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Abstract

Background: Kawasaki disease (KD) is an acute pediatric vasculitis that can lead to coronary artery aneurysms and severe
cardiovascular complications, often presenting with obvious fever in the early stages. In current clinical practice, distinguishing
KD from other febrile illnesses remains a significant challenge. In recent years, some researchers have explored the potential of
machine learning (ML) methods for the differential diagnosis of KD versus other febrile illnesses, as well as for predicting
coronary artery lesions (CALs) in people with KD. However, there is still a lack of systematic evidence to validate their
effectiveness. Therefore, we have conducted the first systematic review and meta-analysis to evaluate the accuracy of ML in
differentiating KD from other febrile illnesses and in predicting CALs in people with KD, so as to provide evidence-based support
for the application of ML in the diagnosis and treatment of KD.

Objective: This study aimed to summarize the accuracy of ML in differentiating KD from other febrile illnesses and predicting
CALs in people with KD.

Methods: PubMed, Cochrane Library, Embase, and Web of Science were systematically searched until September 26, 2023.
The risk of bias in the included original studies was appraised using the Prediction Model Risk of Bias Assessment Tool
(PROBAST). Stata (version 15.0; StataCorp) was used for the statistical analysis.

Results: A total of 29 studies were incorporated. Of them, 20 used ML to differentiate KD from other febrile illnesses. These
studies involved a total of 103,882 participants, including 12,541 people with KD. In the validation set, the pooled concordance
index, sensitivity, and specificity were 0.898 (95% CI 0.874-0.922), 0.91 (95% CI 0.83-0.95), and 0.86 (95% CI 0.80-0.90),
respectively. Meanwhile, 9 studies used ML for early prediction of the risk of CALs in children with KD. These studies involved
a total of 6503 people with KD, of whom 986 had CALs. The pooled concordance index in the validation set was 0.787 (95% CI
0.738-0.835).

Conclusions: The diagnostic and predictive factors used in the studies we included were primarily derived from common clinical
data. The ML models constructed based on these clinical data demonstrated promising effectiveness in differentiating KD from
other febrile illnesses and in predicting coronary artery lesions. Therefore, in future research, we can explore the use of ML
methods to identify more efficient predictors and develop tools that can be applied on a broader scale for the differentiation of
KD and the prediction of CALs.
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Introduction

Background
Kawasaki disease (KD) is a systemic vasculitis of small and
medium-sized vessels, which has nonspecific symptoms and
predominantly afflicts children aged 5 years or younger [1].
The incidence of KD worldwide varies greatly among different
regions and ethnic groups, ranging from 46.3 to 359 cases per
100,000 people in East Asia, compared with 4.5 to 20 cases per
100,000 children aged 5 years or younger in Europe and North
America [2]. KD is regarded as the most frequent cause of
pediatric-acquired heart disease in developed countries. Its
primary sequelae are related to the coronary system and may
have a huge impact on the myocardium, valves, and arterial
walls in some pediatric patients, which is less commonly
affected in other febrile illnesses [3]. Early recognition of KD
and timely administration of gammaglobulin significantly
reduces the risk of coronary artery lesions (CALs), promotes
the regression of coronary aneurysms, and decreases the
likelihood of long-term health complications in affected children
with KD [3-5].

Currently, the etiology and exact causative agent of KD remain
unknown. Its clinical diagnosis is made mainly on the basis of
the patient’s clinical manifestations, including fever, skin and
mucosal changes, swollen lymph nodes, extremity changes,
rash, and cardiac manifestations, such as coronary artery
dilatation or aneurysm [3,6]. Early and accurate recognition of
KD is challenging due to several factors, its clinical symptoms
do not appear in a specific sequence and may not manifest
simultaneously; the characteristic symptoms and laboratory
findings often overlap with those of other febrile illnesses, such
as respiratory infections, sepsis, and multisystem inflammatory
syndrome; and its self-limited nature in the acute phase can
cause symptoms to diminish or disappear before a definitive
diagnosis is made [3,7,8]. People with KD who do not respond
adequately to initial intravenous immunoglobulin (IVIG) therapy
are at a higher risk of developing CALs. Therefore, classical
scoring systems for predicting IVIG nonresponsiveness, such
as the Kobayashi score [9], Harada score [10], and Egami score
[11], are also considered valuable for assessing the risk of CALs.
However, the sensitivity of these established scoring systems
outside Japan is not good. In addition, since infectious agents
and immune regulatory dysfunction in the body may be the
causative factors of KD, stress-related inflammatory markers
occurring after exogenous infections, such as the erythrocyte
sedimentation rate (ESR), C-reactive protein (CRP) level, white
blood cell (WBC) count, and platelet (PLT) count, are thought
to have the ability to predict CALs in people with KD, and
cardiac markers including N-terminal pro-B-type natriuretic
peptide and markers of cardiomyocyte damage are also
considered useful for predicting CALs. However, the predictive
performance of single predictors is limited [12-14]. Therefore,
at present, how to efficiently diagnose KD and how to early
predict CALs in people with KD remain urgent.

Since Alan Turing proposed the theoretical foundation of
artificial intelligence (AI) in the 1930s, the field has undergone
over 70 years of development. Following the turn of the
millennium, with the proliferation of computer technology and
the internet, the surge in data availability and enhanced
computational power have led to the widespread adoption of
machine learning (ML) techniques [15]. Alongside
advancements in medical testing technologies, vast amounts of
medical imaging, laboratory monitoring data, and genetic
sequencing results now require interpretation by physicians.
The heavy load of medical reports and the complex
communication processes between doctors and patients have
contributed to diagnostic errors, inefficiencies in medical
practice, and physician burnout. As a result, there is a growing
clinical need for automated, intelligent, and reasonably accurate
ML tools to assist in these tasks [16-18]. Classic ML techniques
are broadly categorized into supervised and unsupervised
learning. Compared with the latter, the former is more frequently
used in the medical field because it can generate clinically
applicable conclusions by learning from and analyzing large
volumes of labeled data (such as laboratory data, medical
images, and genetic data). This makes supervised learning
particularly valuable for tasks such as disease prediction,
diagnosis, and image segmentation in clinical practice [19]. ML
can analyze complex data from a wide range of sources, such
as clinical manifestations, laboratory results and imaging data.
Unlike traditional approaches that focus on single biochemical
indicators, ML can detect subtle correlations within large
datasets, helping to address challenges that traditional statistical
methods cannot solve. This capability enhances both predictive
and diagnostic accuracy [20]. In the field of disease prediction,
ML can forecast disease progression and adverse outcomes,
which is crucial for developing targeted treatment and
rehabilitation regimens. While, in disease diagnosis, ML is
primarily applied to the diagnosis of complex diseases and the
assessment of disease states. This can significantly aid in
formulating specialized diagnostic strategies, thereby reducing
the time and economic costs associated with diagnosis [21-24].

Objective
In recent years, some researchers have attempted to apply ML
to differentiate KD from other febrile illnesses and to predict
CALs in people with KD. However, there is still a lack of
systematic evidence supporting the effectiveness of ML methods
in these areas, which presents challenges for the development
or refinement of AI diagnostic tools. Therefore, we have
conducted the first systematic review and meta-analysis to
evaluate the accuracy of ML in differentiating KD from other
febrile illnesses and in predicting CALs in people with KD, so
as to provide evidence-based support for the future development
and application of AI in these fields.
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Methods

Study Registration
This study was executed according to the operating guidelines

for systematic reviews and meta-analyses and prospectively
registered on PROSPERO (CRD42023481662).

Eligibility Criteria
The inclusion and exclusion criteria are shown in Textbox 1.

Textbox 1. Inclusion and exclusion criteria.

Inclusion criteria

• To differentiate Kawasaki disease (KD) from other febrile illnesses, people with KD and people with febrile illnesses suspected to be KD were
included as study participants. To predict coronary artery lesions (CALs) in KD, people with confirmed KD were included as study subjects.

• The types of studies included were case-control studies, cohort studies, nested case-control studies, and case-cohort studies.

• A predictive model for identifying KD or predicting CALs in people with KD was constructed entirely.

• Some studies lacked an independent validation set and only adopted k-fold cross-validation or Bootstrap. Their contribution cannot be denied.
Therefore, they were also included in our systematic review.

• A small number of studies may be based on distinct machine learning (ML) models published on the same dataset, but they were also incorporated
into our systematic review.

• Included studies are published in English.

Exclusion criteria

• Meta-analyses, reviews, guidelines, expert opinions, and similar types of studies.

• Only risk factor analysis was executed, and a full ML model was not constructed.

• Studies that did not include any of the following outcome measures for assessing the predictive accuracy of ML models: Receiver Operating
Characteristic, Concordance statistic, Concordance index, sensitivity, specificity, accuracy, recovery, precision, confusion matrix, fourfold table
for estimating the quality of a diagnostic test, F1-score, and calibration curve.

• Studies on the validation of mature scale.

• Studies on the predictive accuracy of single-factor predictors.

Data Sources and Search Strategy
PubMed, Cochrane Library, Embase, and Web of Science were
systematically searched until September 26, 2023. The search
terms were designed based on a combination of subject headings
and free-text words, without geographical restriction or time
limit (year). The search strategy is detailed in Table S1 in
Multimedia Appendix 1.

Study Selection and Data Extraction
The retrieved records were imported into Endnote, and duplicate
publications were excluded. Then we read the titles and abstracts
to screen out the original studies that did not meet the
requirements. Next, full texts were downloaded and read to
select eligible studies.

A standard electronic data extraction spreadsheet was created
before data extraction. The following data were extracted: titles
of the original studies, the name of the first author, the year of
publication, the author’s nationality, the study type, the data
source, the number of people with KD, the total number of study
participants, the numbers and total number of people with KD
in the training set and validation set when a model was trained
to identify KD, the numbers and total number of patients
developing CALs in the training set and validation set when a
model was trained for early prediction of CALs in KD, model
validation methods, methods for handling missing values,
methods for variable screening, types of models used, and
predictors used in the final model.

Literature screening and data extraction were carried out
independently by 2 researchers (JZ and FY), and then, the results
were cross-checked. Discrepancies were resolved by the third
researcher (YW).

Risk of Bias in Studies
The risk of bias in eligible studies was appraised using the
PROBAST (Prediction model Risk Of Bias Assessment Tool),
which consisted of numerous questions across 4 different
domains: participants, predictors, outcome, and analysis. This
approach provides a comprehensive evaluation of the overall
risk of bias and overall usability [25]. The 4 domains covered
2, 3, 6, and 9 specific questions, respectively. There are 3
answers (yes [Y]/probably yes [PY], no [N]/probably no [PN],
and no information [NI]) to each question. If at least 1 question
in a domain was answered as N or PN, it was rated at high risk.
To be considered at low risk, all questions in the domain should
be answered as Y or PY. The overall risk of bias was graded as
low when all domains were considered at low risk, and the
overall risk of bias was rated high risk when at least one domain
was rated at high risk.

Risk of bias assessment was conducted independently by 2
researchers [JZ and ZW] based on the PROBAST, and then,
their results were cross-checked. Discrepancies were resolved
by the third researcher [LS].
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Outcome Measures
The primary outcome measures were the concordance index
(C-index), sensitivity, and specificity reflecting the predictive
accuracy of ML models. The secondary outcome measure was
the frequency of use of a predictor to construct a ML model.

Meta-Analysis Methods
The meta-analysis was performed using Stata (version 15.0;
Stata Corp). A meta-analysis was conducted of the measure
(C-index) to assess the overall accuracy of ML models. If 95%
CIs and standard errors of the C-index were missing in some
original studies, its standard errors were estimated with reference
to a study by Debray et al [26]. A random-effects model was
leveraged for meta-analysis of the C-index given the differences
in variables and inconsistent parameters included in various
ML models.

In addition, a bivariate mixed-effects model was leveraged for
meta-analysis of sensitivity and specificity, which required that
meta-analysis of sensitivity and specificity should be based on
the fourfold table (2 × 2 table) for estimating the quality of a

diagnostic test. However, the fourfold table was not reported
in some original studies. Therefore, the fourfold table was
calculated by the following 2 methods, calculation of sensitivity,
specificity, and precision combined with the number of patients;
and calculation of the best sensitivity and specificity determined
based on the Youden index and then combined with the number
of patients. When conducting a meta-analysis of the C-index,
we used the “metan” program package, whereas for the
meta-analysis of the fourfold table (2 × 2 table), we used the
“midas” program package.

Results

Study Selection
A total of 815 records were searched from the databases. Of
them, 196 were removed due to duplication, and 569 were
excluded after screening of titles and abstracts. The full texts
of the remaining 50 articles were searched and read. Of them,
2 were excluded without peer review of abstracts, and 19 were
excluded for the reasons described in Figure 1. In the end, a
total of 29 studies were included [27-55].
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Figure 1. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) flow diagram for study selection.

Study Characteristics
This study included a total of 29 publications between 2001 and
2023, involving 29 ML models with variables all derived from
relatively common clinical characteristics.

Twenty studies involved a total of 20 models. They, published
from 2013 to 2023, focused on the differential diagnosis of KD
from Febrile controls (including respiratory infections,
gastrointestinal infections, urinary infections, encephalitis,
multisystem inflammatory syndrome, sepsis and cervical
lymphadenopathy with fever due to bacterial infections, viral
infections, or indeterminate pathogens). Of them, 11 were
conducted in China [27-37], 5 in the United States [38-42], 1
in Egypt [43], 1 in Germany [44], 1 in Italy [45], and 1 in South
Korea [46]. These studies involved a total of 103,882 study
participants, including 12,541 people with KD.

The types of models used in these 20 studies included logistic
regression (9/20, 45%), support vector machine (3/20, 15%),
least absolute shrinkage and selection operator (2/20, 10%),

artificial neural network (2/20, 10%), extreme gradient boosting
(1/20, 5%), decision tree (1/20, 5%), random forest (1/20, 5%),
and linear discriminant analysis (1/20, 5%).

The other 9 studies (involving 9 models) focused on the
prediction of the risk of CALs in KD children. Of them, 5 were
conducted in China [47-51], 2 in Japan [52,53], 1 in Spain [54],
and 1 in the United States [55]. The types of models used in
these 9 studies included multivariate logistic regression (8/9,
88.89%) and an artificial neural network (1/9, 11.11%). These
9 studies involved a total of 6503 people with KD, including
986 ones with CALs. Characteristics of including studies are
presented in Table S2 and Table S3 in Multimedia Appendix
1.

Risk of Bias in Studies
In the differential diagnosis of KD from other febrile illnesses,
9 models [27-30,32,33,35,36,46] were based on data from
retrospective studies, and therefore had a high risk of participant
selection bias; 4 models [31,37,40,45] were constructed without
data sources reported, so they were at unclear risk of bias. In
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the domain of predictors, 20 models were constructed without
quality control measures reported for predictor assessment, so
they were at an unclear risk of bias. In terms of outcomes, 20
models were all at low risk of bias. Regarding statistical
analysis, 14 models included in 13 studies
[27,29-31,33,35,37,40-43,45,46] were constructed with poor

sample size design, missing data handled inappropriately or
predictors screened irrationally, so they were at high risk of
bias, as shown in Figure 2. The risk of bias in including studies
is presented in Table S4 and Table S5 in Multimedia Appendix
1.

Figure 2. Risk assessment of machine learning models to identify Kawasaki disease from febrile controls.

In the early prediction of CALs in people with KD, 5 models
[48-52] were based on data from retrospective case-control
studies, and therefore had a high risk of participant selection
bias. In predictors and outcomes as domains, 9 models were all
at low risk of bias. In statistical analysis as a domain, 6 models

[47,51-55] were at high risk of bias because of irrational sample
size design, and 3 models [48-50] were at high risk of bias owing
to incorrect use of internal validation methods as shown in
Figure 3.
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Figure 3. Risk assessment of machine learning models to predict coronary artery lesions in people with Kawasaki disease.

Meta-Analysis

Differentiation of Kawasaki Disease From Other Febrile
Illnesses
In the training set, a random-effects model was leveraged for
meta-analysis of the C-index, which was 0.898 (95% CI

0.874-0.922), as shown in Figure 4 [29-36,40-46]. The funnel
plot showed no significant publication bias among the included
studies. The results of meta-analysis for the 2 × 2 table showed
a sensitivity of 0.89 (95% CI 0.83-0.92) and a specificity of
0.84 (95% CI 0.80-0.87) in the training set, as shown in Figure
5 [27,29-36,38,40-46].
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Figure 4. Concordance index forest plots of machine learning to identify Kawasaki disease and febrile controls in training and validation sets
[29-36,40-46].
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Figure 5. Sensitivity and specificity of machine learning to identify Kawasaki disease and febrile controls in training sets [27,29,30-36,38,40-46].

In the validation set, a random-effects model was used for
meta-analysis of the C-index, which was 0.881 (95% CI
0.837-0.925), as shown in Figure 4 [29-36,40-46]. The funnel
plot showed that there appeared to be publication bias among

the included studies. The results of meta-analysis for the 2 × 2
table showed a sensitivity of 0.91 (95% CI 0.83-0.95) and a
specificity of 0.86 (95% CI 0.80-0.90) in the validation set, as
shown in Figure 6 [28,32-35,37-39,42,44,46].
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Figure 6. Sensitivity and specificity of machine learning to identify Kawasaki disease and febrile controls in validation sets [28,32-35,37-39,42,44,46].

Prediction of Coronary Artery Lesions in Kawasaki
Disease
In the training set, a random-effects model was used for
meta-analysis of the C-index, which was 0.809 (95% CI
0.761-0.857), as shown in Figure 7 [47-55]. The funnel plot

showed no significant publication bias among the included
studies. The results of meta-analysis for the 2 × 2 table showed
a sensitivity of 0.79 (95% CI 0.68-0.86) and a specificity of
0.83 (95% CI 0.65-0.93) in the training set, as shown in Figure
8 [48-54].
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Figure 7. Concordance index forest plots of machine learning to predict coronary artery lesions in Kawasaki disease in training and validation sets
[47-55].
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Figure 8. Sensitivity and specificity of machine learning to predict coronary artery lesions in Kawasaki disease in training sets [48-54].

In the validation set, a random-effects model was used for
meta-analysis of the C-index, which was 0.787 (95% CI
0.738-0.835), as shown in Figure 7 [47-55]. The funnel plot
showed that there appeared to be publication bias among the
included studies. Since the number of models in the validation
set was less than 4 and did not reach the lower limit for
meta-analysis, we only described the ranges of sensitivity and
specificity in the validation set, which were 0.220-0.952 and
0.644-0.755, respectively.

Predictors

Frequencies of Use of Diagnostic Factors to Construct
ML Models for Differentiation of KD From Other
Febrile Illnesses
Regarding the use of diagnostic factors for differentiation of
KD, there were a total of 39 diagnostic factors including CRP

(n=11), neutrophils (NEUT; n=11), WBC (n=10), PLT (n=8),
lymphocytes (n=8), hemoglobin (n=7), alanine aminotransferase
(n=7), gamma-glutamyl transferase (n=7), eosinophils (n=7),
monocytes (n=6), ESR (n=5), oral changes (n=5), conjunctival
injection (n=5), extremity changes (n=4), age (n=3), cervical
lymphadenopathy (n=3), rash (n=3), albumin (n=2), prognostic
nutritional index (n=2), prealbumin (n=2), and duration (days)
of fever (n=2). The following diagnostic factors were each used
with a frequency of 1: Plasma Hepcidin, Pyuria, Urinary
Leukocytes, Vomiting, Abdominal Pain, N-terminal Pro B-type
Natriuretic Peptide, Thyroid Hormone Uptake, Height,
complement C3, Procalcitonin, Neck Abscesses, Blood
Phosphorus, Uric Acid, Chloride Compounds in serum, lactate
dehydrogenase, aspartate aminotransferase, globulin, and
temperature (Figure 9).
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Figure 9. Frequencies of use of diagnostic factors to construct machine learning models to identify Kawasaki disease from febrile controls.

Frequencies of Use of Predictors to Construct ML
Models for Prediction of Coronary Artery Lesions in KD
Regarding the use of diagnostic factors for prediction of CALs,
there were a total of 26 predictors including CRP (n=7), IVIG
resistance (n=4), duration of fever before IVIG infusion (n=3),
age (n=3), baseline Z score (n=2), high-density Lipoprotein
(n=2), albumin (n=2), PLT (n=2), ESR (n=2), duration of fever

after IVIG infusion (n=1), monocytes (n=1), serum amyloid A
(n=1), NEUT (n=1), lymphocytes (n=1), rash (n=1), oral changes
(n=1), cervical lymphadenopathy (n=1), sex (n=1), race (n=1),
creatinine (n=1), number of Steroid Pulse therapy sessions (n=1),
Urinary β2-microglobulin (n=1), Hgb (n=1), Immunoglobulin
A (n=1), immunoglobulin G (n=1), and matrix metalloproteinase
9 (n=1; Figure 10).
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Figure 10. Frequencies of use of predictors to construct machine learning models to predict coronary artery lesions in Kawasaki disease.

Discussion

Principal Findings
Our study included a total of 29 ML prediction models, of which
20 models focused on differentiating KD from other febrile
illnesses, and 9 models focused on predicting the risk of CALs
in children with KD. This study unraveled that ML achieved a
favorable performance in differentiating KD from other febrile
illnesses and predicting the risk of CALs in children with KD.
In the validation set for ML to differentiate KD from other
febrile illnesses, the C-index, sensitivity, and specificity were
0.881 (95% CI 0.837-0.925), 0.91 (95% CI 0.83-0.95), and 0.86
(95% CI 0.80-0.90), respectively. In the validation set for early
prediction of the risk of CALs in children with KD, the C-index
was 0.787 (95% CI 0.738-0.835), with a sensitivity range of
0.220-0.952 and a specificity range of 0.644-0.755. All the
results in the validation set versus the training set showed no
overfitting.

CRP, NEUT, and WBC were the most frequently used
diagnostic factors in the diagnostic model for KD, and CRP
was also the most frequent predictor in the predictive model for
CALs in people with KD. CRP is a very common laboratory
test item. All the models we included were constructed based
on interpretable ML models and routine clinical or laboratory
variables, suggesting that desirable predictive results can be

obtained if common clinical characteristics and laboratory
variables are combined with appropriate ML modeling methods.

Comparison With Previous Reviews
In recent years, ML has been extensively applied in the diagnosis
and early prediction of diseases to enhance precision and
efficiency in health care, but the value of its application in the
diagnosis of KD and early prediction of the risk of CALs in KD
children is still unknown. A systematic review of existing studies
is necessary to guide the development and application of ML
in this field. To our knowledge, our study is the first systematic
review evaluating the accuracy of ML for differentiation of KD
from other febrile illnesses and for early prediction of CALs in
children with KD.

In clinical practice, there is an emphasis on using rapid and
cost-effective diagnostic methods for children with fever and
at risk of coronary artery disease. Most of the studies included
in our review are based on common and routine clinical data.
This indicated that when faced with patients with fever,
clinicians can use ML methods and the most routine tests to
differentiate and diagnose KD.

Over the past few years, many teams have attempted to diagnose
KD using genomic technology in addition to common clinical
characteristics and laboratory variables. A meta-analysis by
Zheng et al [56] showed that total mixed miRNAs detection for
diagnosing KD had a sensitivity of 0.7 (0.66-0.74), a specificity
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of 0.87 (0.83-0.90), and an Summary Receiver Operating
Characteristic of 0.8302. In contrast, our analysis showed that
ML had a higher diagnostic accuracy. Another meta-analysis
[57] showed that compared with ML, ncRNA had a similar
diagnostic accuracy with an AUC of 0.90 (0.87-0.92) in
differentiating KD from febrile illnesses. Some studies have
found the same genetic association with risk for CAL in KD
children. Xie et al [58] reviewed 164 previous studies and found
that BTNL2, CASP3, FCGR2A, FGF23, FGβ, GRIN3A, HLA-E,
IL10, ITPKC, and TGFBR2 were linked to a high risk for CALs
in children with KD. Another meta-analysis [59] showed that
Allele A at the functional SNP rs72689236 of the gene encoding
caspase-3 was a genetic marker for susceptibility to KD with
CALs. Although genomic technology has demonstrated some
value and significance in the diagnosis of KD and the prediction
of KD with CALs, genetic testing is time consuming and not
applicable to the diagnosis of the acute phase of the disease.
Considering the higher cost of genomic technology, the need
for high-quality control in the laboratory and the complexity of
genomic data analysis and interpretation, genomic technology
is less clinically applicable to the early diagnosis of KD and the
prediction of concomitant CALs. In contrast, common clinical
variables are more applicable and convenient in most current
clinical settings, while being more conducive to reducing the
economic burden on people with KD.

During the application of ML in the field of medicine, model
type selection is critical to balance the accuracy and
interpretability of a model. Interpretable models, such as logistic
regression and the decision tree, tend to have a worse accuracy
in identifying outcome measures. However, less interpretable
models, such as Random Forest, XGboost, and Artificial Neural
Networks, tend to have a higher accuracy. Logistic regression
was the main ML model included in our study, suggesting that
early diagnosis of KD and early prediction of CALs in people
with KD were feasible based on routinely interpretable models.

In addition, the selection of model variables is crucial for the
construction of ML models, because it determines the testing
accuracy of ML models. In current clinical practice, model
variables can be classified into several types below, including
common interpretable clinical characteristics, image-based
radiomic features, and pathologic characteristics. Considering
that it is difficult to avoid excessive imaging equipment
configuration and bias in image segmentation during obtainment

of variables through imaging and that pathologic characteristics
have limitations including difficulty in quantification and limited
data interpretation, we should prefer to use common clinical
characteristics as model variables among these variables. The
ML model variables included in our study were dominated by
common interpretable clinical characteristics, which suggests
that easy-to-use clinical tools can be developed in the future
based on common clinical characteristics.

Advantages and Limitations of the Study
Our study is the first systematic review evaluating the accuracy
of ML for the differentiation of KD from other febrile illnesses
and for early prediction of CALs in children with KD. It was
aimed at providing medical evidence for this field. However,
our study has the following limitations. First, despite an
extensive search, the number of original studies included is still
limited, thereby resulting in a failure to conduct effective
subgroup analysis based on ML model types in our study.
Second, most of the ML models included in our review were
constructed using random sampling for internal validation, with
only a few studies using an independent external validation set
to verify the accuracy of the models. This limitation somewhat
restricts the generalizability and interpretation of our results.
Third, we did not quantitatively describe the associations
between the predictors (model variables) and KD or CALs in
KD.

Conclusions
ML is desirably effective in differentiating KD from other febrile
illnesses, and it is also able to fairly predict the occurrence of
CALs. However, the development of ML models in the related
field is still limited by a small amount of training data, its low
quality and a single validation method. Thus, more subsequent
multicenter studies are needed to provide more diverse data for
ML models, enhance data quality, improve the validation
method and outcome measures for ML models, refine the
existing models, and develop new high-quality models. In future
work, a quantitative characterization of the association between
predictors (model variables) and both KD and CALs in KD is
needed. In the meantime, more multicenter studies are desired
to validate our conclusions. Furthermore, we plan to explore
how to further validate and apply ML technologies in clinical
practice.
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Abbreviations
AI: artificial intelligence
C-index: concordance index
CAL: coronary artery lesion
CRP: C-reactive protein
ESR: erythrocyte sedimentation rate
IVIG: intravenous immunoglobulin
KD: Kawasaki disease
ML: machine learning
NEUT: neutrophils
PLT: platelet
PROBAST: the Prediction Model Risk of Bias Assessment Tool
WBC: white blood cell
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