilean Waiting List Corpus, an
annotated resource comprising deidentified physician-authored
referrals from various clinical specialties in Spanish. The
annotations include mentions of findings, procedures, diseases,
medications, body parts, and abbreviations. Using this annotated
data set, they implemented a named entity recognition model
with the Flair framework [58], which generated contextual
embeddings for each word. Pretrained embeddings, trained on
Spanish Wikipedia articles, were compared with embeddings
enhanced with clinical data from unannotated parts of the
corpus. An abbreviation detection model created with this
approach achieved an F1-score of 0.92 for both the base and
enhanced pretrained embedding versions.

Expansion
The expansion of short forms can be achieved either through
lookup operations or nonlookup methods. Lookup-based
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expansion involves searching for a short form in a list, corpus,
sense inventory, or dictionary to retrieve possible expansion
candidates. These candidates can then be processed further using
other methodologies for disambiguation. Nonlookup expansion
methods include data mining techniques, end-to-end
encoder-decoder models, text generation workflows, and active
learning approaches. Expansion of short forms is accomplished
through lookup operations in 8 of 12 (67%) articles
[16,17,19,24,27,29,31,32]. These methods involve searching
for short forms in lists, corpora, or dictionaries to find possible
expansions. By contrast, 3 of 12 (25%) articles used nonlookup
methods [18,20,28], which do not rely on predefined lists or
dictionaries. Additionally, 1 article (1/12, 8%) by Luo et al [15]
presented results from the n2c2 challenge, where participating
teams used a mix of lookup operations, such as semantic-type
classifiers, vocabulary classifiers, and similarity scores, as well
as nonlookup methods, such as edit distance calculations with
word embeddings.

Most of these approaches incorporate a variety of
methodologies, including feature vector creation and
representation (such as a bag of words, part of speech tagging,
clinical notes, section information, and n-grams), logistic
regression, random forest, word embeddings, retrieve and rank
approaches, and clustering. Notably, Rajkomar et al [20] applied
Needleman-Wunsch global sequence alignment, a method
originally developed for nucleotide and protein sequence
alignment, to clinical texts and abbreviation expansion.

Mykowiecka and Marciniak [31] generated expansion candidates
either through a data-driven rule-based approach derived from
the clinical texts or by applying the Chinese Whispers algorithm
[56]. This randomized graph-clustering method clusters
occurrences of abbreviations and identifies expansion candidates
based on these clusters and cosine similarity.

Grossman et al [16] developed an extensive database of medical
short forms, termed the “metathesaurus” by consolidating
various repositories. Their processing techniques included
lexical normalization, concept identification using MetaMap
[59], and cross-mapping of synonymous terms through string
similarity. Coverage calculations indicated that their resource
achieved very high micro coverage, with 94.3% short-form
coverage and 99.6% sense coverage, significantly outperforming
the UMLS (Unified Medical Language System) LRABR
acronym-abbreviation table, which covered only 74.8% of short
forms.

Khaleghi et al [28] utilized similarity matrix calculations using
Levenshtein distance [48,60], incorporating rule-based
adjustments based on the type of short form processed. The
results were then input into k-means partitional clustering, with
empirical cut-off distances set and clusters sorted based on
intercluster distances. This approach achieved an abbreviation
detection accuracy of 90% and a typo detection accuracy of
90.6%.

Disambiguation
The disambiguation approaches are predominantly based on
DL methods, which account for 8 of the 15 (53%) studies,
including CNNs, feed-forward neural networks, and

transformers. Classical ML methods make up 3 of the 15 studies
(20%), with SVMs being a notable example. Additionally,
embedding representations, such as Gaussian and cosine
distance, are used in 6 of the 15 (40%) studies. Logistic
regression was used in 2 of the 15 (13%) cases. Other
methodologies include Bayesian skip-gram models, variational
distributions, gradient boosting, and chained inference combined
with transfer learning, among other techniques.

According to performance measures reported by Egorov and
Funkner [24], SVM emerged as the best model for short-form
expansion, achieving an F1-score of 0.937. Their study compared
SVM with other methods, including random forest, logistic
regression, gradient boosting, and stochastic gradient descent
classifiers, with the classical ML method outperforming the
others in this context.

Adams et al [22] utilized contextualized word representations
derived from local context and metadata, combined with
predefined inventories of short-form expansions. They used
Gaussian embeddings drawn jointly from word and metadata
prior densities, and a Bayesian skip-gram model to process
surrounding words. This approach resulted in a variational
distribution over the latent meaning cell, surpassing the
performance of DL strategies. It achieved a weighted mean
F1-score across 5 pretraining runs of 0.69 for MIMIC-III, 0.57
for the CUIMC (Columbia University Irving Medical Center)
data set, and 0.51 for the Clinical Abbreviation Sense Inventory
(CASI) [9] data set from the University of Minnesota.

Joopudi et al [19] combined string matching, a custom
word-sense inventory, and deep-learning methods with feature
vectors for SVM and CNN. Among these, CNN with local
features outperformed SVM by incorporating clinical narrative
metadata and section information, achieving a micro-averaged
accuracy of 0.979.

Jaber and Martínez [30] analyzed a subset of 13 acronyms from
the CASI data set for acronym disambiguation using SVM and
naive Bayes skip-gram models. During the training phase,
feature extraction and embedding vectors were utilized alongside
pretrained skip-gram models from PubMed Central, Wikipedia,
and PubMed abstracts. SVM outperformed naive Bayes,
achieving an average accuracy of 0.97 compared with 0.93.

In a follow-up study, Jaber and Martínez [25] utilized a masked
language modeling approach with 3 pretrained BERT [42]
language models, without fine-tuning for the specific problem
domain. They incorporated the context and expansions of each
short form as input to the model. This approach achieved an
accuracy of 0.991, surpassing the results reported by Adams et
al [22] and Joopudi et al [19] on the CASI data set.

Luo et al [15] detailed the methodologies of the top 10
performing teams in the shared task on clinical concept
normalization. For the challenging category of single-character
abbreviations, 2 teams distinguished themselves by using DL
with contextual embeddings. Despite achieving a maximum
accuracy of only 0.35, their performance surpassed that of most
other teams.
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Skreta et al [26] used UMLS term embeddings combined with
reverse substitution of terms (replacing expansions with their
corresponding abbreviations) in the MIMIC-III data set to
generate training examples. By leveraging concept hierarchies
from UMLS to augment training sets and searching for related
concepts, they adapted the global context in narratives using
Euclidean distance to develop an abbreviation disambiguation
pipeline with CNNs. By integrating concept hierarchies during
pretraining, augmenting with associated medical concepts
extracted from the embedding space, and considering the global
context of clinical narratives, Skreta et al [26] achieved an
accuracy of 0.841 on the CASI data set with their CNN-based
abbreviation disambiguation pipeline.

Grossman Liu et al [17] continued the work of Grossman et al
[16] by applying DL methodologies to cross-map short forms
and develop a metathesaurus of clinical short forms. On
clinician-labeled data, their gradient-boosted model, BERT
model, and an ensemble approach demonstrated similar
performance, with the ensemble achieving an F1-score of 0.814.

Wang et al [18] utilized an active learning algorithm,
incorporating human annotator input to enhance acronym
disambiguation. This approach achieved an area under the
learning curve score of 0.852 on the CASI data set.

Link et al [27] assessed their semisupervised ensemble ML
algorithm (CASEml) on the acronyms “RA,” “MS,” and “MI”
using Veterans Affairs EHR data. Their approach, which
integrated a visit-level random forest with embeddings-based
context representation, achieved accuracy metrics of 0.947 for
“RA,” 0.911 for “MS,” and 0.706 for “MI.”

Kashyap et al [29] developed CLASSE GATOR (Clinical
Acronym Sense Disambiguator) for acronym disambiguation.
The tool, which utilizes full-text research articles from PubMed
Central to detect and extract acronym-expansion pairs, trained
a logistic regression model. The system achieved an average
accuracy of 0.879 in predictive performance.

Rajkomar et al [20] developed a single translation model for
the detection, expansion, and disambiguation of clinical
acronyms, and evaluated it on multiple data sets. The model
achieved accuracies of 0.921 on the CASI data set, 0.957 on

the MIMIC-III data set, and 0.965 on the Informatics for
Integrating Biology and the Bedside (i2b2) 2014 data set.

Mykowiecka and Marciniak [31] used a bidirectional long
short-term memory network architecture for disambiguating ad
hoc abbreviations, achieving an F1-score of 0.726 with 10-fold
cross-validation. Further variations in the lists of possible
expansion candidates improved the F1-score to 0.968.

Seneviratne et al [32] adapted embeddings-based approaches
for acronym disambiguation by learning sentence embeddings
to capture semantic differences. They applied triplet networks
and triplet loss methods, drawing inspiration from Siamese
Networks [61] for image recognition and triplet neural networks
[62] for predicting protein gene ontology. To create the
embeddings, acronyms were identified using rules, and based
on the CASI data set, abbreviations were replaced with their
possible long forms. This approach was modeled as a binary
classification problem, where the method determines the
correctness of an acronym by comparing the input with the
trained embeddings, achieving an F1-score of 0.87.

Agrawal et al [33] tested the disambiguation of acronyms from
the CASI data set using GPT-3, a GPT model developed by
OpenAI. This LLM utilizes contextual understanding from the
input prompt to generate appropriate responses. In this case, no
specific examples for acronym resolution were provided;
instead, the model was given only the context in which the
acronym appeared, followed by a request to expand the acronym
based on that context. This method achieved 0.86 in accuracy
and 0.69 in macro F1-score. With additional data set filtering
and fine-tuning of PubMedBERT [57] to distill the GPT-3 model
into a smaller, more manageable version, evaluations on
MIMIC—restricted for GPT-3 due to data-use
agreements—were conducted. The combined GPT-3 and
PubMedBERT approach achieved an accuracy of 0.90 for the
CASI data set and 0.78 for MIMIC.

Applied Data Sets
For the development and assessment of methodologies, most
studies utilize a diverse range of data sets, as detailed in Table
5.
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Table 5. Applied data sets for the creation and/or evaluation, and language of clinical narratives being processed, are listed.

LanguageData set for creation or evaluationaPaper reference

EnglishMIMIC-IIIb, University of Minnesota (CASIc)d, Columbia University intensive care

unit/critical care unit reverse substitutiond,e, MIMIC reverse substitutione

Adams et al [22]

SerbianUnstructured EHRfmedical reports and custom dictionary of medical (eg, diagnoses, medica-
tions, Latin terms) and nonmedical terms (stop words, proper nouns)

Avdic et al [23]

RussianUnstructured EHR medical recommendations, Leo Tolstoy’s novel “War and Peace,” and an
encyclopedic dictionary of medical Russian terms

Egorov and Funkner [24]

EnglishUniversity of Minnesota (CASI)dJaber and Martínez [30]

EnglishUniversity of Minnesota (CASI)dand unstructured EHR admission notes/inpatient consult
notes/discharge summaries

Jaber and Martínez [25]

Englishi2b2 g 2010Luo et al [15]

EnglishMIMIC-III, University of Minnesota (CASI)d, and i2b2 2010Skreta et al [26]

EnglishUMLSh-LRABRi, ADAMi,j, Berman’s abbreviationsi, Wikipediai, Vanderbilt University in-

ventories from EHR from sign-out and discharge notesd, Stetsond, Columbia OBGYNd, and
MIMIC-III

Grossman et al [16]

Grossman Liu et al [17]

EnglishMedical Subject Headings abbreviations via MEDLINE abstractsi, University of Minnesota

(CASI)d, and Clinical Abbreviations from Vanderbilt Universityd

Wang et al [18]

EnglishUnstructured EHR clinical notesLink et al [27]

EnglishUnstructured EHR surgical notesKhaleghi et al [28]

EnglishMIMIC-III, PubMed Central, and University of Minnesota (CASI)dKashyap et al [29]

EnglishUniversity of Minnesota (CASI)d  and unstructured EHR longitudinal patient recordsJoopudi et al [19]

EnglishUniversity of Minnesota (CASI)d, MIMIC-III, synthetic snippets, i2b2 2014, Clinical Abbre-

viations from Vanderbilt Universityd, Sign-out note abbreviationsi, Beth Israel Deaconess

Medical Center abbreviationsi, and Wikipediai

Rajkomar et al [20]

PolishUnstructured EHR clinical notes (interrogation, examination, and recommendations)Mykowiecka and Marciniak [31]

SpanishChilean Waiting List Corpus: unstructured EHR clinical notes (referrals)Báez et al [21]

EnglishUniversity of Minnesota (CASI)dSeneviratne et al [32]

EnglishUniversity of Minnesota (CASI)d and MIMIC-III reverse substitutioneAgrawal et al [33]

aClinical narrative data sets are marked in italics.
bMIMIC: Medical Information Mart for Intensive Care.
cCASI: Clinical Abbreviation Sense Inventory.
dA data set that consists of a sense inventory in combination with short forms in context.
eReverse substitution: replacement of long forms with their short forms and labeling it with the original target label.
fEHR: electronic health record.
gi2b2: Informatics for Integrating Biology and the Bedside.
hUMLS: Unified Medical Language System.
iShort-form–specific sense inventories.
jADAM: Another Database of Abbreviations in MEDLINE.

Grossman et al [16] and Grossman Liu et al [17] utilized 9 data
sets to create a comprehensive deep database of medical
abbreviations. Similarly, Rajkomar et al [20] used 8 data sets
for clinical abbreviation disambiguation. Additionally, 7 of 19
(37%) studies used unstructured EHRs from their institutions,
which are not publicly accessible due to privacy concerns.
Available clinical narratives constituted a significant portion of
the listed data sets. Notably, 10 of 19 (53%) studies used the

CASI [9] from the University of Minnesota, which includes a
sense inventory, document-level metadata, and context
information for ambiguous clinical abbreviations. The CASI
data set incorporates several data sets that are also used
independently by other studies reviewed here, including ADAM
(Another Database of Abbreviations in MEDLINE) [63]; the
UMLS Metathesaurus [64]; and Stedman’s Medical
Abbreviations, Acronyms and Symbols [65]. Similarly, 6 of the
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19 (32%) papers utilized the MIMIC-III [7], which is a
deidentified intensive care data set covering over 40,000
patients. This data set includes intensive care notes, tests, orders,
billing and code information, demographics, and reports for
patients attended to by hospital staff between 2001 and 2012.

Languages Under Investigation
Examining the language distribution of data sets used across
the 14 eligible papers, 14 of the 19 (74%) data sets were in
English. The remaining data sets were in other languages:
Serbian [23], Russian [24], Polish [31], and Spanish [21]. Given
that these are considered low-resource languages for clinical
NLP, custom dictionaries and sense inventories for short-form
content were necessary to aid in expansion and disambiguation.
These inventories were then applied to process texts for the
predetermined tasks of short-form identification, expansion,
and disambiguation.

NLP Recommendations
To assess the quality and reproducibility of the included papers,
NLP recommendations across 7 categories were analyzed:

source code availability, linking to external data sets,
descriptions of internal data sets, application of performance
metrics, provision of error analysis, inclusion of confusion
matrices, and execution of external validation. These categories
were inspired by the NLP recommendations from Kersloot et
al [13], established for future studies during a systematic scoping
review on NLP algorithms for mapping clinical text fragments
onto ontology concepts. The classification of each included
paper for short-form processing according to these categories
is summarized in Table 6.

Only 3 of 19 (16%) papers met all the recommendations. By
contrast, 16 of 19 (84%) only partially fulfilled the criteria for
each category. Specifically, of the 19 papers, 10 (53%) did not
provide the source code for their methodology, 2 (11%) did not
link to the external data sets used, 15 (79%) did not include a
confusion matrix for error analysis, 10 (53%) did not conduct
an error analysis, and 9 (47%) did not perform external
validation.

Table 6. Analysis and classification of included papers according to their fulfillment of natural language processing recommendations for identification,

expansion, and disambiguation of short forms.a

External
validation

Confusion
matrix

Error analy-
sis

Performance
metrics

Internal data
set described

External data
set linked

Source
code

Overall ful-
fillment

Paper reference

YesNoNoYesPartiallyYesYesPartiallyAdams et al [22]

NoNoYesYesYesNoNoPartiallyAvdic et al [23]

NoNoNoYesPartiallyNoNoPartiallyEgorov and Funkner [24]

NoNoNoYesN/AbYesNoPartiallyJaber and Martínez [30]

NoNoYesYesYesYesNoPartiallyJaber and Martínez [25]

YesN/AYesYesN/AYesYesYesLuo et al [15]

YesYesYesYesN/AYesYesYesSkreta et al [26]

YesNoNoYesN/AYesYesPartiallyGrossman et al [16]

YesNoNoYesN/AYesYesPartiallyGrossman Liu et al [17]

NoNoYesYesYesYesNoPartiallyWang et al [18]

YesYesYesYesYesN/AYesYesLink et al [27]

YesPartiallyNoYesYesN/ANoPartiallyKhaleghi et al [28]

YesNoNoYesYesYesNoPartiallyKashyap et al [29]

YesNoYesYesYesYesNoPartiallyJoopudi et al [19]

YesNoYesYesYesYesYesPartiallyRajkomar et al [20]

NoNoYesYesYesN/ANoPartiallyMykowiecka and Marciniak
[31]

NoNoNoYesYesYesYesPartiallyBáez et al [21]

NoNoNoYesN/AYesYesPartiallySeneviratne et al [32]

NoNoNoYesN/AYesNoPartiallyAgrawal et al [33]

aFour possible classifications: yes, no, partially, and N/A.
bN/A: not applicable.

J Med Internet Res 2024 | vol. 26 | e57852 | p. 14https://www.jmir.org/2024/1/e57852
(page number not for citation purposes)

Kugic et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Discussion

Principal Findings
Research on abbreviations has not uniformly covered all types,
and methodologies have yielded varying results for different
subtypes. This disparity is partly due to the limitations of
existing short-form repositories, which often focus on specific
types of abbreviations. For instance, the CASI from the
University of Minnesota includes only acronyms and omits
single-character abbreviations. Developing a comprehensive
sense inventory for single-character abbreviations is challenging
and may require utilizing openly available data sets and
databases. The higher ambiguity associated with single-character
abbreviations could also explain why they are frequently
excluded from studies.

It appears that clinical narratives in different languages have
varying distributions of short forms and their subtypes [4]. The
included articles indicate that short forms can include the
following subtypes: abbreviations, acronyms, abbreviations
followed by a period, single-character abbreviations, among
others. Our systematic scoping review found that all these
subtypes were addressed in at least one of the articles reviewed.
However, not all articles clearly specify the types of short-form
content they processed. Nevertheless, it is often possible to infer
the subtypes covered, based on the methods described or
examples from the data sets.

The preemptive exclusion of certain types of short forms from
data sets introduces a bias that becomes apparent only when the
articles are carefully compared individually.

For identifying and expanding short forms in clinical narratives,
the most commonly used approaches were rules, string
similarity, and lookups in lexical resources. These methods have
a low barrier to entry, being relatively easy to implement and
test. By contrast, DL and ML approaches require significantly
more resources, including graphics cards, high computing
power, and large data sets. Our review indicates a strong
preference for DL, particularly for disambiguation tasks, as it
heavily relies on contextual detection.

Limitations and Future Research Directions
A limitation of this systematic scoping review was the restriction
to the past 5 publication years, which may have excluded
important studies published before or after this period. This
decision was driven by practical considerations, such as
managing the volume of literature within the constraints of
available personal resources.

Limitations in effectively processing all types of short forms
are primarily due to the data sets and resources used to develop
the processing methodologies. Key factors include data
accessibility and the resources required for implementing

short-form processing techniques. These limitations arise from
the need for high-quality data collected from various sites or
institutions for each data set language and the establishment of
annotation workflows for creating comprehensive short-form
sense inventories. These processes would enable the semantic
recording of different documentation styles and varied contexts
for each short form, thereby enhancing the processing algorithms
to better recognize, expand, and disambiguate all types of
abbreviations. Given the particularities of clinical language and
short forms in each language, bridging the gap in processing
between languages requires higher-quality resources. These
resources should be generated and made accessible to the
research community to improve cross-linguistic short-form
processing [66].

Additionally, the articles examined in this scoping review only
marginally reflect the impact of LLMs, such as those
popularized by ChatGPT. Only 1 article in the review applied
LLMs for short-form processing. This limited representation is
partly due to the review’s timeframe, which concluded just a
few months after the release of the GPT-3.5 model. Since then,
numerous studies have utilized LLMs for clinical short-form
processing tasks. However, these results offer only a snapshot
amid the rapidly evolving technological landscape. Currently,
LLMs appear to hold significant potential for clinical short-form
processing, although their precision is still challenged by issues
such as hallucinations, which are difficult to control.
Additionally, many of the most effective models are proprietary
and cloud-based, which limits their use for processing sensitive
data. Therefore, the methodologies analyzed and discussed in
this scoping review should not be considered obsolete. We plan
to update this review once LLM technology has matured and a
sufficient number of new studies—ideally utilizing the same
data sets as those reported here—have been published.

Conclusions
Short-form expressions, such as acronyms and other
abbreviations, are distinctive elements found in narratives
written by clinicians and stored in EHRs. To gain an overview
of methods for processing these short-form expressions in
clinical texts, we conducted a systematic scoping review of
peer-reviewed articles. Our review found that classical ML and
DL methodologies demonstrated the best performance for
short-form disambiguation tasks, while rule-based and string
similarity matching approaches were more commonly used for
short-form identification and expansion. The methodologies
applied to different short-form types and languages varied, and
recommendations for NLP studies were only partially followed.
Future research should focus on improving the quality and
reproducibility of investigations by providing comprehensive
details, including links to used resources and a more detailed
description of the short-form content being studied.
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CARD: Clinical Abbreviation Recognition and Disambiguation
CASI: Clinical Abbreviation Sense Inventory
CLASSE GATOR: Clinical Acronym Sense Disambiguator
CNN: convolutional neural network
CUIMC: Columbia University Irving Medical Center
DL: deep learning
EBMR: Evidence-Based Medicine Reviews
EHR: electronic health record
ELECTRA: Efficiently Learning an Encoder that Classifies Token Replacements Accurately
GPT: generative pretrained transformer
i2b2: Informatics for Integrating Biology and the Bedside
LLM: large language model
MeSH: Medical Subject Headings
MIMIC: Medical Information Mart for Intensive Care
ML: machine learning
NLP: natural language processing
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
SVM: support vector machine
UMLS: Unified Medical Language System
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