
Original Paper

Studies of Artificial Intelligence/Machine Learning Registered on
ClinicalTrials.gov: Cross-Sectional Study With Temporal Trends,
2010-2023

Shoko Maru1,2, PhD; Michael D Matthias3, BEng; Ryohei Kuwatsuru1,4, MD, PhD; Ross J Simpson Jr5, MD, PhD
1Graduate School of Medicine, Juntendo University, Tokyo, Japan
2Clinical Study Support Inc, Nagoya, Japan
3Matthias IT Pty Ltd, Brisbane, Australia
4Department of Radiology, School of Medicine, Juntendo University, Tokyo, Japan
5Division of Cardiology, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC, United States

Corresponding Author:
Shoko Maru, PhD
Graduate School of Medicine
Juntendo University
2-1-1 Hongo, Bunkyo-ku
Tokyo, 113-8421
Japan
Phone: 81 338133111
Email: shoko.maru@alumni.griffithuni.edu.au

Abstract

Background: The rapid growth of research in artificial intelligence (AI) and machine learning (ML) continues. However, it is
unclear whether this growth reflects an increase in desirable study attributes or merely perpetuates the same issues previously
raised in the literature.

Objective: This study aims to evaluate temporal trends in AI/ML studies over time and identify variations that are not apparent
from aggregated totals at a single point in time.

Methods: We identified AI/ML studies registered on ClinicalTrials.gov with start dates between January 1, 2010, and December
31, 2023. Studies were included if AI/ML-specific terms appeared in the official title, detailed description, brief summary,
intervention, primary outcome, or sponsors’keywords. Studies registered as systematic reviews and meta-analyses were excluded.
We reported trends in AI/ML studies over time, along with study characteristics that were fast-growing and those that remained
unchanged during 2010-2023.

Results: Of 3106 AI/ML studies, only 7.6% (n=235) were regulated by the US Food and Drug Administration. The most
common study characteristics were randomized (56.2%; 670/1193; interventional) and prospective (58.9%; 1126/1913;
observational) designs; a focus on diagnosis (28.2%; 335/1190) and treatment (24.4%; 290/1190); hospital/clinic (44.2%;
1373/3106) or academic (28%; 869/3106) sponsorship; and neoplasm (12.9%; 420/3245), nervous system (12.2%; 395/3245),
cardiovascular (11.1%; 356/3245) or pathological conditions (10%; 325/3245; multiple counts per study possible). Enrollment
data were skewed to the right: maximum 13,977,257; mean 16,962 (SD 288,155); median 255 (IQR 80-1000). The most common
size category was 101-1000 (44.8%; 1372/3061; excluding withdrawn or missing), but large studies (n>1000) represented 24.1%
(738/3061) of all studies: 29% (551/1898) of observational studies and 16.1% (187/1163) of trials. Study locations were
predominantly in high-income countries (75.3%; 2340/3106), followed by upper-middle-income (21.7%; 675/3106),
lower-middle-income (2.8%; 88/3106), and low-income countries (0.1%; 3/3106). The fastest-growing characteristics over time
were high-income countries (location); Europe, Asia, and North America (location); diagnosis and treatment (primary purpose);
hospital/clinic and academia (lead sponsor); randomized and prospective designs; and the 1-100 and 101-1000 size categories.
Only 5.6% (47/842) of completed studies had results available on ClinicalTrials.gov, and this pattern persisted. Over time, there
was an increase in not only the number of newly initiated studies, but also the number of completed studies without posted results.

Conclusions: Much of the rapid growth in AI/ML studies comes from high-income countries in high-resource settings, albeit
with a modest increase in upper-middle-income countries (mostly China). Lower-middle-income or low-income countries remain
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poorly represented. The increase in randomized or prospective designs, along with 738 large studies (n>1000), mostly ongoing,
may indicate that enough studies are shifting from an in silico evaluation stage toward a prospective comparative evaluation
stage. However, the ongoing limited availability of basic results on ClinicalTrials.gov contrasts with this field’s rapid advancements
and the public registry’s role in reducing publication and outcome reporting biases.

(J Med Internet Res 2024;26:e57750) doi: 10.2196/57750
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Introduction

The number of studies on artificial intelligence (AI) and machine
learning (ML) registered on ClinicalTrials.gov has significantly
increased since 2016 [1,2]. While the rapid growth of research
on AI/ML is apparent [1-3], the downsides in this field have
also come to light. These include the lack of level I/II evidence
as robust proof of the clinical and economic impacts of AI [4],
lack of clinically meaningful outcomes beyond measures of
technical accuracy [5], lack of uniformity and standardization
in AI reporting [6,7], incomplete and poor reporting [8-10],
limited publication of AI/ML results [11,12], or data-source
disparities with minority subgroups potentially disadvantaged
by factors such as race, gender, and socioeconomic background
[13,14].

Previous cross-sectional studies using ClinicalTrials.gov as of
December 2020 [2] and March 2022 [1] showed that the number
of AI/ML studies continued to grow rapidly. However, it is
unclear whether this growth in number reflects an increase in
desirable study attributes or merely perpetuates the same issues
previously raised in the literature. For example, are study designs
conducive to level I/II evidence increasing over time? Do AI/ML
studies continue to run predominantly in advanced economies?
While research using ClinicalTrials.gov often reports
country-specific distributions [1,2], examining the global
distribution by economic measures could further elucidate
whether technological power is concentrated in a few
high-income countries.

We aimed to evaluate temporal trends over the past 14 years,
identifying variations that may not be immediately apparent
from aggregated totals at a single point in time. We highlighted
the fastest-growing characteristics over time and those that have
remained unchanged. We also characterized AI/ML studies by
the following: who (lead sponsor sector), what (clinical
specialty, AI/ML terms used in study descriptions), when (start
year, primary completion year, time to results posting), where
(study location, geographic and economic), why (primary study
purpose), and how (study design, enrollment).

Methods

Data Source
We conducted a cross-sectional analysis using
ClinicalTrials.gov, a trial registry and results database
maintained by the US National Library of Medicine. We sourced
data from the Clinical Trials Transformation Initiative Aggregate
Analysis of ClinicalTrials.gov (CTTI AACT) [15], which allows

open access to the complete set of trials registered in
ClinicalTrials.gov, including additional fields that are not readily
available in direct exports from ClinicalTrials.gov. The CTTI
AACT data dictionary is publicly accessible [16]. A static
version of the CTTI AACT database was downloaded for
analysis on February 6, 2024, via PostgreSQL (pSQL). The
pSQL codes used are provided in Multimedia Appendix 1.

Study Selection
We used text-based search to identify relevant AI/ML studies.
Our search strategies were informed by systematic reviews
published during 2019-2023 [9,17-20]. We used search terms
related to AI/ML methodologies and specific model architectures
as used in the literature. Terms are not necessarily mutually
exclusive or hierarchical (eg, “multilayer perceptron” under
“machine learning”). The search strategy is detailed in Table
S1 in Multimedia Appendix 2, with corresponding SQL codes
available in Multimedia Appendix 1.

Inclusion Criteria (If All of the Following Met)
1. Start date: January 1, 2010, to December 31, 2023.
2. The following search terms were used:

artificial intelligence, ai-based, augmented intelligence,
deep learning, convolutional neural network, deep neural
network, artificial neural network, recurrent neural
network, generative adversarial network, deep
reinforcement learning, machine learning, bayesian
network, classification tree, elastic net, gradient boosting,
xgboost, k nearest neighbour, multilayer perceptron,
support vector machine, natural language processing, naive
bayes, random forest, regression tree, reinforcement
learning, supervised learning, unsupervised learning.
These terms were searched for in the official title, brief
summary, detailed descriptions, intervention, primary
outcome, and sponsors’ keywords.

Exclusion Criteria (If Any of the Following Met)
1. Studies registered as a meta-analysis, systematic review,

scoping review, literature review, or protocol.
2. AI/ML-related terms were part of proper nouns (eg,

organization, product, study name).
3. AI/ML-related terms were found, but they were unrelated

to the study. For example, search terms were mentioned
only in passing (eg, “previous research on AI showed
promise,” “despite advances in machine learning”).

First, SQL was used to exclude studies containing any of the
following terms: protocol*, design*, review*, systematic
review*, scoping review*, literature review*, meta analys*s (*
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denotes a wildcard, equivalent to % in SQL codes). Second, the
lead author selected studies with fewer than 5 search-word hits
to confirm their relevance, and irrelevant studies were excluded
(eg, those involving “neural networks” of a biological nature).
Third, 2 reviewers independently examined study descriptions
and assessed eligibility. Discrepancies were resolved through
discussion and by revisiting details on ClinicalTrials.gov. Where
study descriptions were unclear or insufficient, we opted to
include studies unless they explicitly met the exclusion criteria,
prioritizing sensitivity over specificity.

The study flow diagram is provided in Figure S1 in Multimedia
Appendix 2. The pSQL codes used are provided in Multimedia
Appendix 1.

Data Extraction and Analysis

Overview
We extracted the following data fields from the CTTI AACT
database: study start date, completion date, primary completion
date, overall status, study type, number of sites, phase,
enrollment, randomization status, masking, interventional model,
primary purpose, target disease/condition, intervention, time
perspective, lead sponsor, lead sponsor agency class, funding
source, US Food and Drug Administration (FDA)–regulated
status, sex, age, healthy volunteers, study location, and results
availability.

Additionally, we created the 5 variables described in the
following sections.

Enrollment—Categorical
Enrollment (continuous) was categorized as follows: 1-100;
101-1000; 1001-5000; 5001-10,000; 10,001-20,000;
20,001-30,000; and >30,000. We used the most recently updated
enrollment data: planned or actual, whichever was more recent.

“Other” Sponsor Sectors—Disaggregated
As the sponsors of AI/ML research can be diverse, the
“OTHER” and “OTHER_GOV” fields as classified in
ClinicalTrials.gov are uninformative. We reclassified them into
the following based on lead sponsor names: hospital/clinic,
academia, industry, government, individual, research institute,
nonprofit, and network. Academic hospitals were included in
“hospital/clinic.”

Study Location—Global Distribution, Geographic and
Economic
We counted studies geographically and by gross national income
(GNI)–based classification as per the World Bank [21]. Each
country was classified by 2022 GNI per capita: low income (US
$1135 or less); lower middle income (US $1136 to US $4465);
upper middle income (US $4466 to US $13,845); and high
income (US $13,846 or more).

Clinical Specialty or Disease Area
Clinical specialties were assigned using the Medical Subject
Headings (MeSH) largest headings. Since one registered study
can involve substudies, resulting in multiple specialties, we
assigned the MeSH heading with the highest count to each study
identifier.

In cases where multiple MeSH headings had the same highest
count (ties), all those terms were included (multiple MeSH
headings per study identifier). If MeSH headings were missing,
we used condition/disease terms submitted by sponsors to infer
the clinical areas.

Note that “radiology” is a not an organ specific term and not a
major MeSH heading directly linked to diseases. For example,
specific disease imaging indexed under terms such as “breast
neoplasms/radiography” or “lung diseases/radiography” had
been preclassified as neoplasms or respiratory diseases.
Screening procedures (eg, breast, colorectal) had been
preclassified as neoplasms in the original data. Thus, compared
to other study findings, radiology may be underrepresented,
while neoplasms may be overrepresented.

Days From Primary Completion to Posting of Results
Among completed studies marked with “has results,” we
calculated the time between “primary completion date” and
“results first posted date.” We also assessed whether results
were posted within 1 year after study completion (yes/no).

We used descriptive statistics and performed analyses in
Microsoft Excel and Python (Python Software Foundation). We
followed the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) guidelines [22]. Ethics
approval was not required because only publicly available data
were analyzed.

Results

Overview
The ClinicalTrials.gov search yielded 3378 records. Of those,
272 studies were excluded: not AI/ML-related (n=265);
systematic reviews or meta-analyses (n=2); and the term
“artificial intelligence” merely being a part of the organization,
product, or study name (n=5). After excluding 272 studies, 3106
studies were included for analysis (Figure S1 in Multimedia
Appendix 2).

Tables 1 and 2 show the study characteristics. Overall, the
number of AI/ML studies increased rapidly after 2017, and
62.8% (1951/3106) started in the 2021 to 2023 period. Of the
3016 studies, 842 studies (27.1%) were completed, 1694
(54.5%) were active (not yet recruiting; recruiting; enrolling by
invitation; active, not recruiting), 95 (3.1%) were stopped, and
475 (15.3%) were unknown. There were more observational
studies (61.6%) than interventional studies (38.4%); more
parallel assignments (89.2%) than crossover, factorial, or single
assignments; more open-labeled studies (63%) than ones that
used any form of masking; more single-center (77.2%) than
multicenter (22.8%) studies; and more studies with 2 arms
(56.8%) than 1 (34.3%) or 3 (9%) arms. The study phase was
mostly “not applicable” (93%). Studies involving adults aged
18-65 years (58.1%) were most common, followed by adults
and seniors aged 18 and above (27.5%). While some studies
accepted healthy volunteers (35.2%), the majority did not
(64.8%). Only 235 (7.6%) were FDA regulated.
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Table 1. Characteristics of artificial intelligence/machine learning studies (N=3106) registered on ClinicalTrials.gov, 2010-2023a.

ValuesStudy characteristics

Start year (n=3106), n (%)

12 (0.4)2010

19 (0.6)2011

18 (0.6)2012

22 (0.7)2013

20 (0.6)2014

42 (1.4)2015

61 (2)2016

81 (2.6)2017

187 (6)2018

255 (8.2)2019

438 (14.1)2020

599 (19.3)2021

672 (21.6)2022

680 (21.9)2023

Overall status (n=3106), n (%)

302 (9.7)Not yet recruiting

1116 (35.9)Recruiting

90 (2.9)Enrolling by invitation

186 (6)Active, not recruiting

842 (27.1)Completed

95 (3.1)Withdrawn, terminated, suspended

475 (15.3)Unknown status

Study type (n=3106), n (%)

1193 (38.4)Interventional

1668 (53.7)Observational

245 (7.9)Observational (patient registry)

Interventional model (n=742), n (%)

662 (89.2)Parallel assignment

58 (7.8)Crossover assignment

22 (3)Factorial assignment

0 (0)Single assignment

Allocation (n=1193, interventional), n (%)

670 (56.2)Randomized

130 (10.9)Nonrandomized

393 (32.9)Not applicable/unknown

Masking (n=1193, interventional), n (%)

751 (63)Open-labeled

232 (19.4)Single

127 (10.6)Double

83 (7)Triple or quadruple
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ValuesStudy characteristics

Time perspective (n=1913, observational)b, n (%)

1126 (58.9)Prospective

430 (22.5)Retrospective

210 (11)Cross-sectional

147 (7.7)Other

Number of facilities (n=2821), n (%)

2177 (77.2)Single-center

644 (22.8)Multicenter

Number of study arms (n=1103), n (%)

378 (34.3)1

626 (56.8)2

99 (9)3

Phase (n=1193), n (%)

5 (0.4)Early phase 1

7 (0.6)Phase 1

6 (0.5)Phase 1/phase 2

28 (2.3)Phase 2

3 (0.3)Phase 2/phase 3

17 (1.4)Phase 3

18 (1.5)Phase 4

1109 (93)Not applicable

Enrollment (n=3061)c

1Minimum

13,977,257Maximum

16,962 (288,155)Mean (SD)

255 (80-1000)Median (IQR)

Enrollment (n=3061)c, n (%)

Interventional (n=1163)c

497 (42.7)1-100

479 (41.2)101-1000

118 (10.1)1001-5000

25 (2.1)5001-10,000

8 (0.7)10,001-20,000

7 (0.6)20,001-30,000

29 (2.5)>30,000

30Withdrawn (n=0) or unknown

All (n=3061)c

951 (31.1)1-100

1372 (44.8)101-1000

449 (14.7)1001-5000

100 (3.3)5001-10,000

58 (1.9)10,001-20,000
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ValuesStudy characteristics

20 (0.7)20,001-30,000

111 (3.6)>30,000

45Withdrawn (n=0) or unknown

FDAd status (n=3106), n (%)

235 (7.6)FDA regulated (device or drug)

2871 (92.4)Not regulated

Primary purpose (n=1190)e, n (%)

335 (28.2)Diagnostic

290 (24.4)Treatment

149 (12.5)Other

97 (8.2)Prevention

84 (7.1)Health services research

81 (6.8)Screening

77 (6.5)Supportive care

57 (4.8)Basic science

20 (1.7)Device feasibility

aTabulations exclude missing data, which may result in totals below 3106.
bData on time perspective (eg, prospective) was only available for observational studies.
cExcludes withdrawn studies (n=0) and those with missing data.
dFDA: US Food and Drug Administration.
eData on primary purpose was only available for interventional trials.
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Table 2. Additional characteristics of artificial intelligence/machine learning studies (N=3106) registered on ClinicalTrials.gov, 2010-2023a.

ValuesCharacteristics

Sex (n=3104), n (%)

2863 (92.2)All

192 (6.2)Female

49 (1.6)Male

Age (n=2896), n (%)

242 (8.4)Children (<18 y)

1684 (58.1)Adults (18-65 y)

21 (0.7)Elderly people (>65 y)

110 (3.8)Children and adults

796 (27.5)Adults and elderly people

43 (1.5)All

Healthy volunteers (n=2854), n (%)

1006 (35.2)Accepts healthy volunteers

1848 (64.8)Does not accept healthy volunteers

Lead sponsor sector (n=3106), n (%)

1373 (44.2)Hospital/clinic

869 (28)Academia

407 (13.1)Industry

156 (5)Research institute

151 (4.9)Individual

71 (2.3)Government

57 (1.8)Nonprofit

9 (0.3)Network

13 (0.4)Unknown

Funding source (n=3106), n (%)

518 (16.7)Industry

143 (4.6)National Institutes of Health

2445 (78.7)Other

Study location: region (n=2821), n (%)

973 (34.5)Europe

841 (29.8)Asia/Pacific

731 (25.9)North America

84 (3)Middle East

37 (1.3)Africa

31 (1.1)Central and South America

124 (4.4)Multiple regions

Study location: gross national income (n=3106)b, n (%)

2340 (75.3)High income

675 (21.7)Upper middle income

88 (2.8)Lower middle income

3 (0.1)Low income
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ValuesCharacteristics

Study results (completed, n=842), n (%)

47 (5.6)Has results

795 (94.4)No results

Study results (at least 1 year after primary completion date, n=691), n (%)

45 (6.5)Has results

646 (93.5)No results

Study results (time in days from primary completion to result posting; n=47)

93Minimum

1200Maximum

505 (399-676)Median (IQR)

Clinical specialty (n=3245)c, n (%)

420 (12.9)Neoplasms (includes cancer screening)

395 (12.2)Nervous system diseases

356 (11)Cardiovascular diseases

325 (10)Pathological conditions, signs and symptoms

275 (8.5)Respiratory tract diseases

253 (7.8)Digestive system diseases

219 (6.7)Mental disorders

161 (5)Endocrine, nutritional, or metabolic diseases

138 (4.3)Female urogenital diseases and pregnancy complications

89 (2.7)Skin and connective tissue diseases

79 (2.4)Eye diseases

60 (1.8)Musculoskeletal diseases

56 (1.7)Behavior and behavior mechanisms

48 (1.5)Male urogenital diseases

38 (1.2)Surgical procedures, operative

34 (1)Wounds and injuries

34 (1)Chemically induced disorders

33 (1)Bacterial infections and mycoses

31 (1)Hemic and lymphatic diseases

28 (0.9)Stomatognathic diseases

26 (0.8)Radiology (not organ specific)

22 (0.7)Otorhinolaryngologic diseases

21 (0.6)Physiological phenomena

19 (0.6)Immune system diseases

18 (0.6)Congenital, hereditary, and neonatal diseases and abnormalities

17 (0.5)Viral diseases

14 (0.4)Critical care

13 (0.4)Urology/nephrology

11 (0.3)Geriatrics

7 (0.2)Environment and public health
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ValuesCharacteristics

5 (0.2)Circulatory and respiratory physiological phenomena

aTabulations exclude missing data, which may result in totals below 3106.
bGross national income level grouping as per the World Bank.
cMultiple counts per study are possible and can exceed 3106.

Study Design
Among observational studies, a prospective design was more
common (58.9%; 1126/1913) than retrospective (22.5%;
430/1913) or cross-sectional (11%; 210/1913) designs. Among
trials, 56.2% (670/1193) were randomized, 10.9% (130/1193)
were nonrandomized, and 32.8% (393/1193) were “not
applicable” (Table 1). Figure 1 shows the numbers of all studies,
including randomized controlled trials (RCTs) and prospective,

retrospective, and cross-sectional studies, over time. From 2017
to 2023, the proportion of RCTs increased by 42.1%: from
18.52% (15/81) to 26.32% (179/680). The proportion of
prospective studies increased by 22.6%: from 29.63% (24/81)
to 36.32% (247/680). In contrast, the proportion of retrospective
studies decreased by 11.9%, from 12.35% (10/81) to 10.88%
(74/680), and cross-sectional studies declined by 28.5%, from
8.64% (7/81) to 6.18% (42/680).

Figure 1. Study design characteristics by start year, 2010-2023. Excludes “unknown” or “other.” RCT: randomized controlled trial.

Primary Purpose
Data on primary purpose were only available for interventional
trials. Among the 1190 trials, the most common purposes were
diagnostic (28.2%; n=335), treatment (24.4%; n=290), “other”
(12.5%; n=149), and prevention (8.2%; n=97). However, the

top 2 rankings were reversed when restricted to RCTs only:
treatment (31.4%; n=210), diagnostic (18.6%; n=124), “other”
(11.1%; n=74), and prevention (10.9%; n=73). Over time,
studies focused on diagnosis and treatment increased faster than
others (Figure 2).
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Figure 2. Primary study purposes by start year. Top: intervention studies; bottom: randomized trials, 2010-2023. †Excludes missing data.

Clinical Specialty
The top 10 accounted for 81.1% (2631/3245) of all clinical
specialties (Table 2). The 3245 specialties included neoplasms
(12.9%; n=420); nervous system diseases (12.2%; n=395);
cardiovascular diseases (11%; n=356); pathological conditions
(10%; n=325); respiratory tract diseases (8.5%; n=275);
digestive system diseases (7.8%; n=253); mental disorders
(6.7%; n=219); endocrine, nutritional, or metabolic diseases
(5%; n=161); female urogenital diseases and pregnancy
complications (4.3%; n=138); and skin and connective tissue
diseases (2.7%; n=89). Most of these started to increase during
2018-2020 (Figure S3 in Multimedia Appendix 2). See Table
S3 in Multimedia Appendix 2 for the entire list of specialties
over time.

Lead Sponsor Sectors
We compared lead sponsor sectors classified in
ClinicalTrials.gov versus our reclassification based on sponsor
names (n=3106). In the original classification, the most common
sector was “OTHER” (83.4%; n=2590), followed by
“INDUSTRY” (12.4%; n=384) and “OTHER_GOV” (3.2%;
n=98). However, our reclassification revealed the strong
presence of hospitals/clinics (44.2%; n=1373) and academia
(28%; n=869), followed by industry (13.1%; n=407) (Table 2;
Figure S8 in Multimedia Appendix 2). Studies sponsored by
hospitals/clinics, academia, and industry have increased since
2017 (Figure 3).
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Figure 3. Lead sponsor sector by start year, 2010-2023. Top: as classified in ClinicalTrials.gov.; bottom: our reclassification based on sponsor names.
NIH: National Institutes of Health.

Enrollment (Sample Size)
The enrollment data were skewed to the right: maximum
13,977,257; mean 16,962 (SD 288,155); and median 255 (IQR
80-1000). The most common size category overall was 101-1000
(44.8%). Among trials, 1-100 (42.7%; 497/1163) was most
common, followed by 101-1000 (41.2%; 479/1163), whereas
101-1000 (46.7%; 893/1913) was most represented among
observational studies (Table 1). This pattern did not materially
change when stratified by sponsor sectors (Table S4 in
Multimedia Appendix 2). Traditionally, the largest studies tend
to be industry-sponsored [23], but this was not the case in our

data. Among observational studies, the hospital/clinic sector,
followed by academia, represented the highest number of studies
in all size categories, including the largest (>30,000). Among
trials, the hospital/clinic sector represented the most up to the
10,000 category. While interventional trials in the 1-100 and
101-1000 categories and observational studies in the 101-1000
category have increased the most over time (Figure S5 in
Multimedia Appendix 2), 16.1% (187/1163) of trials and 29%
(551/1898) of observational studies were large, with enrollments
above 1000.
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We also compared the overall enrollment distribution (1-100,
101-1000, and >1000) with that of prior reports that used the
ClinicalTrials.gov data (Figure S6 in Multimedia Appendix 2).
First, our data distribution was similar to that of previous
research on AI studies up to March 2022 [1]. Second, when
compared to 2 previous reports on non–disease-specific trials
(non-AI/ML) during 2000-2019 and 2007-2010, the proportion
of the largest category (>1000) was higher in our AI/ML trials
(16.1%; 187/1163) than in the non-AI/ML trials: (3.8%;
5174/135,144 in 2000-2019 [23] and 3.9%; 1103/28,467 in
2007-2010 [24]). When restricted to RCTs alone, the proportion
of the >1000 category was even higher in our AI/ML trials
(19.8%; 129/653). Conversely, the proportion of the smallest
category (1-100) was lower in our trials (42.7%; 497/1163) than
in the non-AI/ML trials (63.2% [23] and 62.3% [24]).

Sex-Specific Studies
The majority (92.2%; 2863/3104) was not sex-specific, followed
by women-targeted (6.2%; 192/3104) and men-targeted (1.6%;
49/3104) studies (Table 2). Over time, AI/ML studies for women
have increased since 2018 (Figure S7 in Multimedia Appendix
2).

Study Location—Global Distribution, Geographic and
Economic
The most common regions were Europe (34.5%; 973/2821),
Asia/Pacific (29.8%; 841/2821), and North America (25.9%;
731/2821; Table 2), followed by the Middle East (3%; 84/2821).
The most common countries were the United States (21.8%;
677/3106), China (17.7%; 550/3106), France (6.6%; 205/3106),
the United Kingdom (6.2%; 193/3106), Italy (5.2%; 162/3106),
and Taiwan (3.6%; 111/3106). See Table S2 in Multimedia
Appendix 2 for a full list of countries, with the World Bank’s
GNI-based distribution.

In Figure 4, 71 countries are color-divided into 38 high-income
countries and 33 non–high-income countries. Most AI/ML
studies were conducted in high-income countries (75.3%;
2340/3106), followed by upper-middle-income countries,
including China (21.7%; 675/3106), lower-middle-income
countries (2.8%; 88/3106), and low-income countries (0.1%;
3/3106) (Table 2). Studies in non–high-income countries have
started to increase since 2020, particularly in Turkey (41 vs 50),
Egypt (21 vs 24), India (15 vs 23), Brazil (15 vs 16), Russia (11
vs 14), and Mexico (8 vs 11), where the numbers in parentheses
represent the totals for 2020-2023 compared to the totals for
the entire period of 2010-2023.

Figure 4. Study locations (geographic and economic) in artificial intelligence/machine learning studies, 2010-2023. Numbers denote the number of
studies in each location. Studies with multiple locations are included, as well as single-country studies. Studies with unknown locations (missing) are
not included in the counts. HIC: high-income country (as per the World Bank classification).

As shown in Figure 5, studies in Europe, Asia/Pacific, and North
America increased since 2018, and so did studies in high-income
countries, with a modest increase in upper-middle-income

countries, particularly China. The entries of
lower-middle-income countries (in 2018) and lower-income
countries (in 2021) lagged.
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Figure 5. Study location by start year: (top) geographic and (bottom) economic. Single-country studies only (n=2696), 2010-2023.

Posting of Study Results on ClinicalTrials.gov
Overall, only 5.6% (47/842) of completed studies had results
available on ClinicalTrials.gov. Among studies with posted
results (n=47), the median time from “primary completion date”
to “results first posted date” was 505 days (IQR 399-700;

minimum 93, maximum 1200). During 2018-2022, as the rapid
increase in AI/ML research became evident, completed studies
increased from 55 to 227, but the reporting rate stagnated,
remaining between 5.3% and 7.3% (Table 3). Consequently,
the number of completed studies without posted results increased
(Figure 6).
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Table 3. Availability of results posted on ClinicalTrials.gov by primary completion year among completed studies, 2010-2023.

Percentage of studies with resultsTotalNo resultsHas resultsPrimary completion year

01102010

02202011

03302012

03302013

07702014

09902015

10201822016

16252142017

5.5555232018

7.3827662019

7.310910182020

6.8148138102021

5.3227215122022

1.414714522023

5.6838a79147Total

an=838 instead of 842 after excluding 4 studies that reported 2024 as the primary completion year.

Figure 6. Availability of results posted on ClinicalTrials.gov by primary completion year among completed studies, 2010-2023 (n=838 instead of 842
after excluding 4 studies that reported 2024 as the primary completion year).

AI/ML Terms Used in Study Descriptions
The most frequently used term in study descriptions was
“artificial intelligence” (37%), followed by “machine learning”
(31.4%), “deep learning” (12.3%), “convolutional neural
network” (2.6%), and “random forest” (2.1%; Figure S2 in
Multimedia Appendix 2). The use of “artificial intelligence,”
“machine learning,” and “deep learning” has increased since
2017, especially the former two (Figure S4 in Multimedia
Appendix 2).

Discussion

Of 3106 AI/ML studies over the past 14 years, 63% (n=1951)
started in the last 3 years alone; more than half (56.7%;
1762/3106) have set the primary completion date between 2023
and 2050, with a median time of 7 years (IQR 3.5-12) beyond
2023. Thus, our data indicate the general direction of the AI/ML
pipeline in the years ahead.

Principal Findings
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In determining whether the accelerated growth of AI/ML
research reflects an increase in desirable study attributes or
otherwise, we found uneven growth occurring in three areas:
(1) study design, (2) study location, and (3) study results
availability. First, the increase in randomized (interventional)
and prospective (observational) designs, along with large studies
(n>1000), representing a quarter of all studies, may indicate a
move toward a prospective comparative evaluation stage.
Second, much of the rapid growth in AI/ML studies comes from
high-income countries in high-resource settings. Third, the
availability of results posted on ClinicalTrials.gov remained
limited, and thus, the number of completed studies without
posted results increased over time. While the first point seems
promising, the other two perpetuate previously raised issues.

Study Design
Previous research on AI studies registered on ClinicalTrials.gov
as of March 2022 concluded that the proportion of trials with
prospective (59.92%) and randomized (52.7%) designs was
insufficient [1]. We also observed similar proportions
(prospective: 58.9%; randomized: 56.2%) as of December 2023.
However, from 2017 to 2023, the proportions of RCT and
prospective designs increased by 42.1% and 22.6%, respectively,
while retrospective and cross-sectional studies decreased by
11.9% and 28.5%, respectively. This is deemed an improvement
compared to the period when retrospective assessments were
dominant [11].

Although the choice of RCTs depends on the stage of
development, the “phase” data, more aligned with drug
development, was mostly “not applicable” (93%) in our data
(Table 1). Referring to a stage-specific reporting guideline for
the early and live clinical evaluation of decision-support systems
based on AI, which compares development pathways among
drugs, AI, and surgical innovation [25], the recent increase in
prospective and randomized designs may be a reflection of
enough studies progressing from the in silico evaluation stage
to the early live clinical evaluation stage (trial phase 1-2 in
drugs) and the comparative prospective evaluation stage (trial
phase 3 in drugs).

Enrollment (Sample Size)
AI models, especially deep learning models, often require large
datasets to achieve robust performance [26], with sample sizes
above 1000 being common. This was empirically reflected in
our data overall. When compared to non-AI/ML trials registered
on ClinicalTrials.gov during 2000-2019 [23,24], the proportion
of smaller trials (1-100) was lower, and the proportion of larger
trials (>1000) was higher in our data (Figure S6 in Multimedia
Appendix 2). Furthermore, 16.1% (187/1163) of trials had a
sample size of >1000, 72.2% (135/187) of which were not
completed yet. Similarly, 19.8% of RCTs (129/653, excluding
withdrawn) were in the >1000 category, but 68.2% (88/129)
were still ongoing. Thus, the majority of large AI/ML trials in
our data are still in the pipeline and yet to be captured in future
systematic reviews.

Lead Sponsor Sector
Our reclassification of the “other” groups revealed the strong
presence of hospital/clinic or academic sponsorship over

industry (Figure 3). The hospital/clinic or academic sectors
might be more likely than the industry to engage in AI/ML
research even if it lacks commercialization potential. The higher
representation of hospitals/clinics and academia might reflect
a high volume of nonproprietary AI/ML.

The Underrepresented
We examined two areas. First, the underrepresentation of women
in research [27,28] is well documented. In this study, we found
a gradual increase in women-targeted studies over time. Second,
75.3% (2340/3106) of AI/ML studies were conducted in
high-income countries, and only 2.8% (88/3106) and 0.1%
(3/3106) were conducted in lower-middle-income and
low-income countries, respectively. If AI/ML models poorly
generalize to people other than those whose data were used to
train the algorithms, it may exacerbate existing disparities. While
external validation and model recalibration may help mitigate
health care inequities due to data disparity [14], inappropriate
external validation (and the lack thereof) in AI/ML research
was already highlighted [9,29,30]. Validation using unseen data
is particularly important in models built with single-center data
[31], and most of our sample (77.2%; 2177/2821) indeed
comprised single-center studies. However, external validation
was mentioned in only 47 of 3106 studies (1.5%). Of these 47,
only 9 (19.1%) were conducted in non–high-income countries:
China (n=6), Argentina (n=1), Ecuador (n=1), and Russia (n=1),
as part of a 10-country study (all were high-income countries,
except Russia).

Availability of Results on ClinicalTrials.gov
While the number of newly initiated studies increased, the
number of completed studies without posted results also
increased. The limited reporting of even basic results on
ClinicalTrials.gov contrasts with the rapid advancements in the
field and the registry’s stated purpose of registration and result
submission, which includes mitigating publication bias and
outcome reporting bias [32].

Outside the AI/ML field, high rates of results dissemination on
ClinicalTrials.gov have been reported, including for cancer trials
and small studies [33]. With AI/ML research results more
accessible on ClinicalTrials.gov, the registry can play a crucial
role in reducing publication bias, making it a valuable resource
for future systematic reviews or meta-analyses. Although posting
results on ClinicalTrials.gov means disseminating data without
independent scientific review, summary results are reported in
structured tables, and the results information is devoid of
conclusions or “spin,” as the system requires objective data
rather than subjective narratives [34]. This allows for broad
scrutiny by the scientific community, the public, or competitors.
Although results posting on ClinicalTrials.gov is mandated only
for certain types of trials, all registered studies are eligible for
results submission, and the responsibility of providing
knowledge given the use of human data should equally apply
to both trials and observational studies.

Limitations
Our study limitations are as follows. The first is
representativeness. Sponsors of FDA-regulated studies and trials
with sites in the United States are required to submit information
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to ClinicalTrials.gov [35]. In our sample, only 7.6% (235/3106)
of studies were FDA regulated, while 78.2% (2429/3106) did
not involve a US site. When registration is voluntary, it is hard
to determine what the data are truly representative of.
Interventional trials are more likely to be registered in a public
registry due to this being a requirement of the International
Committee of Medical Journal Editors as a condition of
consideration for publication [36]. However, as this requirement
started in 2005 and precedes our data cutoffs (2010-2023), it is
unlikely to have influenced our findings (RCTs were infrequent
until 2017). Moreover, registered studies would be more likely
to share results than unregistered ones, but the reporting rate in
our sample was unexpectedly low. Nevertheless, by evaluating
trends over time under the same representativeness constraints,
we made the best use of the most recent data available.

Second, as we prioritized sensitivity over specificity, our sample
may have included studies in which AI/ML played a minor role.
Identifying such studies would have required manual free-text
data mining with prespecified criteria, which was impractical
during testing due to substantial variations in reporting quality,
length, and clarity. Poor reporting in AI/ML research has already
been highlighted [8,9], and AI-specific reporting guidelines and
documentation standards now exist to increase awareness of
key dimensions that should be described in study protocols (the

SPIRIT-AI Extension, based on SPIRIT [Standard Protocol
Items: Recommendations for Interventional Trials]) [37],
prediction models (the TRIPOD+AI Statement, based on
TRIPOD [Transparent Reporting of a Multivariate Prediction
Model for Individual Prognosis or Diagnosis]) [38], or the
minimum information about clinical AI modeling (the
MI-CLAIM checklist) [39]. The same principle could also apply
to study descriptions on ClinicalTrials.gov, and more
standardized content within the platform would benefit its
audience.

Conclusions
Much of the rapid growth in AI/ML studies comes from
high-income countries in high-resource settings, albeit with a
modest increase in upper-middle-income countries (mostly
China). Lower-middle or low-income countries remain poorly
represented. The increase in randomized or prospective designs,
along with large studies (n>1000), which represent a quarter of
all studies (mostly ongoing), may indicate that enough studies
are progressing from the in silico evaluation stage toward a
prospective comparative evaluation stage. However, the ongoing
limited availability of basic results posted on ClinicalTrials.gov
contrasts with the rapid advancements in this field and the public
registry’s role in reducing publication and outcome reporting
biases.
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