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Abstract

Background: With the rise of artificial intelligence (AI) in the field of dementia biomarker research, exploring its current
developmental trends and research focuses has become increasingly important. This study, using literature data mining, analyzes
and assesses the key contributions and development scale of AI in dementia biomarker research.

Objective: The aim of this study was to comprehensively evaluate the current state, hot topics, and future trends of AI in
dementia biomarker research globally.

Methods: This study thoroughly analyzed the literature in the application of AI to dementia biomarkers across various dimensions,
such as publication volume, authors, institutions, journals, and countries, based on the Web of Science Core Collection. In addition,
scales, trends, and potential connections between AI and biomarkers were extracted and deeply analyzed through multiple expert
panels.

Results: To date, the field includes 1070 publications across 362 journals, involving 74 countries and 1793 major research
institutions, with a total of 6455 researchers. Notably, 69.41% (994/1432) of the researchers ceased their studies before 2019.
The most prevalent algorithms used are support vector machines, random forests, and neural networks. Current research frequently
focuses on biomarkers such as imaging biomarkers, cerebrospinal fluid biomarkers, genetic biomarkers, and blood biomarkers.
Recent advances have highlighted significant discoveries in biomarkers related to imaging, genetics, and blood, with growth in
studies on digital and ophthalmic biomarkers.

Conclusions: The field is currently in a phase of stable development, receiving widespread attention from numerous countries,
institutions, and researchers worldwide. Despite this, stable clusters of collaborative research have yet to be established, and there
is a pressing need to enhance interdisciplinary collaboration. Algorithm development has shown prominence, especially the
application of support vector machines and neural networks in imaging studies. Looking forward, newly discovered biomarkers
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are expected to undergo further validation, and new types, such as digital biomarkers, will garner increased research interest and
attention.

(J Med Internet Res 2024;26:e57830) doi: 10.2196/57830
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Introduction

Background
As the global population ages and life expectancy increases,
the number of individuals with dementia is rising at an alarming
rate. It is estimated that >55 million people are currently affected
by dementia, and this number is expected to continue to grow
[1]. The 4 most common subtypes of dementia are Alzheimer
disease (AD), vascular dementia (VaD), dementia with Lewy
bodies (DLB), and frontotemporal dementia (FTD). Their typical
symptoms include cognitive dysfunction, memory loss, and
mood fluctuations [2], significantly impacting patients’ quality
of life and social function. Currently, there is no complete cure
for these diseases, posing a substantial burden on patients and
their families [3]. Therefore, early diagnosis is crucial for the
intervention and management of these diseases [4]. At present,
the diagnosis of these conditions largely relies on manual
assessments by neurologists or other medical experts, which
can be challenging to access in economically disadvantaged
areas, leading to many cases of dementia going undiagnosed or
misdiagnosed [5]. In addition, neurologists may take a
considerable amount of time to make a final diagnosis for a
single patient [6].

Biomarkers, as measurable biological indicators that can reflect
normal physiological processes, disease progression, or
responses to treatment [7], are crucial for the clinical diagnosis,
management, and treatment of dementia. The National Institute
on Aging and Alzheimer’s Association in the United States
have recognized the use of biomarkers for diagnosing AD and
monitoring its progression [8]. These markers aid clinicians in
identifying high-risk groups, making early diagnoses [9],
determining subtypes [10], predicting prognosis [11], and
assessing drug responses or adverse events. However, with the
exponential growth of multiomics and multimodal data,
traditional statistical methods are no longer sufficient to meet
the needs of discovering new biomarkers [12]. Artificial
intelligence (AI), a widely used tool in the health care sector,
offers a new perspective for accelerating the discovery of more
reliable and clinically applicable biomarkers for dementia [13].

AI, an interdisciplinary field merging computer and data
sciences, aims to simulate and extend human intelligence
through machines [14]. Core technologies in AI, such as
machine learning (ML), natural language processing, and
computer vision [15,16], allow researchers to analyze and mine
vast amounts of clinical and biomarker data. Through techniques
such as ML and deep learning, more accurate and personalized
predictions and diagnoses for dementia are made possible [12];
for instance, deep learning and ML as well as using diverse
biomarker data types such as imaging, genetic information, and
proteomics have been highly accurate in early diagnosis and

classification of dementia [17-19]. Genetic and neurobiological
data reveal the neuroglial activation and inflammatory states in
dementia, identifying pathological stages of the disease [20,21],
thereby deepening the understanding of its onset and
progression. Similarly, AI identifies patterns and features in
these data sets, analyzing potential disease biomarkers. This
helps researchers save significant time and resources as well as
identify more diagnostic biomarkers for earlier interventions
and treatments, ultimately leading to better therapeutic
outcomes.

To assess effective diagnostic biomarkers, the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) has used a multifaceted
approach, including imaging and cerebrospinal fluid (CSF) tests,
aimed at identifying the most predictive biomarkers for dementia
[22]. Yang and Qu [23] analyzed AD biomarker research from
2000 to 2023, using network analysis to highlight CSF and beta
amyloid (Aβ) protein as research hot spots and cutting-edge
areas. Noda et al [24] identified the research dynamics involving
the emerging biomarker neurofilament light (NFL) through
keyword trend analysis. Similarly, Wu et al [25] emphasized
the significance of AI in dementia research using bibliometrics.
In review studies, Aberathne et al [26] highlighted the
effectiveness of AI and ML in processing magnetic resonance
imaging (MRI) and positron emission tomography (PET)
imaging data. Blanco et al [27] and Falahati et al [28]
demonstrated the application of algorithms in fluid biomarker
research and imaging biomarker performance, respectively,
while Chang et al [13] emphasized that ML combined with
novel biomarkers and multivariate data could enhance the
sensitivity and specificity of AD diagnosis. In addition, Li et al
[29] reviewed the use of AI in digital biomarkers. Tzimourta et
al [30] reviewed the application of various AI algorithms in 49
experimental studies analyzing electroencephalography (EEG)
recordings, summarizing EEG features associated with AD.

However, the existing reviews summarizing the latest findings
on AI algorithms and biomarkers often focus solely on 1 type
of biomarker, failing to conduct multicategory induction and
identify specific patterns. Current bibliometric studies have not
yet explored the specific applications of AI in the field of
dementia biomarkers. Therefore, this study combines
bibliometric and content mining analysis to provide a
comprehensive overview of research hot spots and
developmental trends, offering valuable insights for future
research directions.

Research Problem and Aim
Bibliometrics, as a method for analyzing quantitative
information in scholarly literature [31], plays a crucial role in
the evaluation of scientific advances within research areas [32].
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Through bibliometric analysis as well as content mining and
analysis, our study aims to achieve the following objectives:

1. Thoroughly analyze the current status and various stage
applications of AI in dementia biomarkers

2. Highlight the research hot spots and future trends in this
field

3. Identify and emphasize the contributions of prolific authors,
leading countries, and the most productive academic
institutions in this field

4. Explore potential future collaborative opportunities
5. Examine the connections and application scale between

biomarkers and AI methods

Through this research, we aim to comprehensively understand
and evaluate the application of AI in the field of dementia
biomarkers and make substantive contributions to the future
research development in this area.

Methods

Leveraging the Web of Science Core Collection database and
various bibliometric tools, we conducted a detailed collaborative
analysis of annual publication volume and trends, author
publication dynamics and collaboration networks, institutional
publications and collaboration networks, national publications,
collaboration networks, distribution of disciplines and
interdisciplinary activities, and keyword clustering. By using
literature mining and content analysis, we captured the
prevalence, trends, connections, newly discovered biomarkers
associated with AI algorithms, and various types of dementia
biomarkers, distinguishing and analyzing them according to the
classification of dementia subtypes.

Data Sources and Search Strategy
Following the suggestion by Donthu et al [33] to minimize
potential human errors during format conversion among different
databases (manual calibration is required to standardize different
database formats, including manually establishing and entering
profiles for funds, authors, etc; in addition, discrepancies in
citation statistics from different databases and the untraceability
of local citations have been noted), we decided to collect
bibliometric data from only 1 database. This study selected the
Web of Science Core Collection as the platform for the literature
search. To ensure comprehensive coverage, all editions of the
citation index database were chosen to avoid any omission of
relevant literature. This database is widely recognized as a core
resource for interdisciplinary academic research and has received
high acclaim in numerous bibliometric studies [25,34,35].

Before conducting the search, all team members underwent
professional training based on the Medical Literature
Information Retrieval textbook [36], and a web-based search
of the Web of Science Core Collection was conducted on
November 2, 2023. The search used keywords such as “artificial
intelligence,” “dementia,” and “biomarker,” along with their
derivatives, synonyms, and Boolean operators, to construct the
search formula (Multimedia Appendix 1). The scope of the
search extended from the database’s inception to the date of the
search. A total of 2315 relevant documents were retrieved,
exported with full records and complete citations, and saved in
plain-text format. To avoid bias due to daily updates of the Web
of Science Core Collection database, all searching and exporting
tasks were completed within the same day.

Inclusion and Exclusion Criteria
The inclusion criteria were as follows: (1) document types
restricted to “articles” or “reviews,” (2) papers written in
“English,” and (3) research topics related to “artificial
intelligence” and “dementia biomarkers.” The exclusion criteria
were as follows: (1) duplicate publications; (2) nonjournal
literature such as conference papers, books, and comments; (3)
documents with missing abstract, keywords, or main text; and
(4) studies unrelated to “artificial intelligence” and “dementia
biomarkers.”

Screening Strategy
After establishing the inclusion and exclusion criteria, to ensure
the reliability of the material selection process, 2 evaluators
(WQ and XZ) conducted a preliminary screening trial of 50
papers based on the titles, abstracts, and keywords [37]. The
Cohen κ coefficient was calculated to be approximately 0.88,
indicating a high level of agreement between the evaluators (the
Cohen κ coefficient ranges from –1 to 1, with higher values
denoting better consistency [38,39]; the specific formulas and
methods are provided in Multimedia Appendix 2).

Therefore, we decided not to make any changes to the inclusion
and exclusion criteria or to the evaluators. In case of any
disagreements during the official selection process, 3 authors
(WQ, XZ, and SC) would discuss the matter until a consensus
was reached in a team meeting. The literature screening and
verification were successfully completed on November 25,
2023. Of the 2315 papers identified, 1070 (46.22%) were
included, while 1245 (53.78%) were excluded (type mismatch:
n=60, 4.82%; irrelevant to the topic: n=1184, 95.1%; missing
abstract: n=1, 0.08%). The detailed search and selection process
is recorded in Figure 1.
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Figure 1. Search and filter process diagram.

Data Cleaning
In the author analysis process, we conducted further reviews
for authors with similar names to determine whether they were
the same individual and decide whether further merging was
necessary. The review was facilitated by examining the
consistency of their Open Researcher and Contributor ID
records, publication history, affiliation with the same institution,
and information on professional sites such as ResearchGate.
During the institutional analysis, we adopted the institutional
affiliation standardizationmodel developed by Nam et al [40],
selecting the first-listed institution, usually the primary
affiliation, for authors associated with multiple institutions. In
addition, we consolidated various institutions’ full names and
abbreviations. In analyzing international collaborations, we
acknowledged authors affiliated with multiple international
institutions because this could indicate potential transnational

visiting scholarships or other forms of international cooperation.
For funding analysis, we reviewed and appropriately merged
various forms of sponsor names, including full names and
abbreviations. Before the keyword analysis, to ensure the
uniformity and accuracy of author keywords, we used the
Bibliometrix package in R to merge synonyms; for instance,
“Alzheimer disease” and “AD” were unified under “Alzheimer’s
disease” (specific merged keywords are detailed in Multimedia
Appendix 3).

Data Analysis
Currently, single bibliometric tools still have limitations in
information extraction and content analysis [41]. To avoid bias
and ensure the completeness and detail of information, we
adopted a joint analysis strategy based on the strengths of
various tools, as detailed in Multimedia Appendix 4. Brief
introductions to the tools used are presented in Textbox 1.
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Textbox 1. Brief introductions to the tools used.

Tools and brief introductions
• CiteSpace (version 5.7.R5; Drexel University): a Java scientometric tool developed by Chen [42], used for visualizing trends and patterns in

scientific literature as well as revealing hot spots and the evolution of knowledge structures

• VOSviewer (version 1.6.19; Leiden University): free Java document-mapping software developed by the Centre for Science and Technology
Studies at Leiden University, Leiden, Netherlands, assists in building various visualization networks [43]

• Bibliometrix: an R-based tool for extracting, processing, and analyzing literature data from the Web of Science database [44]

• gCLUTO (version 1.0; Kerapis Lab): focuses on data clustering, offering various clustering methods and visualization options [45]

• Publish or Perish (Harzing.com): used for assessing the publication and citation records of scholars, providing multiple metrics for comprehensive
and fair academic research evaluation

• Gephi (version 0.10.1; Gephi.org): software for visualizing social and citation networks, providing significant flexibility in graph rendering

• Joinpoint (version 5.0.2; National Cancer Institute, United States): software designed for identifying and analyzing trend change points in time
series data, allowing for the detection of points where there is a significant shift in the slope of the trend [46]

• Scimago Graphica (version 1.0.16; Scimago Lab) [35] and Pajek (64-bit version) Portable (version 5.18; University of Ljubljana) [47]: for
enhanced readability of knowledge maps, Scimago Graphica and Pajek (64-bit version) Portable were incorporated for layout purposes

The analysis for each section adopted the bibliometrics analysis
scheme proposed by Cobo et al [48].

Statistical Analysis

Extraction and Classification of Biomarkers and AI
Algorithms
We specifically established an interdisciplinary professional
team responsible for reading the full texts of research papers to
extract and classify specific biomarkers and AI algorithms and
to handle discussions and disputes that arose. The team consisted
of 2 neurology experts, 2 AI domain experts, and 1 medical
informatics expert. The classification process for biomarkers

and algorithms was conducted independently by the neurology
experts and the AI domain experts, without interference from
each other. In addition, each expert conducted evaluations
independently, and in cases of dispute, the medical informatics
expert intervened to discuss the issue and take a decision. We
referred to the classification of ML algorithms by Gutierrez [15]
and Silva-Spínola et al [49], classified the biomarkers based on
their nature and acquisition methods, and ultimately used Gephi
(version 0.10.1) to construct a co-occurrence network between
them. The specific classification process and network
construction are shown in Figure 2. The detailed classification
methods of biomarkers are presented in Multimedia Appendix
5.
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Figure 2. Classification and network construction diagram of dementia biomarkers and artificial intelligence algorithms. Different colored squares
represent various types of algorithms or biomarkers. The upright arrow on the far left represents the workflow. After organizing and compiling these,
connections were established by constructing a matrix.

Publication Output and Growth of Research Interest
We used CiteSpace to analyze the annual publication trends of
the literature and applied polynomial fitting using the least
squares method in OriginPro 2021 (OriginLab Corporation)
[50]. The R² value is an indicator of the fit of a trend line,
reflecting the degree of fit between the estimated values of the
trend line and the corresponding actual data. The closer the R²
value is to 1, the higher the degree of fit and the greater the
reliability of the trend line [51]. The annual growth rate of
publications was calculated using the following compound
formula [52,53]:

Growth rate = ([number of publications in the last
year / number of publications in the first year]1 / (last
year − first year) − 1) × 100

Joinpoint software was used to evaluate time trends in a
structured manner and to test which trends between junction
points were statistically significant [54]. The software applies
recommended schemes for the number of turning points in the
model. To indicate the direction and magnitude of trends, this
study calculated the changes in the trend slope. The slope
represents the rate of change of the dependent variable over a
specific period. When the difference in slopes between 2 line
segments is significantly different from 0, it indicates a
significant change in the trend at the corresponding time point
(ie, the node). P<.05 was considered statistically significant.

Author Analysis
We used VOSviewer and Bibliometrix to analyze key
information of the top 10 authors with the highest publication
volume. Considering the differences in interdisciplinary citation
habits, we used Publish or Perish software to calculate the
h-index [55], g-index [56], and e-index [56,57] scores, thus
avoiding assessment biases that might arise from relying on a
single metric [58]. A higher e-index score indicates that an
author has produced a series of high-quality, high-impact
research works in their field, rather than just a few widely cited
papers. Detailed methods and formulas for calculating the
e-index score are provided in Multimedia Appendix 2.

We used Microsoft Excel 2019 to compile the annual output of
all authors, analyzing their publication dynamics to identify
new researchers and terminators [59]. New researchers are
defined as those who started publishing in a specific year
without any prior related publications, while terminators are
those who published articles before a specific year but did not
publish any article after that year [59]. The Price law formula
[60] was applied to identify the core group of authors and
calculate their productivity. The specific formulas and methods
are provided in Multimedia Appendix 2.

Journal Analysis
To identify core journals in the field, we applied the Bradford
law [61,62]. We conducted a fair and comprehensive evaluation
of the journals’ academic impact, integrating metrics such as
CiteScore 2022 [63,64], Scimago Journal Rank [63,65], Journal
Citation Reports Quartile rankings [66,67], and Impact Factor
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[67,68]. These measures help in assessing the journals’ influence
and relevance in the field accurately [58,63].

Country Analysis
A detailed analysis of the countries leading in global publication
volume was performed using VOSviewer. The Scimago
Graphica tool was used to create a world map illustrating
publication volumes and regional densities. The gross domestic
product of these countries was estimated and analyzed, taking
into account data from the International Monetary Fund’s World
Economic Outlook report [69]. In addition, the prevalence and
mortality rates of dementia in these countries were examined
by consulting reports from the World Health Organization’s
Global Dementia Observatory [70] and age-standardized
dementia mortality rates [71].

Analysis of Highly Cited Papers
On the basis of the local citation index, the top 10 highly cited
papers were identified, and their standardized citation indices
were calculated. The normalized citation score is derived by
dividing the number of citations of a key paper by the average
number of citations for comparable papers in the same field or
subfield and publication year. A final impact score (normalized
citation score) of >1 indicates that the paper’s citation rate is
above the average for that field or subfield, while a score of <1
indicates that it is below average [72].

Author Keywords
High-frequency keywords were then clustered using gCLUTO
based on their proximity, using hierarchical clustering with
repeated bisection, and using the cosine function to calculate

similarity. The clustering criterion function was set to I2, and
the results were selected for display based on high internal
similarity and low external similarity, with the results displayed
using matrix and mound visualization techniques [73]. The
selection of high-frequency keywords for clustering is based
on the method described by Bai et al [74], which involves
extracting keywords that cumulatively account for >30% of the
total frequency. If the number of included keywords is <30, the
threshold is adjusted to include high-frequency words that
cumulatively account for >40% until the number exceeds 30.
Building on this approach, we observed the importance of
subsequent keywords and incorporated them appropriately.

Disciplinary Analysis
Through disciplinary analysis, we can gain a comprehensive
understanding of the research content within a field and
interdisciplinary collaborations. The fields of study form the
subject classification scheme shared across all Web of Science
product databases. Each document indexed in the Web of
Science Core Collection is assigned to at least 1 subject
category, which maps to a research field. Using VOSviewer,
we constructed a disciplinary collaboration network to
understand the distribution of disciplines within the field and
the nature of interdisciplinary collaborations, where each node
represents a discipline, and the connections between nodes
represent collaborations among disciplines [75].

Ethical Considerations
Ethics committee approval was not required because this study
was a retrospective bibliometric analysis of existing published
studies.

Results

The Annual Trends of Publications
Our study incorporated 1070 research papers, of which 993
(92.8%) were articles and 77 (7.2%) were reviews, indicating
that the research in the field of dementia biomarkers using AI
is primarily driven by original articles.

The change in publication volume reflects the dynamic
development of this field. The earliest study on this topic dates
back to 2007. In 2020, of the 1070 included papers, 131
(12.24%) were published (the 100-paper mark was crossed for
the first time), and publication peaked at 229 (21.4%) papers
in 2022. To visually represent the change in publication volume,
we used a cubic trendline model. As shown in Figure 3A, the
red dashed line represents the fitted trendline, with an R² value
of 0.95760 and an adjusted R² value of 0.94783, indicating a
good model fit and accurately reflecting the growth trend in
publication volume. On the basis of the trend analysis using
Joinpoint software, 2 potential turning points were identified
in the years 2018 and 2021. The slopes calculated for these
periods are as follows: slope 1 (from 2007 to 2018)=4.02, slope
2 (from 2018 to 2021)=48.58, and slope 3 (from 2021 to
2023)=16.33. The differences in slopes between slope 1 and
slope 2 as well as those between slope 2 and slope 3 have P
values <.05, indicating significant changes in the growth trends,
as illustrated in Figure 3B.
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Figure 3. (A) Annual and total publication outputs and the model-fitting curve of the time trend of artificial intelligence in dementia biomarkers. (B)
The distribution across 3 phases and the respective slopes. *Indicates that the Slope is significantly different from zero at the alpha = 0.05 level. Final
selected model: 2 Joinpoints”.

On the basis of the changes in publication volume and slope,
the development of this field can be preliminarily divided into
3 stages. The first stage (2007-2017) is the initiation stage, with
183 (17.1%) of the 1070 papers published during this period,
and an annual publication volume not exceeding 50 papers
(growth rate of 34.2%). The second stage (2018-2020) is marked
by rapid growth, with 271 (25.33%) of the 1070 papers
published during this period, and an annual publication volume
not exceeding 100 papers (growth rate of 58.7%). The third
stage (2021-2023) is characterized as a stable development
phase, influenced by a larger publication base, with 616
(57.57%) of the 1070 papers published during this period
(growth rate of 7.2%).

Author Analysis
The participation of researchers in the field reflects the level of
interest in it. A total of 6455 authors have been involved in
publishing papers. The top 10 authors have collectively
contributed 125 (1.35%) of the 9246 studies. Among them,
Morris, JC, is the most prolific author (16/9246, 0.17%). Shen,
DG, has the highest h-index and e-index scores among these
prolific authors. The majority of these prolific authors (8/10,
80%) published their works between 2018 and 2023, while the
publications of Shen, DG, and Zhang, DQ, are mainly
concentrated between 2007 and 2017, as shown in Table 1.

Adhering to the Price law, the minimum publication threshold
for core authors is approximately 3 papers. Using VOSviewer

for analysis, 663 (10.27%) of the 6455 core authors were
identified, contributing a total of 2635 (28.5%) of the 9246
papers, which does not meet the standard of the Price law
(>50%) [60]. In the collaboration network diagram, the
co-occurrence network among core authors is relatively
independent with fewer connections, indicating a pattern of
high cohesion and low coupling. Networks centered around the
top 10 most prolific authors are more developed compared to
those of others, as illustrated in Figure 4.

Figure 5 illustrates the annual influx of researchers into the field
of AI in dementia biomarkers. Of the 6455 authors involved in
publishing papers in the field, there were only 14 (0.22%) in
2007, while in 2023, the number of new researchers entering
the field soared to 1208 (18.71%). The trend line indicates that
there will be an increasing number of new researchers joining
this field in the future. On the basis of the influx of new authors,
the year 2019 was selected as a specific point in time [59] to
identify new researchers and those who ceased their research
in this area at the current stage. Among them, 5023 (77.81%)
of the 6455 researchers are new to this field since 2019, and of
the 1432 researchers who were active before 2019, a total of
994 (69.41%) ceased publishing after 2019. In addition, in
exploring the demographics of new researchers, it was found
that 372 (56.1%) of the 663 core authors identified by the Price
law are newcomers to the field.
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Table 1. Top 10 authors’ production distribution and academic impact evaluation.

Period 3: 2021-2023, n (%)dPeriod 2: 2018-

2020, n (%)d
Period 1: 2007-

2017, n (%)d
g-indexc

score
e-indexb

score
h-indexa

score

Output (n=9246),
n (%)

AuthorRank

11 (68.7)3 (18.7)2 (12.5)1619.41016 (0.2)Morris, JC1

7 (53.8)3 (23.1)3 (23.1)1320.1913 (0.1)Jack, CR2

8 (61.5)5 (38.5)0 (0)1311.6913 (0.1)Liu, Y3

2 (15.4)7 (53.8)4 (30.8)1330.4913 (0.1)Saykin, AJ4

0 (0)6 (46.1)7 (53.8)1342.51313 (0.1)Shen, DG5

5 (41.7)3 (25)4 (33.3)1222.2912 (0.1)O’Bryant, SE6

6 (50)6 (50)0 (0)1217.6912 (0.1)Zetterberg, H7

3 (27.3)7 (63.6)1 (9.09)1114.3811 (0.1)Han, Y8

6 (54.5)3 (27.3)2 (18.2)1113.4611 (0.1)Wang, L9

2 (18.2)2 (18.2)7 (63.6)1140.3911 (0.1)Zhang, DQ10

aAt least h papers have been cited h times each.
bThe supplementary measure of the h-index score.
cThe total citation count of the first g papers is ≥g2.
dThe denominator is the n value in “Output” column.

Figure 4. Graph of core authors’ collaboration network. Color coding is used to display clusters, with authors within the same cluster sharing the same
color. The size of the circles increases with the number of publications.
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Figure 5. Time distribution chart of new research personnel entering the field of artificial intelligence in dementia biomarkers.

Journal Analysis
The journal analysis showcases the structure and characteristics
of the field. A total of 362 journals have published relevant
articles. Following the Bradford law [61,62], we identified 12
core journals in this field that collectively contributed 360
(33.6%) of the 1070 studies. Of these, the Journal of Alzheimer’s
Disease (Netherlands) had the highest output with 22.7%
(78/344) of the published papers. In terms of citation frequency,
NeuroImage (United States) leads, with a citation percentage
of 13.8% (3293/23,842), averaging 122 citations per paper. The
journal with the highest impact factor is Alzheimer’s and
Dementia (United States). These journals are all ranked in the
top 2 quartiles of the Journal Citation Reports Quartile rankings

and have achieved notable CiteScore 2022 and Scimago Journal
Rank rankings, as shown in Table 2.

The dual map overlay of the journals reveals the thematic
distribution across academic journals (Figure 6). Figure 6A
shows the citing journals, while Figure 6B shows the cited
journals; the colored paths indicate citation relationships. There
are 5 cited paths: 2 yellow, 2 pink, and 1 green. The analysis
indicates that papers in psychology, education, or sociology
journals are often cited by journals from fields such as molecular
biology, immunology, medicine, clinical studies, ophthalmology,
kinesiology, and neurology. Similarly, papers from molecular
biology, genetics, or genomics journals are often cited by
journals from fields such as medicine, clinical studies, and
neurology, highlighting the importance of interdisciplinary
research.
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Table 2. Top 12 journals with the highest publication volumes on the application of artificial intelligence in dementia biomarkers.

CountrySJRcJCRbImpact Factor

2022a
CiteScore
2022

Citations
(n=23,842), n (%)

Output (n=1070),
n (%)

JournalRank

Netherlands1.146Qd24.06.41445 (6.1)78 (7.3)Journal of Alzheimer’s Disease1

Switzerland1.211Q24.85.2887 (3.7)58 (5.4)Frontiers in Aging Neuroscience2

United Kingdom0.973Q24.67.5741 (3.1)34 (3.2)Scientific Reports3

United States2.512Q15.711.63293 (13.8)27 (2.5)NeuroImage4

United States3.288Q114.014.7826 (3.5)26 (2.4)Alzheimer’s & Dementia5

United States0.885Q23.76.01140 (4.8)26 (2.4)PLOS ONE6

United Kingdom2.650Q19.012.0374 (1.6)21 (2.0)Alzheimer’s Research & Therapy7

Switzerland1.161Q25.26.8369 (1.5)20 (1.9)Frontiers in Neuroscience8

Netherlands1.395Q24.28.1652 (2.7)19 (1.8)NeuroImage: Clinical9

United States1.688Q14.89.1670 (2.8)18 (1.7)Human Brain Mapping10

United States0.926Q23.99.0166 (0.7)17 (1.6)IEEE Access11

Switzerland0.978Q23.44.8192 (0.8)16 (1.5)Frontiers in Neurology12

aImpact factor based on Clarivate Analytics Journal Citation Report (2022).
bJCR: Journal Citation Reports.
cSJR: Scimago Journal Rank.
dQ: quartile ranking position.

Figure 6. The dual-map overlay of journals that have published papers on artificial intelligence in dementia biomarkers. The lines indicate the pathways
between the Web of Science Core Collection categories of (A) the citing journals and (B) the cited journals. Thicker lines signify a stronger citation
relationship. The colors represent the origins of the Web of Science categories of the citing journals.

Institutional Analysis
The institutional analysis reveals the organizational structure
characteristics of research in the field of dementia biomarkers.
A total of 1793 institutions have conducted research on AI in
dementia biomarkers and published papers. The highest
publishing volumes come from the University of Pennsylvania
in Philadelphia, United States, which contributed 31 (0.9%) of
the 3442 papers. The University of North Carolina Chapel Hill

in North Carolina, United States, has the highest citation index,
with 2235 (2.73%) of the 81,952 citations, averaging 111.8
citations per paper. Among the top 10 institutions in terms of
publication volume, 5 (50%) are located in the United States,
3 (30%) in the United Kingdom, 2 (20%) in China, and 1 (10%)
is the globally renowned Mayo Clinic in the United States, as
shown in Table 3.

To further explore the collaboration patterns among these
institutions, we selected the top 100 institutions by publication
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volume (the list includes 102 institutions due to institutional
ties, collectively publishing 992/3442, 28.82% of the papers,
with a minimum publication count of 6) to construct a
collaboration network map. The map reveals that most of these

institutions (94/102, 92.2%) are research-intensive universities.
Notably, institutions from China, the United States, and the
United Kingdom form 3 major collaborative networks, with
specific network relationships detailed in Figure 7.

Table 3. Top 10 organizations in the field of artificial intelligence in dementia biomarkers.

CountryPPCaCitations (n=81,952), n (%)Output (n=3442), n (%)OrganizationRank

United States25.5790 (0.96)31 (0.9)University of Pennsylvania1

United Kingdom26.2682 (0.83)26 (0.76)University College London2

United Kingdom77.21931 (2.36)25 (0.73)King’s College London3

United States29.1640 (0.78)22 (0.64)Mayo Clinic4

China16.1338 (0.41)21 (0.61)Capital Medical University5

United Kingdom27.7582 (0.71)21 (0.61)University of Cambridge6

United States40.7814 (0.99)20 (0.58)University of California San Francisco7

United States111.82235 (2.72)20 (0.58)University of North Carolina Chapel Hill8

China24.6467 (0.57)19 (0.55)Chinese Academy of Sciences9

United States36.6623 (0.76)17 (0.49)Washington University10

aPPC: per-paper citations.

Figure 7. Graph of top 100 organizations in the artificial intelligence in dementia biomarker collaboration network. Colors represent clusters, with
institutions within the same cluster sharing the same color. The size of the circles increases with the number of publications.
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Country Analysis
The participation of 74 countries in dementia biomarker research
highlights the global interest in the topic. The 10 most
productive countries contributed 1216 (69.64%) of the 1746
papers and 1110 (61.91%) of the 1793 research institutions.
The United States led in publication and citation counts with
346 (19.82%) of the 1746 papers and 10,745 (25.28%) of the
42,496 citations. China had the most research institutions
(281/1793, 15.67%). South Korea had a dementia prevalence
rate of 7%, China 4.5%, and India 3.7%. The standardized
dementia mortality rates in the United States and the United
Kingdom were higher than in other countries, as detailed in
Table 4.

A visualization map was created using Scimago Graphica
software to display the level of attention different regions pay
to the field. In the map, the size of the circles and the color of

the circles represent the publication volume of each country.
The European region shows a higher interest in this field than
other continents, with 30 countries participating in publishing
research, as seen in Figure 8.

A chord diagram of international collaboration based on the
number of joint papers was produced. The lines represent
collaborative relationships between countries, with the width
indicating the strength of collaboration. Each country’s end
point on its own axis represents its total number of
collaborations with other countries. Among the top 10
productive countries, the United States is at the core of a
network covering 69% (51/74) of the countries, with 377
collaborations; the United Kingdom covers 66% (49/74) of the
countries, with 366 collaborations; and China covers 42%
(31/74) of the countries, with 191 collaborations, as illustrated
in Figure 9.

Table 4. Countries with the top 10 publications on artificial intelligence in dementia biomarkers.

Mortality ratec,
n ( )

Prevalence

rateb (%)

Partner countries
(n=74), n (%)

2023 GDPa

rank

Organizations
(n=1793), n (%)

Citations
(n=42,496), n (%)

Output
(n=1746), n (%)

CountryRank

3.336.451 (68.9)1241 (13.44)10,745 (25.28)346 (19.82)United States1

1.744.531 (41.9)2281 (15.67)3782 (8.9)282 (16.15)China2

4.27—d49 (66.2)682 (4.57)5079 (11.95)143 (8.19)United Kingdom3

1.496.936 (48.6)8103 (5.74)2687 (6.32)79 (4.52)Italy4

1.63731 (41.9)1352 (2.9)1355 (3.19)70 (4.01)South Korea5

1.463.715 (20.3)595 (5.3)920 (2.16)70 (4.01)India6

1.556.934 (45.9)379 (4.41)2376 (5.59)65 (3.72)Germany7

2.15—32 (43.2)1587 (4.85)912 (2.15)58 (3.32)Spain8

2.796.428 (37.8)1043 (2.4)1170 (2.75)57 (3.26)Canada9

2.266.740 (54.1)1447 (2.62)1786 (4.2)46 (2.63)Australia10

aGDP: gross domestic product.
bThe World Health Organization’s Global Dementia Observatory’s estimate of the unstandardized prevalence rate of dementia in the Global Burden of
Disease region report for the year 2017.
cThe World Health Organization’s age-standardized dementia mortality rates per 100,000 population in 2019 by country.
dNot available.
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Figure 8. World map of production distribution by country.

Figure 9. The world cooperation research network map. The colors representing the countries have no specific meaning; only the thickness of the lines
between them is significant, indicating the frequency of collaborations between different countries. The thickness of the lines corresponds to the numerical
values on their respective axes. The radial axes end points for each country represent the total number of collaborations with other countries.
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Fund Analysis
The funding situation for projects in this field is a key indicator
of the level of investment and government emphasis in each
country. The study identified 450 funding projects providing
1604 instances of support for such research. Upon reviewing
the top 10 funding projects with the most contributions, it was

found that 5 (50%) are from the United States, 2 (20%) from
China, 1 (10%) each from South Korea and the United Kingdom,
and 2 (20%) from international organizations. Notably, of the
1604 studies in this area, the National Institutes of Health in the
United States provided funding for 161 (10.04%), and the ADNI
funded 135 (8.42%). Detailed information can be found in Table
5.

Table 5. Top 10 funders for studies on artificial intelligence in dementia biomarkers (N=1604).

CountryStudies, n (%)FundersRank

United States161 (10.03)National Institutes of Health1

United States135 (8.42)Alzheimer’s Disease Neuroimaging Initiative2

China119 (7.41)National Natural Science Foundation of China3

United States118 (7.36)Department of Defense–Alzheimer’s Disease Neuroimaging Initiative4

United States61 (3.8)National Institute on Aging5

South Korea28 (1.75)National Research Foundation of Korea6

United Kingdom26 (1.62)Medical Research Council7

China23 (1.43)National Key Research and Development Program of China8

United States21 (1.31)Alzheimer’s Association9

—a16 (1)European Union10

aNot applicable.

Analysis of Highly Cited Papers
Compared to global citations, local citations, or peer citations,
more accurately reflect the academic community’s recognition
and importance of specific articles locally, as well as the
influence, quality, and collaboration status of the literature in
local academic research [75,76]. The top 10 high-value
publications, based on local citations, accumulated a total of
392 (18.2%) of the 2157 local peer citations, averaging 39.2
citations per year for each publication. The local and global
normalized citation indices for these studies are both >1,
indicating that their citation rates exceed the average level for
research published in the same year. Of the 10 highly cited
papers, 8 (80%) were published between 2007 and 2017 (for
detailed information, refer to Table 6).

A deeper analysis of these 10 highly cited papers revealed
valuable information regarding their specific tasks and research
outcomes. Of the 10 papers, 1 (10%) is a review paper [11], and
9 (90%) are research papers [77-85]. These studies
predominantly conducted binary classification analyses using
the ADNI data set, with 9 (90%) of the 10 papers using
multimodal biomarkers. Of the 10 papers, 8 (80%) applied ML
methods, and 2 (20%) used deep learning techniques. These
studies detailed their methods for classifying specific diseases;
the types of biomarkers used; and the accuracy, sensitivity,
specificity, and fitting of their classification tasks. However,
not all studies reported these specific values in detail. More
details about these studies can be found in Table 7 and
Multimedia Appendix 6. The top 10 locally normalized cited
documents can be found in Multimedia Appendix 7.
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Table 6. The top 10 locally cited articles on the application of artificial intelligence in dementia biomarkers.

PYeNGCSdNLCScGCSb (n=23,842),
n (%)

LCSa (n=2157),
n (%)

StudyArticle titleRank

20116.07.6883 (3.7)109 (5.05)Zhang et al
[77]

Multimodal classification of Alzheimer’s disease and mild
cognitive impairment

1

20155.27.7421 (1.77)52 (2.41)Moradi et al
[78]

Machine learning framework for early MRI-based
Alzheimer’s conversion prediction in MCI subjects

2

20124.06.2453 (1.9)40 (1.85)Zhang and
Shen [79]

Multi-modal multi-task learning for joint prediction of
multiple regression and classification variables in
Alzheimer’s disease

3

20196.99.3229 (0.96)35 (1.62)Jo et al [11]Deep learning in Alzheimer’s disease: diagnostic classifi-
cation and prognostic prediction using neuroimaging data

4

20133.26.4183 (0.77)31 (1.44)Young et al
[80]

Accurate multimodal probabilistic prediction of conversion
to Alzheimer’s disease in patients with mild cognitive im-
pairment

5

20194.87.7158 (0.66)29 (1.34)Lee et al
[81]

Predicting Alzheimer’s disease progression using multi-
modal deep learning approach

6

20135.45.1306 (1.28)25 (1.16)Gray et al
[82]

Random forest–based similarity measures for multi-modal
classification of Alzheimer’s disease

7

20154.03.7323 (1.35)25 (1.16)Liu et al [83]Multimodal neuroimaging feature learning for multiclass
diagnosis of Alzheimer’s disease

8

20091.72.0157 (0.66)23 (1.07)Hinrichs et
al [84]

Spatially augmented LPboosting for AD classification with
evaluations on the ADNI dataset

9

20162.96.4120 (0.5)23 (1.07)Sorensen et
al [85]

Early detection of Alzheimer’s disease using MRI hip-
pocampal texture

10

aLCS: local citation score.
bGCS: global citation score.
cNLCS: normalized local citation score.
dNGCS: normalized global citation score.
ePY: publication year.
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Table 7. Artificial intelligence classifiers and biomarker input features for highly cited local literature.

Input featuresClassifierDatabasePYaStudy

MRId+FDG-PETeSpatially augmented LPboostingcADNIb2009Hinrichs et al [84]

MRI+PET+CSFgMultiple-kernel SVMfADNI2011Zhang et al [77]

MRI+PET+CSFM3ThADNI2012Zhang and Shen [79]

MRI+FDG-PET+CSF+APOEjSVM+GPiADNI2013Young et al [80]

MRI+FDG-PET+CSF+APOERandom forestADNI2013Gray et al [82]

MRI+aggregate biomarkerLDSk+random forestADNI2015Moradi et al [78]

MRI+FDG-PETSAEl+softmax regression+SVMADNI2015Liu et al [83]

MRI+CSFSVM+logistic regressionADNI+AIBLm+Metropolit2016Sorensen et al [85]

MRI+CSF+APOECNNnADNI2019Lee et al [81]

aPY: publication year.
bADNI: Alzheimer’s Disease Neuroimaging Initiative.
cLPboosting: linear programming boosting.
dMRI: magnetic resonance imaging.
eFDG-PET: fluorodeoxyglucose positron emission tomography.
fSVM: support vector machine.
gCSF: cerebrospinal fluid.
hM3T: multimodal multitask.
iGP: Gaussian process.
jAPOE: apolipoprotein E.
kLDS: low density separation.
lSAE: stacked autoencoder.
mAIBL: Australian Imaging, Biomarker & Lifestyle.
nCNN: convolutional neural network.

Analysis of Author Keywords
By analyzing keywords in a specific field, we can gain insights
into its research directions and trends. In this study, the most
frequent keywords identified were “Alzheimer’s disease”
(603/5467, 11.03%), “machine learning” (302/5467, 5.52%),
“mild cognitive impairment” (166/5467, 3.04%), “biomarker”
(152/5467, 2.78%), and “deep learning” (127/5467, 2.32%).
Notably, “Alzheimer’s disease,” “mild cognitive impairment,”
“biomarker,” and “magnetic resonance imaging” were
high-frequency keywords used consistently throughout all 3
stages (2007-2023), while “deep learning” emerged in the first
stage (2007-2017) and increased in the third stage (2021-2023),
as shown in Table 8. A detailed time-segmented analysis of the

20 high-frequency keywords was conducted, resulting in a heat
map where lighter blue indicates lower frequency in a given
year and deep red indicates higher frequency; for instance,
“artificial neural networks” appeared as early as 2007, decreased
in frequency, and then consistently appeared at a high frequency
in recent years. The keyword “Alzheimer’s disease” shows a
progressive increase in occurrences each year. Nearly all
keywords shifted toward orange and red in 2021 and through
the third phase (2021-2023). However, the keyword “support
vector machine” changed from orange-red to light blue in 2023.
In addition, as classification is one of the primary tasks of AI,
its frequency of appearance has remained stable annually, as
seen in Figure 10.
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Table 8. Top 20 most frequent keywords related to the application of artificial intelligence in the dementia biomarker field.

Period 3 (2021-2023),

n (%)a
Period 2 (2018-2020),

n (%)a
Period 1 (2007-2017),

n (%)a
Occurrences (N=5467),
n (%)

KeywordRank

358 (59.37)143 (23.71)102 (16.92)603 (11.03)Alzheimer’s disease1

201 (66.56)77 (25.5)24 (7.95)302 (5.52)Machine learning2

83 (50)40 (24.1)43 (25.9)166 (3.04)Mild cognitive impairment3

86 (56.21)33 (21.57)34 (22.22)153 (2.8)Biomarker4

100 (78.13)25 (19.53)3 (2.34)128 (2.34)Deep learning5

66 (52.38)29 (23.02)31 (24.6)126 (2.3)Magnetic resonance imaging6

51 (61.45)22 (26.51)10 (12.05)83 (1.52)Dementia7

33 (42.31)22 (28.21)23 (29.49)78 (1.43)Support vector machine8

18 (31.58)17 (29.82)22 (38.6)57 (1.04)Classification9

38 (79.17)9 (18.75)1 (2.08)48 (0.88)Artificial Intelligence10

33 (76.74)10 (23.26)0 (0)43 (0.79)Convolutional neural network11

19 (48.72)12 (30.77)8 (20.51)39 (0.71)Neuroimaging12

25 (64.1)10 (25.64)4 (10.26)39 (0.71)Random forest13

19 (61.29)5 (16.13)7 (22.58)31 (0.57)Diagnosis14

17 (54.84)4 (12.9)10 (32.26)31 (0.57)Feature selection15

18 (64.29)3 (10.71)7 (25)28 (0.51)Amyloid-Beta16

13 (52)5 (20)7 (28)25 (0.46)Cerebrospinal fluid biomarker17

14 (58.33)5 (20.83)5 (20.83)24 (0.44)Amyloid18

12 (50)8 (33.33)4 (16.67)24 (0.44)Artificial neural network19

7 (29.17)9 (37.5)8 (33.33)24 (0.44)Structural magnetic resonance imaging20

aThe denominator is the n value in “Occurrences” column.

Figure 10. Heat map of top 20 high-frequency keywords related to the application of artificial intelligence in the dementia biomarker field.
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Analysis of Keyword Clusters
Identifying keyword clusters allows for an intuitive
understanding of subfields within specific research areas. A
total of 36 high-frequency keywords were included for
clustering. These keywords accounted for 41.92% (2292/5467)
of the occurrences, meeting the requirements for clustering.
High-frequency keywords were analyzed using gCLUTO
software to generate dendrograms and mound maps, revealing

6 distinct clusters. Each mound represents a unique cluster, with
its height and volume indicating the similarity and number of
documents, respectively. The colors on the mound tops signify
different levels of internal SDs, with red indicating low internal
SD and blue high internal SD [73]. The tops of these 6 mounds
are not blue, indicating no high internal SD, especially in
clusters 0 and 4, where the peaks are red and the internal SDs
are lower, as shown in Figure 11.

Figure 11. Keyword clustering mound map of publications related to artificial intelligence in dementia biomarkers.

In the dendrogram, the depth of the color blocks indicates the
strength of the association between the keywords on the vertical
axis and those on the horizontal axis. Deep red signifies a high
association strength, while white indicates a lower association
strength. The dendrogram shows that AI research hot spots in
dementia biomarkers primarily focus on diseases such as
“Alzheimer’s disease,” “Dementia with Lewy bodies,” “mild
cognitive impairment,” and “frontotemporal dementia.” Cluster
4 is the largest cluster, containing 10 keywords that can be
categorized into 3 aspects: AI (“artificial neural network,”
“machine learning,” “diagnosis,” and “feature extraction”),
diseases (“Alzheimer’s disease,” “Parkinson’s disease,”
“disease,” and “Dementia with Lewy bodies”), and biomarkers
(“Electroencephalogram” and “Electroencephalography”). The
theme reflected here is the application of neural networks in
neurodegenerative diseases, with EEG features used for
diagnosing such diseases. Cluster 5 includes 8 keywords, divided

into 2 aspects: algorithms (“random forests,” “support vector
machines,” “classification,” and “feature selection”) and
biomarkers (“structural magnetic resonance imaging” “ADNI,”
“mild cognitive impairment,” and “radiomics”). This cluster
reflects the theme of traditional ML algorithms classifying
biomarkers in neuroimaging. Cluster 0, the smallest cluster,
contains just 3 keywords, succinctly summarizing the application
of AI in FTD. Cluster 2 consists of 6 keywords mainly related
to CSF biomarkers: “tau,” “beta-amyloid,” and “proteomics.”
This cluster highlights the primary protein markers in CSF.
Cluster 1 contains 5 keywords, divided into deep learning and
imaging biomarkers. Deep learning (“deep learning,” “transfer
learning” and “Convolutional Neural Network”) and imaging
markers (“magnetic resonance imaging” and “hippocampus”)
reflect the application of nontraditional ML methods in imaging
biomarkers. Cluster 3 contains 4 keywords related to imaging
markers, as shown in Figure 12.
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Figure 12. Artificial intelligence keyword dendrogram in the field of dementia biomarkers. ADNI: Alzheimer’s Disease Neuroimaging Initiative; PET:
positron emission tomography.

Disciplinary Analysis
We identified cross-disciplinary connections among 46 subjects,
finding that each paper involved an average of 1.55 disciplines.
Neuroscience and neurology (524/1661, 31.55%) were the most
frequently involved disciplines, significantly more than other
subjects. Engineering (128/1661, 7.71%) and computer science
(126/1661, 7.59%) followed, highlighting the central role of
neuroscience in this research area. Network analysis revealed
117 interdisciplinary connections, most of which were weak,
indicating that direct collaboration between different disciplines

is relatively limited. By contrast, collaborations within the same
disciplinary group were more frequent. Specifically, the
connections between neurology and geriatric medicine were the
closest, followed by radiology, nuclear medicine, and medical
imaging. Computer science was most closely connected to
engineering. However, the connection strength between the
neurosciences representing AD and the engineering and
computer sciences representing AD appeared to be weak,
suggesting that interdisciplinary research between these 2 fields
has potential for growth, as shown in Figure 13.
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Figure 13. Interdisciplinary collaboration network diagram.

Biomarker and AI Method Analysis
Given that review articles often cover algorithms and biomarkers
that overlap with those discussed in research literature, we
focused on the content of 993 articles to classify biomarkers
into 9 major categories based on their sources and
characteristics: imaging biomarkers, CSF biomarkers, genetic
markers, blood biomarkers, digital biomarkers, ophthalmic and
retinal markers, neurophysiological markers, fecal and other
bodily fluid markers, and other types of markers. Among the
993 studies, 973 (98%) addressed AD, 32 (3.2%) discussed
FTD, 17 (1.7%) referenced DLB, and 10 (1%) focused on VaD.
Overall, the main biomarkers across these subtypes were
imaging, genetic, CSF, and blood biomarkers, each mentioned
>100 times. Specifically, of the 1060 citations, imaging
biomarkers were cited 473 (44.62%) times, genetic biomarkers
187 (17.64%) times, CSF biomarkers 148 (13.96%) times, and
blood biomarkers 111 (10.47%) times.

In terms of trends, the use of AD biomarkers has been notably
increasing year by year, with imaging biomarkers consistently
being the most used annually. The use of genetic biomarkers
surged in 2021, surpassing both CSF and blood biomarkers.
CSF biomarkers have shown a fluctuating upward trend, while
the use of blood biomarkers has gradually increased, recently
approaching the use levels of CSF biomarkers. In addition, after
2018, various types of biomarkers have shown some intermittent
growth trends. Among the other 3 subtypes, only the imaging
biomarkers for FTD and the CSF biomarkers for DLB exhibited
brief spikes in growth in 2022 and 2020, respectively. The trends

for the other subtypes are not as pronounced, as shown in Figure
14.

The AI methods extracted from the literature were categorized
into 2 main classes: supervised learning and unsupervised
learning, further subdivided according to the tasks performed.
In this field, classification tasks predominate. Among the
algorithms used for the 4 subtypes of dementia, support vector
machines (SVMs; 302/1581, 19.1%) were the most frequently
applied. Various neural network algorithms (229/1581, 14.48%)
ranked second overall, followed by random forests (221/1581,
13.98%). However, it is noteworthy that in 2023, SVMs were
used 52 times, a stark contrast to their mere 2 mentions in
keyword heat map analyses.

Regarding trends in algorithm use for AD, there has been a
noticeable increase over time. Neural networks started to become
popular after 2018 and surpassed SVMs by 2022. Since 2016,
random forests have been used nearly as frequently as SVMs.
In addition, after 2018, various types of algorithms have
demonstrated a clear growth trend. In the other 3 subtypes,
although there is a slight growth trend in algorithm use for FTD,
the use of algorithms in DLB and VaD has not shown a
significant growth trend, as depicted in Figure 15.

In the co-occurrence network of biomarkers and the 20 most
commonly used AI methods, the thickness of the lines and the
depth of their colors intuitively reflect the frequency and strength
of their associations: thicker lines and darker colors indicate
higher co-occurrence frequency and tighter connections (Figure
16). Overall, clustering, regression, and dimension reduction
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algorithms are significantly less used in various types of
biomarkers than classification algorithms. In AD, only 2

clustering algorithms appear among the top 20 most frequently
used, with no use in other subtypes.

Figure 14. Annual use of various dementia biomarkers. (A) Dynamics of biomarkers for Alzheimer disease (AD). (B) Dynamics of biomarkers for
frontotemporal dementia (FTD). (C) Dynamics of biomarkers for dementia with Lewy bodies (DLB). (D) Dynamics of biomarkers for vascular dementia
(VaD).
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Figure 15. Annual use of various algorithms in the field of dementia biomarkers. (A) Algorithm use for Alzheimer disease (AD). (B) Algorithm use
for frontotemporal dementia (FTD). (C) Algorithm use for dementia with Lewy bodies (DLB). (D) Algorithm use for vascular dementia (VaD). AI:
artificial intelligence.
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Figure 16. Graph of the correspondence between artificial intelligence algorithms and dementia biomarkers. (A) Connection between biomarkers and
algorithms for Alzheimer disease (AD). (B) Connection between biomarkers and algorithms for frontotemporal dementia (FTD). (C) Connection between
biomarkers and algorithms for dementia with Lewy bodies (DLB). (D) Connection between biomarkers and algorithms for vascular dementia (VaD).
t-SNE: t-distributed stochastic neighbor embedding.

In each dementia subtype, the connections between classification
algorithms and biomarkers are generally thicker and darker,
especially the link between SVMs and imaging biomarkers in
AD, followed by the connection between neural networks and
imaging biomarkers. The thickest line in blood biomarkers is
associated with random forests. In the other 3 subtypes, the
connections between algorithms and biomarkers are weaker,
particularly in VaD. The variety of algorithms used in FTD is
second only to those used in AD, with the most notable
associations being between imaging biomarkers and SVMs,
which is also observed in VaD. In DLB, random forests appear
to be more frequently used with imaging and CSF biomarkers,
as illustrated in Figure 16.

Discoveries of New Biomarkers
Overall, there have been significant new findings in dementia
biomarkers. A total of 244 research reports have identified new
biomarkers: 231 (94.7%) for AD, 3 (1.2%) for FTD, 5 (2%) for
DLB, and 5 (2%) for VaD. Of these, 211 (86.5%) new
biomarkers were discovered after 2018. Among these 211
biomarkers, imaging biomarkers and genetic biomarkers have
been found most frequently, with 68 (32.2%) and 70 (33.2%)
new findings, respectively, followed by blood biomarkers with
34 (16.1%) new findings. New biomarkers in emerging areas
such as ophthalmology and retinal studies as well as digital
biomarkers have also been identified in recent years, as shown
in Figure 17.
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Figure 17. The number of studies on new biomarkers discovered for various subtypes of dementia using artificial intelligence.

Discussion

Summary
Compared to other bibliometric studies on dementia biomarkers
[23,24], our research not only reveals basic data, such as
publication volumes, institutions, and national trends, but also
delves deeply into the phenomena of author turnover and
collaboration network flaws and more specifically highlights
the contributions of prolific authors and key national efforts. In
addition, we have successfully captured and quantified the
developmental trends and dynamics of various biomarkers. In
contrast to another study [12], we have detailed the contributions
of various algorithms in this domain and followed the latest
advances in biomarkers. Our analysis supports earlier research
[31,33] regarding the prevalence of SVMs in imaging
biomarkers and further augments the significance of other
algorithms in biomarker research. Specifically, through mining
analyses of high-frequency author keywords, keyword
clustering, and literature content, we identified research hot
spots, including the diagnosis and classification of dementia
subtypes and neurodegenerative diseases, an exploration of CSF
proteomic markers, and the application of traditional algorithms
and neural networks in imaging biomarkers. SVMs, neural
networks, and random forests are widely used as popular
algorithms. Random forests are most frequently used in blood
and genetic biomarkers. Newly discovered biomarkers primarily
focus on imaging, genetics, and blood domains. We discuss
these key findings in detail in the following subsections.

Publication Output and Growth of Research Interest

Overview
In dividing the development stages of research on AI in
dementia biomarkers, the analysis went beyond just publication
volume and annual growth rates. It also considered key factors
such as changes in publication numbers of prolific authors,
fluctuations in high-frequency keywords each year, and the
evolution of algorithms observed in 973 research papers. This
comprehensive analysis supported the definition of 3
development stages, outlined in the following subsections.

Initial Exploration and Methodological Advances
(2007-2017)
This stage is characterized by limited publications and growing
interest in AI in dementia biomarkers. Key reasons included
nascent AI technology in the field, limited availability of data
sets [12,49,86-88], and immature development of biomarkers;
for example, early PET radioactive tracers were not yet capable
of specifically measuring the burden of neurofibrillary tangles
and other tau protein abnormalities [89].

Rapid Development Period (2018-2020)
This stage marked a turning point with a surge in high-quality
research methods. This was driven by the rise of deep learning
[90], multimodal biomarker use [91], and expansion of public
data sets (eg, ADNI) [92,93].

Stable Development Period (2021-2023)
This stage is characterized by a substantial increase in research
volume, indicating a period of fast growth. Advances in image
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segmentation [94], deep learning algorithms [95-97], large
public data sets [12], and digital biomarkers [98] contributed
to this growth.

Enhance Collaboration Among Authors and Maintain
Their Interest in Research
The field in question has attracted considerable attention from
researchers, with the majority being newcomers who entered
after 2019 in particular. This influx of new researchers indicates
a strong interest within the scientific community toward this
field. According to the Price law, the current output from core
authors has not yet reached 50% of the total output, suggesting
that a core group of authors has not been fully established. More
than half of the current core authors (372/663, 56.1%) are new
researchers from recent years, an indication perhaps that more
researchers will emerge as leading figures in this domain.
However, an important observation is that 69.41% (994/1432)
of the researchers active before 2019 have not continued to
produce related research, potentially indicating a decline in
interest or a shift in research focus. While the contributions of
most authors may be transient, a small number of researchers,
such as the 10 highly productive researchers identified, have
maintained consistent research output. Sustained knowledge
accumulation in a research field greatly relies on ongoing studies
and the establishment of a core group of authors [59].

Furthermore, establishing collaboration networks is a critical
issue. Although most researchers (451/663, 68%) have formed
collaborative groups, the majority of these networks (39/57,
68%) are still underdeveloped. Given the potential of AI in
processing and analyzing large-scale biomedical data, as well
as the need for the validation and correct use of new biomarkers,
close collaboration among computer scientists, neuroscientists,
and biostatisticians becomes particularly important [99]. The
Brookings Institution in the United States also highlights the
critical role of interdisciplinary collaboration in research
innovation and standard setting within the AI field [100].
Therefore, both core authors and new researchers need to
strengthen collaborations, especially interdisciplinary ones.
New researchers, in particular, face challenges such as
geography and costs in the process of interdisciplinary
collaboration [101,102], and they often lack a deep
understanding of other disciplines, which hinders the smooth
progress of collaboration.

Interdisciplinary Collaborative Innovation
In the construction of cross-industry innovation systems between
AI and medicine, AI often plays the role of outbound innovation,
introducing AI technologies into the medical field. Conversely,
the medical sector tends to embrace inbound innovation,
adopting AI to address medical issues. This division primarily
stems from the medical sector’s needs for diagnosis and
treatment [102]. However, the ultimate goal is to achieve a close
integration of both domains, advancing the integration of science
and technology by developing new knowledge through
collaboration with partners from various industries [103].

In the medical field, leadership teams proactively seek external
knowledge based on their experience and standards to build
interdisciplinary collaborations; for example, radiomics research

teams can seek collaboration with partners skilled in image
segmentation techniques. In addition, the shift from a closed to
an open team model is crucial and involves adopting analogical
thinking. This approach can draw from successful
interdisciplinary collaborations already established in the
medical field; for instance, the field of cardiology has set a
commendable example with its multi-institutional
interdisciplinary collaborations on AI [104]. For the AI sector,
the main challenges lie in technological support and innovation,
necessitating enhancements to algorithms and the development
of new technological frameworks in response to medical needs.
This not only requires medical knowledge but also entails the
acquisition, assimilation, transformation, and development of
knowledge within interdisciplinary teams. These learning
processes demand active participation from team members and
standardized sharing of information and knowledge, thereby
facilitating advances in AI and its commercialization.
Establishing connections between different disciplinary teams
and building bridges for communication across fields are
essential starting points. Cross-disciplinary academic
conferences and web-based public courses serve as effective
means to construct initial cooperative bridges. In addition, the
establishment of cross-departmental digital platforms enables
researchers to access and collaboratively analyze existing
research data, exemplified by several searchable professional
websites related to AI medical devices [105], fostering the
development of tacit cooperation. Furthermore, several
forward-thinking higher education institutions have already
begun to informally incorporate the principles of AI into
undergraduate courses through lectures. A new graduate module
on radiology AI has also been established [106]. At Stanford
University in Stanford, California, United States, leaders across
various disciplines have formed interdisciplinary teams
dedicated to teaching and researching AI to address health care
issues [107].

Despite these measures aiding in the establishment of initial
collaborative networks, the involvement of government and
social enterprises as intermediaries is necessary to overcome
informational disparities and promote deeper exchanges.
Forming multidisciplinary societies, such as dedicated biomarker
research associations, and enhancing interdisciplinary integration
through research funding and incentive mechanisms are crucial
measures to foster cooperation. The participation of diverse
organizations, including universities, medical institutions, and
corporations, will provide a broader scope and vision for the
development of these associations. Finally, we also advocate
for interdisciplinary information exchange within the respective
fields of medicine and AI. Although this may provoke some
potential internal competition, the convenience of this
communication method and the potential for innovative benefits
significantly outweigh the challenges it presents.

Regional Proximity Collaboration
Regional proximity has long been recognized as a crucial
objective factor influencing innovation activities. Participants
concentrated in a specific area benefit from the knowledge
externalities produced by short distances, facilitating the
exchange of knowledge between proximate entities and thereby
fostering the development of innovation and the flow of tacit

J Med Internet Res 2024 | vol. 26 | e57830 | p. 26https://www.jmir.org/2024/1/e57830
(page number not for citation purposes)

Qi et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


knowledge [108]. The convenience of such networks, coupled
with cultural and institutional similarities, helps to keep
cooperative networks vibrant [109]. For newcomers to the field,
considering the advantages brought by regional proximity is
key to building a stable foundational cooperative network. As
the importance of complementary capabilities in partners
continues to increase [110], seeking technological
complementarity has become essential for maintaining active
and robust cooperative networks. Particularly in the field of
dementia research, the high heterogeneity of the disease requires
us to construct knowledge networks from a global perspective,
making full use of the differences in AI technologies across
different countries. Relying solely on cooperation networks
within a single country may overlook the value of global and
nonlocalized knowledge networks, hindering the further
integration of technology; for example, constructing diversified
data sets will benefit from the inclusion of different regions and
ethnicities. For transnational collaboration, the successful cases
across multiple European countries serve as instructive
examples. These nations have demonstrated the advantages of
collaboration facilitated by regional proximity. Moreover,
collaborating with high-output countries in the field is also a
wise choice because these countries typically possess advanced
technology and extensive resources. These nations are
distributed across various continents, playing a significant
radiative role, thus providing a more diversified array of options
for establishing cooperative networks. Therefore, we recommend
building foundational cooperative networks based on the
principle of regional proximity and actively seeking partnerships
with technologically leading countries to stimulate sustained
network activity. In addition, governments and research
institutions should support the construction of these transnational
cooperative networks by increasing research funding and
establishing incentive mechanisms to ensure the continuity and
development of research.

Preferred Journals
In the field of dementia biomarkers, AI-related research has
identified 12 core journals. These journals rank well across
multiple platforms, reflecting the favorability of AI research in
dementia biomarkers among numerous prestigious publications,
including well-known journals such as Alzheimer’s & Dementia
and NeuroImage. Dual-map overlays of the journals indicate
extensive coverage of topics such as psychology, education,
molecular biology, medicine, genetics, and immunology in this
field. Therefore, scholars eager to delve into AI in dementia
biomarkers should follow these high-output, influential journals.
Simultaneously, they should explore interdisciplinary reports
aligned with their research interests and content. This approach
will help them comprehensively understand the latest
developments and trends in the field.

Leading Countries and International Collaboration
Currently, dementia biomarker research involving AI has seen
participation from 74 countries worldwide, demonstrating
widespread international interest. In particular, the European
region exhibits a higher level of attention toward this type of
research, which correlates with its dementia incidence rates
exceeding the global average at 1123 cases per 10,000

individuals [111], underscoring the urgent need to address this
challenging issue. Similarly, the higher rates of dementia
incidence and mortality in the majority of high-producing
countries reflect how research is influenced by the dementia
situation in each country. However, the concentration of research
activities is closely related to the scientific capabilities and
resource allocation of specific countries. The leading positions
of the United States, China, and the United Kingdom in this
field not only reflect these countries’ strong capabilities in
research infrastructure, funding support, and technological
innovation but also highlight their proactive roles in addressing
global health challenges. This situation also suggests a potential
issue of uneven resource distribution globally and the challenges
other countries and regions may face in enhancing their research
capabilities.

Therefore, to further enhance the contribution and impact of
global research on dementia biomarkers, it is necessary to take
measures to strengthen international cooperation, promote
resource sharing, and encourage countries to increase research
investment, especially in countries and regions with fewer
resources. Fortunately, in terms of international collaboration,
most high-producing countries have >100 instances of
cross-border cooperation, indicating a strong willingness for
international collaboration, particularly the United States and
the United Kingdom, which lead not only in the number of
countries they collaborate with but also in the frequency of such
collaborations. Their implementation of AI in health care
provides guidance for development and regulation for other
countries; for example, the National Institutes of Health in the
United States, in collaboration with multiple countries, has
established one of the largest public AD data set in the world
(ADNI) [112], offering data support for numerous studies. The
United Kingdom’s Code of Conduct for Data-Driven Health
and Care Technology provides funding, research opportunities,
and tools for researchers in low- and middle-income countries,
encouraging their participation in AI research and fostering
connections [113]. By contrast, although China is the second
largest producer of research outputs globally, it has fewer
instances of international collaboration. This is related to China’s
later start in AI compared to the United States and the United
Kingdom, with its current AI strategy focusing more on the
localization and training of AI talents [114], and international
cooperation has not yet fully taken off. However, it cannot be
denied that China possesses many research institutions and
leading funding support, harboring significant potential for
international collaboration that will play a substantial role in
future international efforts.

For researchers, this information is valuable for considering
international collaborations, applying for visiting scholar
positions, or participating in educational projects. For nations,
actively engaging with leading countries in this field and
establishing collaborations can foster development in this area,
particularly for low- and middle-income countries that have
high dementia rates but lack AI technology.

Highly Cited Papers
A substantial body of ML research has focused on integrating
brain imaging with both structured and unstructured clinical
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data to predict disease progression. The integration of
multimodal data, such as imaging, CSF biomarkers, and
demographic data, is considered one of the best approaches to
address data heterogeneity [115]. This study identified 10 highly
cited papers that provide significant insights into the analysis
and application of various multimodal biomarkers, especially
in terms of feature selection and the construction of new
multimodal data sets. Among them, Zhang et al [77] adopted a
multimodal classification strategy and a multikernel SVM in
2011 to enhance the classification performance for AD and mild
cognitive impairment, demonstrating higher accuracy and
sensitivity. This approach, based on the construction and kernel
combination of multimodal heterogeneous biological data,
overcomes the limitations of traditional studies that rely on a
single biomarker, offering a more comprehensive and precise
analytical framework. Subsequently, Zhang and Shen [79]
introduced a method that combines multimodal data and
multitask learning to jointly predict multivariate regression and
classification variables from baseline multimodal data, providing
new perspectives and tools for subsequent research. Gray et al
[82] used the random forest algorithm to extract paired similarity
measures, constructing a manifold-based representation that
integrates information from multiple modalities. This approach
enhances the accuracy and efficiency of classification. For
newcomers to this field, a thorough examination of these
high-value publications will facilitate a deeper understanding
and inspiration.

Research Trends in Clusters of Highly Productive
Authors
Since 2018, research on various biomarkers has been gradually
increasing. Among them, 10 prolific authors are noteworthy.
The research themes of Shen, DG, and Zhang, DQ, are highly
similar. Their research teams mainly focus on imaging
biomarkers, particularly the multimodal fusion of brain structural
data, and they lean toward algorithmic improvements. Their
research, initially centered on multikernel SVM studies, has
progressively shifted toward studies using deep learning
architectures [116]. Similarly, the research team led by
Zetterberg [117] also shows interest in imaging biomarkers but
tends toward newer biomarkers. In recent research, a deep
learning–based model developed by them used computed
tomography imaging biomarkers to distinguish people with
dementia from healthy individuals with performance similar to
MRI [117]. In addition, in brain age difference studies, the use
of algorithms such as extreme gradient boosting has revealed
a positive correlation between brain age difference and NFL
[118]. Jack, CR, also exhibits a certain interest in imaging
biomarkers; he used SVMs to achieve multimodal fusion of
imaging data as early as 2010 [119]. However, in recent years,
his research interests have diversified: he is not only using deep
learning for predicting brain age [120] but also exploring blood
biomarkers [121] and genetic biomarkers [122], which have
become increasingly popular in recent years.

Furthermore, the collaborative group led by Morris, JC, is the
most prolific in recent years, with their research primarily
focused after 2021. Moreover, they seem to have a broader
interest in emerging biomarkers such as imaging-based brain
age difference [123], digital biomarkers based on driving

behavior [124], gut microbiota [125], and MTBR-tau243 in
CSF [126]. The research team led by Saykin, AJ, has been more
focused on genetic biomarkers in recent years. They have used
deep learning methods to identify potential AD-risk single
nucleotide polymorphisms, discovering that rs561311966
(located in the APOC1 gene) and rs2229918 (located in the
ERCC1/CD3EAP genes) are significant factors influencing AD
risk [127]. Similarly, the research team led by O’Bryant, SE,
tends to focus on blood biomarkers, initiating the search for
dementia-related blood biomarkers using random forests in
2011 [128]. Their recent research has found that a combination
of serum and plasma biomarkers has higher predictive
performance than serum or plasma biomarkers alone, providing
a new approach to diagnosis using blood biomarkers [129].
Different prolific research groups seem to have certain
differences in research interests and trends, but they generally
converge on the study of imaging, blood, genetic, and some
emerging biomarkers. Regarding algorithm use, besides
traditional algorithms, there is also a growing trend toward the
use of deep learning algorithms. Keeping tabs on the latest
research trends concerning these highly prolific authors will aid
in grasping the cutting-edge developments in various types of
biomarkers.

Research Hot Spots

Research on Dementia Subtypes
In the context of AI, the research focus on different dementia
subtypes varies significantly, with AD dominating the field.
This predominance is primarily due to the high prevalence of
AD and its significant societal impact, which have attracted
more resources and efforts. By contrast, research on other
dementia subtypes started later, and most studies are either
based on AD or aimed at differentiating from AD. Independent
research on other subtypes such as FTD has shown some modest
increases in the number of studies and algorithm use recently,
but no similar trend is evident for VaD and DLB. Therefore,
for VaD and DLB, we only discuss their latest biomarker
findings based on AI.

New Biomarkers for FTD
Distinct from AD, FTD represents the second most common
subtype of dementia. Since 2015, research on FTD has shown
a growing trend. However, the diagnosis of FTD remains
challenging due to the high symptom overlap with AD. Studies
have shown that imaging biomarkers can distinctly differentiate
AD from FTD [130,131]. This success is partly due to FTD
subtypes affecting different brain regions; for example,
behavioral variant FTD is typically associated with atrophy in
the frontal and anterior temporal lobes; progressive nonfluent
aphasia mainly impacts the left inferior frontal gyrus, leading
to motor speech disorders; and semantic dementia primarily
affects the left anterior temporal region [132]. This also explains
why the use of imaging biomarkers is more widespread in FTD
than in other biomarkers. Recently, significant white matter
(WM) damage revealed by ML has been validated as an
effective imaging biomarker for FTD, with WM degeneration
in behavioral variant FTD being more pronounced than in AD,
supporting the hypothesis that neurodegenerative changes in
FTD start in the WM [133,134].
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In addition, several CSF cobiomarkers have been proposed for
FTD, such as NFL chain and TDP-43 [135]. In recent research,
Bergström et al [136] used the least absolute shrinkage and
selection operator (LASSO) and random forest methods to
analyze protein data obtained from CSF samples, identifying
NFM, aquaporin-4, neuronal pentraxin 2, and the neurosecretory
protein VGF as potential diagnostic tools for FTD. In the genetic
domain, Magen et al [137] developed a nonlinear predictive
model based on gradient boosting trees, successfully identifying
13 microRNA (miRNA) features, offering new possibilities for
early diagnosis and treatment of FTD. In other biomarker
research, EEG features have achieved an accuracy rate of 73%
in distinguishing FTD from AD using decision tree algorithms
[138]. However, the current number of biomarkers available
for FTD is still limited, necessitating more research to develop
novel biomarkers to aid in distinguishing FTD from other types
of dementia, particularly AD [139]. In this process, the
application of AI will undoubtedly play an increasingly vital
role.

New Biomarkers for DLB
The pathological hallmark of DLB is the presence of Lewy
bodies containing alpha-synuclein in the neocortex and limbic
areas [140]. Research has identified several potential biomarkers
for the diagnosis of DLB, such as alpha-synuclein, Aβ42, and
phosphorylated tau (p-tau) [141]. However, autopsy results
indicate that 50% to 80% of DLB cases show cortical Aβ
deposits similar to those in patients with AD [142]. In addition,
the early cognitive symptoms of DLB highly overlap with those
of AD, posing a challenge for clinical diagnosis. van Steenoven
et al [143] used a random forest algorithm to identify 6 proteins
in CSF—VGF, SCG2, neuronal pentraxin 2, NPTXR, PDYN,
and PCSK1N—as candidate biomarkers for DLB. Moreover,
EEG has become a research focus due to its accuracy in
reflecting brain electrophysiological activity, surpassing
neuroimaging and CSF biomarkers [144]. EEG has revealed
specific electrophysiological patterns associated with DLB,
particularly a dominant frequency of <8 Hz, which helps
differentiate DLB from AD in 85% to 100% of patients [145].
Suzuki et al [146] used an EEG-based ML algorithm, MC-004,
to distinguish DLB from AD with an accuracy rate of 79.5%.
Recently, changes in miRNA expression have also been linked
to various neurodegenerative diseases, providing new hope for
diagnosing and differentiating DLB; for example, the
pathological link between the genes BCL2L1 and PIK3R2 has
been further supported [147]. The latest research by Soto et al
[148] using ML has revealed 12 miRNAs with continuous
expression dysregulation throughout the development of DLB.
Zhou et al [141] used logistic regression and SVMs to build a
predictive model and identified 5 potential DLB hub
genes—SRF, MAPK1, YWHAE, RPS6KA3, and KDM7A—that
may provide new biomarkers for the diagnosis and treatment
of DLB.

New Biomarkers for VaD
Research on VaD is the least extensive, primarily because its
pathological mechanisms involve complex issues related to
cerebral vascular health, unlike specific intracellular pathogenic
protein accumulation seen in other dementias, such as AD. VaD

is mainly associated with cerebrovascular disease, and its onset
and progression are often abrupt. This makes the development
of biomarkers for VaD more challenging than for other types
of dementia. Some researchers believe that VaD may be linked
to systemic autoimmune diseases, and through bioinformatics
and ML methods, genes such as C1QA, CD163, LY96, and
MS4A4A have been identified as potential biomarkers for the
link between VaD and systemic lupus erythematosus [149]. In
addition, other studies have identified potential biomarkers for
VaD, including digital clock drawing tests [150], lipids [151],
the REPS1 gene [152], and brain tissue volume [153]. While
these findings have opened new research avenues, no class of
biomarkers has been widely applied in clinical settings to date.
Future research needs to further validate these potential
biomarkers and explore more from a multiomics perspective.
This could help establish reliable biomarkers, thereby enhancing
the diagnostic accuracy and treatment efficacy for VaD.

New Biomarkers for AD
Hippocampal atrophy, cortical thinning, and ventricular
enlargement are classic manifestations of AD in MRI scans.
The use of brain PET scans to detect tau and Aβ proteins has
been extensively applied in ML models, with their effectiveness
continually validated. With advances in imaging technology
and AI, we can now process high-dimensional data, identify
relevant patterns in complex data sets, and decipher the brain’s
intricate network structures. In the hippocampal region,
multivariate morphometry statistics [154], feature sets [155],
and principal curvature ratios [24] provide new perspectives for
analyzing structural changes in the AD brain. Compared to
studies on physical structural changes, those on brain functional
connectivity have revealed insights into the brain’s functional
organization and operational mechanisms, becoming a vital
resource for exploring new biomarkers; for instance, dynamic
functional connectivity obtained from functional MRI [156]
and correlated transfer function connectivity strength [157] have
demonstrated potential as biomarkers. Zhao et al [158] have
confirmed the excellent feature selection performance of
dynamic functional connectivity by analyzing the functional
connections between gray matter and WM and using SVMs for
feature evaluation. Recent studies, such as that by Zhu et al
[159], have combined SVMs with the apolipoprotein E (APOE)
genotype, CSF biomarkers (Aβ, tau, and p-tau), and
neuroimaging markers, finding that connections between the
left insula and the left posterior middle temporal gyrus, the left
medial superior frontal gyrus, and the right lingual gyrus are
significant for cognitive functions. Sadiq et al [160]
demonstrated the potential value of these signals in diagnosing
AD by using SVMs to process nonfractal connectivity features
extracted from resting-state functional MRI data through
wavelet-based fractal analysis. In addition, dynamic connectivity
anomalies between the hippocampus and the default mode
network [156], as well as functional connectivity abnormalities
in the posterior brain regions [28] and corticosubcortical circuits
[161], have been identified as newly discovered key biomarkers.

Brain age discrepancies, evaluated by comparing the deviation
of predicted brain functional connectivity age from actual age,
have been shown to correlate with genetic markers such as
APOE ε4 alleles across multiple study cohorts [118]. Lee et al
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[120] used a deep learning model based on structural MRI and
fluorodeoxyglucose-PET to predict brain age, demonstrating
that brain age differences can effectively predict the transition
from no cognitive impairment to mild cognitive impairment or
AD. Zhang et al [162] used SVMs and arterial spin labeling to
reveal significant declines in blood flow in the posterior
cingulate cortex and precuneus, providing evidence for regional
cerebral blood flow as a new biomarker. Moreover, changes in
the microstructure and integrity of brain WM fiber tracts
captured via diffusion tensor imaging, such as changes in the
parietal WM, limbic and high-order association areas WM,
medial temporal WM, posterior cingulate and precuneal WM
[163], and whole-brain WM fiber connectivity [164], also show
great potential for predicting AD precursors. These imaging
biomarkers discovered through AI offer significant research
prospects, and their application could aid in the early diagnosis
and development of treatment strategies for AD.

In genetic biomarker research, recent years have seen the
identification of multiple genes associated with AD using large
training data sets and complex analyses of genetic relationships.
Zhuang et al [165] used methods such as random forest and
LASSO to identify, for the first time in AD research, 10
biomarkers related to immune infiltration. Similarly, Zhou et
al [166] successfully identified 5 potential AD predictive
biomarkers—FAM71E1, DDB2, AP4M1, GPR4, and
DOC2A—using transcriptome-wide association studies and
weighted gene coexpression network analysis, combined with
random forest and SVM algorithms. In addition, recent research
has shown that genes such as BAG2, HSC70, STUB1, and MAPT
are closely related to the occurrence and progression of AD
[167]. Small noncoding RNA molecules, or miRNAs, have also
garnered significant attention in recent years for their
multifaceted roles in AD development, including regulating the
formation of Aβ plaques, phosphorylation of the tau protein,
and involvement in inflammatory processes [168]. Tan et al
[169] used an integrated framework of statistical and ML
methods to perform differential expression analysis of miRNA,
identifying 3 highly significant and relevant miRNA candidates:
has-miR-6501-5p, has-miR-4433b-5p, and has-miR-143-3p.
Likewise, Alamro et al [170] identified 6 AD-related miRNAs
using ML and deep learning models. In addition, ferroptosis
has been implicated in the pathogenesis of AD [171], and Deng
et al [172] used various ML methods to build models and
identify 5 genes related to ferroptosis (RAF1, NFKBIA,
MOV10L1, IQGAP1, and FOXO1). Wang et al [173] used a
random forest classifier to screen 12 differentially expressed
genes associated with ferroptosis.

Although these discoveries are significant for understanding
the genetic foundation of AD, the new gene biomarkers
identified are often limited to specific gene data sets and lack
validation across broader data sets. Furthermore, additional
comprehensive studies are needed to elucidate the specific
mechanisms of these genes and their impact on the pathological
progression of AD.

In AD diagnostic research, biomarkers such as the ratio of
Aβ42/Aβ40 in plasma and p-tau proteins (p-tau181, p-tau231,
and p-tau217) have demonstrated high diagnostic accuracy,
further supporting their potential as noninvasive diagnostic

tools. In addition to these biomarkers, which are also present
in CSF, changes in the expression of the RTN1 protein in the
blood, related to the production of Aβ and BACE1 enzyme
activity, may affect the pathological process of AD [174]. Yu
et al [175] achieved a diagnostic accuracy rate of 99% using a
random forest model constructed with 8 different serum proteins,
providing potential new biomarkers for a noninvasive serum
diagnostic platform for AD. Moreover, discoveries of more
related blood biomarkers, such as tumor necrosis factor-alpha
and monocyte chemoattractant protein-1 [176], plasma levels
of D-glutamate [177], changes in platelet proteins [178], and
expression changes in immune cells [179,180], are continually
increasing, but the specific mechanisms behind them still require
further investigation.

As the association between metabolic abnormalities and the
onset of AD is increasingly confirmed, blood-based metabolic
biomarkers are receiving more attention [181]. Recent studies
have shown that cystatin C and carboxypeptidase B2 have
potential as blood biomarkers, with a diagnostic model based
on logistic regression algorithms showing a high accuracy rate
of 93.8% [182]. In addition, lipids [183-185], arginine, and
pentanoylcarnitine [84] as blood metabolic biomarkers also
show diagnostic potential.

The development of new biomarkers in CSF has been slower
than anticipated due to challenges in sample collection, high
costs, and analytical complexities. Besides traditional
biomarkers such as Aβ and p-tau, new CSF proteins such as
NFL, soluble triggering receptor expressed on myeloid cells 2,
and YKL-40 have been identified as indicators of neuronal
damage. In recent research, Gaetani et al [186] performed a
quantitative analysis of multiple biomarkers in CSF and used
ML models, including penalized logistic regression, to identify
biomarkers indicative of neuroinflammation’s role in AD, such
as SIRT2, HGF, MMP-10, and CXCL5. In addition, the study
by Horie et al [126] on MTBR-tau243 in CSF demonstrated
that its association with tau tangles and cognitive impairment
in AD exceeds that of traditional p-tau biomarkers [126]. This
discovery provides new insights for updating the amyloid, tau,
and neurodegeneration diagnostic framework for AD.

In recent years, a series of emerging biomarkers for dementia
have been continually identified and validated. These biomarkers
are at the initial stages of research. In the realm of digital
biomarkers, Bayat et al [124] achieved an accuracy rate of 89%
in predicting preclinical AD by analyzing natural driving GPS
data and building a random forest model. Thompson et al [187]
used ML to analyze the graphics and features during the digital
clock drawing test, finding a potential correlation between lower
scores and a higher presence of APOE ε4 alleles. In
ophthalmology, Cheung et al [188] discovered new biomarkers
related to dementia risk through the diameters of retinal blood
vessels using a deep learning model. Recent confirmations also
show that macular thickness and volume obtained from optical
coherence tomography measurements [189] and the thickness
of the retinal nerve fiber layer [190] have potential as AD
biomarkers. In addition, metabolites in urine [191] and EEG
features [192] have also demonstrated new research outcomes
with the aid of AI.
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Overall, many of the newly discovered biomarkers are still in
the initial stages of discovery and validation. For these
biomarkers to be translated into clinical applications, they must
undergo thorough validation in broader data sets and larger
population cohorts. In addition, assessing their diagnostic
efficacy and reliability through longitudinal studies is a
prerequisite for their future integration into clinical practice, a
process that may take considerable time. However, it is
encouraging that with the assistance of AI, researchers have
discovered more biomarkers, significantly aiding in the
refinement of dementia’s pathological mechanisms and the
exploration of potential therapeutic avenues.

Application of Popular Algorithms in Imaging
Biomarkers
On the basis of our research, biomarkers obtained through
various imaging techniques, such as MRI, offer detailed
information about brain structure and are among the most widely
used biomarkers today. Incorporating imaging biomarkers in
multimodal data fusion strategies often significantly enhances
classification accuracy [115]. SVMs are not only the most
commonly used classification algorithms to date but also the
most prevalent method for processing imaging data. SVMs
excel in handling high-dimensional neuroimaging data,
leveraging their kernel trick to handle nonlinear data in
high-dimensional spaces, which is crucial for capturing complex
biomarkers [193].

However, we have observed an interesting phenomenon: despite
the low frequency of the keyword “SVM” in 2023, the actual
use of SVMs in research as classifiers and as part of ensemble
learning architectures has not shown a significant downward
trend, with only a slight decrease of 2 instances compared to
2022.

This discrepancy is linked to a reduction in studies focusing
solely on SVMs as independent algorithms, shifting toward
comparative studies of various ML models, multivariate
classification research, and an increase in ensemble learning
approaches; for instance, Zubrikhina et al [99] found that SVMs
showed the best performance among various ML models when
classifying MRI data. Similarly, Tan et al [194] demonstrated
that an ensemble model comprising gradient boosting, logistic
regression, and SVMs outperformed single classifiers in multiple
performance aspects [194]. Shukla et al [195] achieved an
accuracy rate of 96% in a ternary classification of individuals
with AD versus individuals with MCI versus cognitively normal
individuals using multimodal imaging data combined with
gradient boosting and SVMs. These studies indicate that SVMs
remain a key component in many research projects. However,
the use of “SVM” as a keyword may have declined due to a
tendency to highlight emerging or innovative methods, leading
to a reduced frequency of “SVM” in keyword use.

In recent years, neural networks have gained unprecedented
popularity in the imaging biomarker domain, surpassing SVMs,
primarily due to their reduced dependency on manual feature
engineering and their proficiency in automatically identifying
and learning the most significant features within data.
Specifically, convolutional neural networks (CNNs) have
demonstrated exceptional performance in the realm of image

processing. A notable instance is the work of Lee et al [120],
who used a deep learning model (3D-DenseNet) to process
fluorodeoxyglucose-PET and MRI images. This model’s
architecture includes multiple dense blocks and convolutional
layers capable of autonomously extracting complex features
from imaging data. The feedforward connections within each
dense block aid in acquiring a rich feature representation. Using
the discrepancy between actual age and estimated brain age
(brain age gap), they conducted classification diagnostics for
dementia. Furthermore, a CNN model introduced by Ahmed et
al [196] achieved an accuracy rate of 94% in distinguishing
between patients with AD and healthy individuals through the
analysis of imaging data from the ADNI data set.

Moreover, the application of transfer learning has significantly
reduced the need for extensive data and computational resources
required for training new models, thereby allowing researchers
to forgo the necessity of developing CNN models from scratch.
Hence, the synergy of imaging biomarkers and neural networks
holds considerable potential and prospects for future research,
particularly in terms of processing complex imaging data with
greater precision and efficiency.

CSF Proteomics Biomarkers
CSF biomarkers have been among the earliest studied markers
in dementia research due to their direct link with the brain and
spinal cord, serving as a vital source of biochemical information.
Specifically, tau proteins and Aβ in the CSF are core markers
for dementia diagnosis. The pursuit of new proteomic
biomarkers in CSF has been a continual area of interest; for
instance, Gogishvili et al [197] used a random forest
classification model to analyze proteomics data from CSF,
successfully identifying new biomarkers such as CLEC1B,
TNFRSF4, and TGF-β-1. However, obtaining CSF samples
requires an invasive procedure known as lumbar puncture, and
the analysis is costly, which somewhat limits the feasibility of
large-scale data collection.

In more recent studies, increasing evidence has shown that tau
proteins and Aβ, as well as their derivative forms, such as p-tau
and total tau [198,199], can be obtained through multiple
pathways [200]. This not only adds dimensions and richness to
the data but also allows more research institutions access to
these biomarkers. For regions with limited resources or
underdeveloped technology, this accessibility helps reduce the
costs of diagnosis and monitoring and provides more strategies
to construct diverse cohorts and data sets for a more
comprehensive understanding of neuropathological diversity.
This shift in accessibility might explain why CSF biomarkers
were more prevalently used in early research than other types
of biomarkers but are now gradually being surpassed by other
types of markers.

The Use of Random Forests in Blood and Genetic
Markers
Compared to CSF and imaging biomarkers, genetic and blood
markers have garnered considerable attention from researchers
in recent years due to their minimally invasive collection process
and ease of acquisition. Our research indicates that random
forests have become more popular than neural networks and
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SVMs in the application of blood and genetic markers. By
integrating multiple decision trees, random forests can
effectively capture the complex nonlinear relationships in data
and handle various types of data. They not only possess robust
predictive capabilities but also prevent overfitting [201], offering
an intuitive understanding of the most critical features (such as
specific biomarkers) in model predictions [202].

In genome-wide association studies, random forests can capture
complex epistatic interactions and select key genetic variations
[203], which is invaluable for identifying potential biomarkers
in genes and blood; for instance, Kelly et al [204] used various
ML models and gene expression profiles in their study of
blood-based biomarkers, finding that random forests performed
best in AD diagnostic models with an accuracy rate of 81%,
identifying 159 gene markers. Beltrán et al [205] compared 4
ML methods, noting that random forests could achieve
competitive results with costly medical imaging techniques
when applied to readily available measurements (such as
cognitive scores, genetic risk, and plasma biomarkers),
identifying APOE and plasma C-reactive protein as the most
significant features. However, each of these prevalent ML
methods has its shortcomings; for example, neural networks
have issues with interpretability and training costs; SVMs are
highly sensitive to parameter selection, where inappropriate use
of the kernel function or regularization parameters can lead to
poor model performance; and, by contrast, random forests
require extensive experimentation to adjust the number of trees,
depth, and other parameters.

The Relationship Between Other Algorithms and
Biomarkers
The connection between other algorithms and biomarkers is not
as prominent or popular as that between the aforementioned
algorithms and biomarkers. However, LASSO is observed to
be frequently used in genetic biomarkers due to its efficiency
in selecting disease-related feature genes from high-dimensional
data [206]. By contrast, linear discriminant analysis and
principal component analysis are more often applied in imaging
biomarkers for feature reduction in MRI and PET modalities
and fusion analysis of multimodal data [207]. Gradient boosting
seems to be more inclined toward imaging and genetic markers,
the k-nearest neighbors algorithm leans more toward imaging
and neurophysiological markers, and logistic regression is more
favored for imaging markers. Currently, many ML models lack
standard settings and guidelines, making a robust comparison
of these experiments difficult. Moreover, the specific
combinations of ML methods and biomarkers may be influenced
by various factors, such as the accessibility of variables,
cost-effectiveness, and the adaptability of the model to the
application context (eg, clinical and research environments)
[208]. The diversity and complexity of these factors mean that
the same algorithm might show different effectiveness and
applicability in different studies. Nonetheless, by conducting
an in-depth analysis of numerous studies to explore the
relationship between different ML models and biomarker
research, valuable insights and references can be provided for
the field.

The Progress of AI
From the transition of traditional ML algorithms to the
widespread application of deep learning and neural networks,
significant progress has been marked in the field of medical AI
[209]. Notably, since 2018, neural networks have increasingly
dominated the research of dementia biomarkers, showcasing
the potential to become the leading algorithms. A similar trend
has been observed in other medical disciplines, such as
cardiology, which has broadly implemented neural networks
and deep learning technologies since 2015 [210]. In gastric
cancer research, Shichijo et al [211] first used CNNs in 2017
to evaluate their effectiveness in diagnosing Helicobacter pylori
infection. By 2020, deep learning technologies were extensively
applied in the study of biomarkers for gastric cancer [212].

In addition, oncology is at the forefront of using multiomics
data for patient stratification and personalized treatment [213].
In the imaging of brain tumors, neural networks have
significantly enhanced the accuracy of detection and
classification; for instance, Özkaraca et al [214] successfully
applied a dense CNN architecture, using MRI images to
precisely classify different brain tumors, thus supporting the
development of accurate treatment plans. In the research of
genetic and hematologic biomarkers, neural networks have
opened new pathways for the early detection and classification
of various cancer types. The studies by Liu et al [215] and
Almarzouki [216] have demonstrated the potential of neural
networks, with their capability to identify biomarkers with high
specificity and sensitivity, in processing complex biological
data. Advanced algorithms are also extensively used in specific
tumor subtyping, grading, and staging [209], as well as
predicting treatment outcomes [217]. These are directions that
dementia research needs to learn from and emulate. Currently,
dementia research mainly revolves around diagnosing and
classifying AD, and there is a need to strengthen the study of
other subtypes and expand the scope and objectives of the
research.

Commercialization of AI in Dementia
Although the potential for AI technology in the medical field
is immense, the use of commercial AI products for dementia in
clinical settings remains relatively limited. This is partly due to
significant unresolved limitations associated with ML
applications. Furthermore, obtaining regulatory approval for
AI products in the tightly regulated health care sector is a major
challenge and a prerequisite for their practical application.

However, in recent years, AI-based methods have made
significant strides. Particularly following the release of the US
Food and Drug Administration Action Plan, which classifies
AI- and ML-based software as a medical device [218], the
market has begun to see approvals for such products. While no
AI devices specifically targeted at dementia have been approved
yet, in the field of radiology, AI software such as SubtlePET
and SubtleMR, which process imaging data, have been approved
[105,219], indirectly advancing AI in the clinical diagnosis of
dementia. In addition, Cheung et al [188] recently developed
the Singapore I Vessel Analyzer deep learning system for
automatic measurement of retinal vessel calibers in dementia,
and the commercially available Idx software for diagnosing
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retinal diseases through retinal examination [105] may further
promote the application of ophthalmic biomarkers in the clinical
diagnosis of dementia. The use of computer-aided diagnosis
systems [220], which provide radiologists with areas of interest
or risk assessments, also aids in better guiding clinicians in
diagnosing dementia.

Development of Emerging Technologies
The application of emerging technologies has provided more
opportunities for the use of AI and the discovery of new
biomarkers. Specifically, advanced imaging techniques such as
structural MRI, functional MRI, Pittsburgh compound B PET,
and diffusion tensor imaging have significantly enhanced our
ability to capture detailed information about the brain. Single
molecule array technology, genome-wide association studies,
and high-throughput sequencing techniques also play a crucial
role in identifying blood and genetic biomarkers.

The introduction of a series of emerging digital and wearable
devices has created new opportunities for the diagnosis and
assessment of dementia. Zhang et al [221] recorded participants’
trail making test hand-drawn strokes using an electromagnetic
tablet and used random forest analysis to examine the drawing
features, discovering that models combining paper-based and
electronic trail making tests improved the accuracy of assessing
cognitive impairments. Ghosh et al [222] used GPS tracking to
measure ecological outdoor behavior and differentiated
individuals with AD from healthy individuals using data-driven
ML methods. In addition, gait data obtained from accelerometers
and inertial measurement units, eye movement variations
captured by eye trackers, voice data recorded by microphones,
and a range of digital biomarkers captured by other devices
show promising applications [208].

Furthermore, digital biomarkers are significant due to their close
connection with daily life. The deployment of Internet of Things
devices based on environmental sensors and monitoring software
in homes can enable long-term monitoring and assessment of
the behaviors of patients with dementia. Khodabandehloo and
Riboni [223] used environmental sensors to monitor real-life
activities to detect wandering behavior, combined with ML
methods to detect cognitive decline. Lotfi et al [224] conducted
studies using various standard home automation sensors to
monitor activities and movements at home, using neural
networks for data analysis to detect abnormal behaviors in
dementia. All these studies provide new insights into the
exploration of dementia biomarkers. As the Internet of Things,
particularly wearable devices, becomes more prevalent, it will
further drive the development and commercialization of software
as a medical device.

Potential Biases in AI
Currently, the application of AI in dementia biomarkers faces
multiple challenges. First, many studies rely heavily on specific
data sets, particularly the ADNI, which, although they provide
high-quality data, may limit the universality of the research due
to overreliance. These data sets may not adequately represent
all races, cultures, or geographic locations, potentially leading
to algorithmic bias and affecting the broad applicability and
clinical translation of the research findings.

Second, although many AI studies show promise in the
preliminary stages, they often lack external validation on
independent data sets during the validation phase. External
validation is a crucial step to assess the model’s generalizability,
ensuring the effectiveness of research outcomes across different
populations and clinical settings.

Moreover, although AI technologies such as deep learning excel
in identifying and predicting dementia biomarkers, the black
box nature of these models poses challenges in enhancing
transparency and gaining trust from medical professionals. The
limited interpretability of deep learning models restricts their
practical application in clinical decision-making. Therefore,
using techniques such as feature importance analysis and model
visualization tools to help medical professionals and patients
understand the logic behind AI decisions—explainable AI—is
becoming an important research area, aiming to make the ML
process more transparent and comprehensible [27].

Finally, the imbalance in the number of samples for each
category label within training data sets also imposes additional
constraints on the model’s robustness and clinical applicability.
Addressing these challenges requires broader sample collection;
more rigorous model design and testing, such as using synthetic
minority oversampling technique, adjusting class weights, or
using specific loss functions to minimize the impact of minority
categories; and other new methods to enhance model
interpretability.

Ethical and Privacy Challenges
Data collection involves handling a significant amount of
sensitive personal information. Without appropriate data
protection measures, this could infringe on the participants’
privacy rights. In addition, during the data storage process, it
is essential to ensure data encryption and anonymization. It is
also necessary to clearly define the ownership and use rights of
the data, ensuring that only authorized personnel can access this
information to prevent misuse. When sharing these data as data
sets or in other forms publicly, patient consent is also required.

From an ethical standpoint, researchers have the responsibility
to ensure that participants fully understand the significance of
their involvement in the research, which should be based on
voluntary principles and clear consent, especially for the
collection of novel biomarkers such as digital biomarkers. This
is particularly important for patients with AD who may not fully
comprehend the research content. Ensuring the reasonableness
and fairness of the consent process is essential. When errors
occur in the diagnostic process using AI systems, a clear
accountability mechanism should be in place. This involves
how to handle medical errors caused by AI decisions and how
to correct these errors.

Moreover, it is necessary to establish relevant policies and
regulations to regulate the use of AI in the medical field,
ensuring that it complies with medical ethical standards. In
facing these challenges, researchers, technology developers,
and policy makers need to work together to ensure that the
development of AI technology proceeds under the premise of
respecting patient rights and ensuring data security. By
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establishing strict industry standards and ethical guidelines, the
responsible use of AI in the medical field can be facilitated.

Application and Development Trend of Research

Strengthening Interdisciplinary Collaboration
As more new researchers join the field, the demand for external
disciplinary knowledge continues to expand, making it
especially important to establish a stable and continually active
collaboration network, particularly an interdisciplinary one. In
the future, exploring this model of interdisciplinary collaboration
will become a focus of research.

Exploration of New Biomarkers
AI is widely used in the research of various dementia
biomarkers, including imaging, CSF, and genetic markers, which
remain the primary subjects of current research. However, there
is a growing demand for economically efficient and noninvasive
biomarkers [89,225]. Digital biomarkers and ophthalmic
biomarkers hold significant research prospects for the future.
Currently, Alzheimer’s Research UK is studying combinations
of various digital biomarkers and exploring the application of
ML algorithms [208]. Once these new biomarkers are validated
through neuroimaging and CSF tests [226], they may become
a more cost-effective tool for the early detection of dementia,
especially in resource-limited areas [227].

Validation of Newly Discovered Biomarkers
Researchers have used AI to successfully identify patterns and
correlations that may have gone unnoticed previously,
uncovering a cohort of new candidate biomarkers, particularly
in imaging and genetic biomarkers. However, these novel
biomarkers generally lack external validation. Hence, future
research trends will focus on further validation and comparison
of these biomarkers in larger data sets or cohorts to confirm
their effectiveness.

Enhancing Interpretability
In the medical domain, the interpretability and transparency of
algorithms are paramount. With the increasing popularity of
neural networks, researchers must carefully select or design
algorithms, focusing on interpretable ML and AI use. This
emphasis will drive further innovation and development in the
fields of neuroscience and medical research.

Increasing Research on Dementia Subtypes
AI has demonstrated the potential to differentiate between
subtypes of dementia and identify new biomarkers for these
conditions. However, research into subtypes other than AD
remains scarce. Increasing the number of studies on these
specific subtypes and expanding the diversity of research will
help to enhance our comprehensive understanding of dementia.

Strengths and Limitations
To our knowledge, this study is the first to conduct a
comprehensive analysis of AI in the field of dementia
biomarkers using bibliometric methods. By integrating a strategy
of multiple tools, we not only improved the accuracy of the
analysis but also expanded the dimensions of the comprehensive
analysis. We presented the current status and research hot spots
of the field from multiple aspects (eg, keywords, countries or
regions, authors, and funding) and, for the first time, used text
mining methods to specifically quantify the scale and
relationship of biomarker and algorithm use.

Nevertheless, this study has limitations. To mitigate potential
human errors associated with manual database management,
only 1 database was included, which may have resulted in the
omission of a small number of relevant studies. Furthermore,
our investigation was restricted to studies published in English,
potentially overlooking high-quality research in other languages,
and did not account for potential self-citation bias, although its
impact on the trends displayed is likely minimal. Therefore,
future studies should leverage programming languages such as
Python or R to expand database inclusion and analyze research
across multiple languages. In addition, the quality and potential
biases of the included studies were not assessed, which might
affect the depicted trends due to the influence of low-quality
and biased research. Future efforts should include a detailed
quality evaluation of the studies.

Conclusions
In this study, we conducted a comprehensive analysis of research
on AI in dementia biomarkers, using the Web of Science Core
Collection. The objective was to summarize the latest advances
and trends in this field. Our findings reveal significant progress
since 2018, with numerous biomarkers identified in the areas
of imaging and genetics. The United States, China, and the
United Kingdom have been instrumental in driving progress in
this domain. In addition, we noted a trend of author turnover
and a need for stronger collaboration, suggesting that
governments and researchers should develop strategies to
facilitate the involvement and initiation of research by new
scholars. Furthermore, through content mining and analysis,
this study explored the popularity trends of various algorithms
and biomarkers and delved into the pivotal applications of AI
technologies across different types of dementia biomarkers. It
also summarized newly discovered biomarkers identified
through AI. In conclusion, as new biomarkers continue to be
developed, and new algorithmic architectures are constructed,
the application of AI in the field of dementia biomarkers is
emerging as a promising area of research.
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