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Abstract

Background: Systemic inflammatory response syndrome (SIRS) is a serious postoperative complication among older adult
surgical patients that frequently develops into sepsis or even death. Notably, the incidences of SIRS and sepsis steadily increase
with age. It is important to identify the risk of postoperative SIRS for older adult patients at a sufficiently early stage, which
would allow preemptive individualized enhanced therapy to be conducted to improve the prognosis of older adult patients. In
recent years, machine learning (ML) models have been deployed by researchers for many tasks, including disease prediction and
risk stratification, exhibiting good application potential.

Objective: We aimed to develop and validate an individualized predictive model to identify susceptible and high-risk populations
for SIRS in older adult patients to instruct appropriate early interventions.

Methods: Data for surgical patients aged ≥65 years from September 2015 to September 2020 in 3 independent medical centers
were retrieved and analyzed. The eligible patient cohort in the Third Affiliated Hospital of Sun Yat-sen University was randomly
separated into an 80% training set (2882 patients) and a 20% internal validation set (720 patients). We developed 4 ML models
to predict postoperative SIRS. The area under the receiver operating curve (AUC), F1 score, Brier score, and calibration curve
were used to evaluate the model performance. The model with the best performance was further validated in the other 2 independent
data sets involving 844 and 307 cases, respectively.

Results: The incidences of SIRS in the 3 medical centers were 24.3% (876/3602), 29.6% (250/844), and 6.5% (20/307),
respectively. We identified 15 variables that were significantly associated with postoperative SIRS and used in 4 ML models to
predict postoperative SIRS. A balanced cutoff between sensitivity and specificity was chosen to ensure as high a true positive as
possible. The random forest classifier (RF) model showed the best overall performance to predict postoperative SIRS, with an
AUC of 0.751 (95% CI 0.709-0.793), sensitivity of 0.682, specificity of 0.681, and F1 score of 0.508 in the internal validation
set and higher AUCs in the external validation-1 set (0.759, 95% CI 0.723-0.795) and external validation-2 set (0.804, 95% CI
0.746-0.863).

Conclusions: We developed and validated a generalizable RF model to predict postoperative SIRS in older adult patients,
enabling clinicians to screen susceptible and high-risk patients and implement early individualized interventions. An online risk
calculator to make the RF model accessible to anesthesiologists and peers around the world was developed.
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Introduction

Systemic inflammatory response syndrome (SIRS) is a
nonhomeostatic, self-destructive, and uncontrollable
inflammatory response of the whole body triggered by infection,
trauma, or major operations [1]. Recognizing SIRS has been a
prerequisite of suspecting potential sepsis and implementing
decisions such as sample culturing for the source of infection,
escalating antibiotic regimens, and the level of patient monitor
and care [2,3]. Although there is a tendency to apply criteria
including the Sequential Organ Failure Assessment (SOFA)
score or quick SOFA score to identify the possibility of sepsis
[4], SIRS criteria has demonstrated higher sensitivity than the
quick SOFA score [3], and it has served as both useful inclusion
criteria and therapeutic target of trials aiming to treat sepsis [5].
Early identification of patients who will develop postoperative
SIRS may enable clinicians to provide timely interventions to
prevent sepsis and improve outcomes. It has been reported that
the incidence of postoperative SIRS could be as high as 89%
[6,7] in patients undergoing abdominal surgery, and the
condition frequently developed into sepsis and even multiple
organ dysfunction syndrome [8]. A 13-fold increase in mortality
was reported in patients with postoperative SIRS compared with
those without SIRS [9]. Notably, the incidences of SIRS and
sepsis steadily increase with age, and octogenarians are almost
twice as likely to develop sepsis than those aged less than 50
years [10,11]. Although standardized preoperative antibiotic
prophylaxis has been recommended and clinically applied for
older adult populations with a high risk of postoperative
infection and SIRS, nearly one-quarter of older adult patients
still develop SIRS within 3 days after surgery [12]. Thus, it is
important to identify the risk of postoperative SIRS for older
adult patients at a sufficiently early stage, which would allow
preemptive individualized enhanced therapy to be conducted
to improve the prognosis of older adult patients.

Compared with traditional biostatistical methods, machine
learning (ML) methods hold the advantages of flexibility,
scalability, and the ability to analyze diverse data types, which
can be deployed for many tasks, such as risk stratification,
diagnosis and classification, and survival predictions [13-15].
In recent years, there have been many ML models used to
predict sepsis [16-22], the majority of which were developed
in similar populations such as patients in the intensive care unit
[23]. However, only a few have focused on older adult surgical
patients, and an ML model to predict postoperative SIRS has
been rarely reported.

The goal of our study was to use ML methods to develop an
individualized predictive model for older adult surgical patients
to screen for a susceptible population at a high risk for SIRS in
order to instruct appropriate early interventions. Meanwhile,
the generalizability of the model was validated with the data
sets from the other 2 medical centers.

Methods

Setting, Dates, and Population
The study was performed based on the electronic health record
(EHR) systems of 3 independent medical centers including the
Third Affiliated Hospital of Sun Yat-sen University
(Guangzhou, China), Lingnan Hospital of Sun Yat-sen
University, and Yuedong Hospital of Sun Yat-sen University
using data from surgical patients aged ≥65 years from 2015 to
2020.

During the retrospective enrollment, the inclusion criteria
included (1) age ≥65 years, (2) patients who underwent general
anesthetic with endotracheal intubation or laryngeal mask, and
(3) patients who had preoperative antimicrobial prophylaxis.
The exclusion criteria included (1) patients whose total
intraoperative infusion volumes, fluid loss, or American Society
of Anesthesiologists (ASA) classifications were not recorded
and (2) patients diagnosed with SIRS before surgery or
undergoing infectious surgeries.

Data Sources
The data comes from the EHR system of the 3 hospitals, which
were established by extracting medical records from the hospital
information system, laboratory information system, picture
archiving and communication system (PACS), and Docare
Anesthesia System (2005-2020 Medical System Co, Ltd), which
enabled access to a comprehensive data set collected during
hospital admissions, inpatient stays, and post-hospital follow-up
visits, including demographic characteristics, daily
documentation, laboratory tests, imaging results, and anesthesia
records.

Outcome
SIRS was diagnosed according to the American College of
Chest Physicians [24]. It was defined when 2 or more of the
following criteria were present: (1) temperature <36 °C or ≥38
°C, (2) heart rate ≥90 bpm, (3) respiratory rate ≥20 bpm or
arterial carbon dioxide tension <32 mm Hg, and (4) white blood

cell count <4×109/L, ≥12×109/L, or >10% immature forms. The
incidence of SIRS within 3 postoperative days was recorded in
the study.

Data Sets
Data sets from the 3 medical centers were created separately
and included: (1) patient demographics such as age, gender, and
smoking history; (2) preoperative complications, including
diabetes, hypertension, and fever; (3) anesthesia records,
including ASA, administration of ulinastatin, dexamethasone,
methylprednisolone, and dexmedetomidine; (4) liquid
management including volume of fluid loss, blood loss, and
colloid input; (5) duration of surgery; (6) laboratory parameters,
including alanine aminotransferase (ALT), white blood cell
count, hemoglobin, creatinine, albumin, high-sensitivity
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C-reactive protein (hs-CRP), activated partial thromboplastin
time, glucose, low-density lipoprotein, high-density lipoprotein,
blood urea nitrogen (BUN), fibrinogen, thrombin time,
lymphocyte, red blood cell count, indirect bilirubin. These
variables were selected based on EHR availability and their
relevance to SIRS risk according to the literature and clinical
experience [25].

For the purpose of developing and validating the ML models
for risk prediction, the cohort of eligible patients from the Third
Affiliated Hospital of Sun Yat-sen University was randomly
divided into an 80% training set (2882 patients) and a 20%
internal validation set (720 patients). In addition, 2 validation
data sets were created with the eligible patients from the Lingnan
Hospital and Yuedong Hospital for external validation. Based
on the events per variable (EPV)-10 principle [26], this study
has a sufficient sample size.

Statistical Analysis and ML Model Training
This study was reported as per the Guidelines for Developing
and Reporting Machine Learning Predictive Models in
Biomedical Research [27]. Categorical variables are expressed
as number (%), and continuous variables that follow a normal
distribution are expressed as mean (SD) or otherwise as median
(IQR). The missing rates of the variables are shown in Table
S1 in Multimedia Appendix 1. Missing values were imputed
on each of the 3 cohorts (hospitals) independently: Categorical
variables were filled in using mode counts, and continuous
variables were filled in using means. The outliers were
eliminated based on clinical experience, and 0 variance variables
were removed.

We trained 4 different classical ML algorithms trained on the
training set, including random forest (RF), XGBoost, logistic
regression (LR), and multilayer perceptron (MLP) models. RF
represents a bagging parallel integration algorithm, XGBoost
represents a boosting algorithm; LR represents the most classical
linear model, and MLP represents a neural network algorithm.
Grid search was applied based on 5-fold cross-validation to find

the optimal hyperparameters for each algorithm based on the
training set. The formulas for the evaluation indicators in the
models are provided in Multimedia Appendix 1.

The performance of the 4 algorithms was compared, and the
optimal model was selected for this study. A comparison
between the optimal model and nomogram we established before
[28] and was also conducted with the internal validation set.
Note that the prepared data sets incurred a data imbalance
problem. To address this problem, we used the synthetic
minority oversampling technique (SMOTE) provided by the
performanceEstimation package [29,30].

The statistical analyses were all done using Python 3.7 [31-34]
and R-3.6.2 [35]. All results were considered statistically
significant at P<.05.

Ethical Considerations
The study protocol followed the principles of the Declaration
of Helsinki and was approved by the Institutional Ethics
Committee of the Third Affiliated Hospital of Sun Yat-sen
University on July 27, 2022 (number [2019]02-609-04). The
requirements for informed consent and clinical trial registration
were waived by the committee.

Results

Study Cohorts and Characteristics
Among the 16,141 patients aged ≥65 years accessed from the
EHR system, only 3602 patients who met the inclusion criteria
were included in the development cohort, with 876 (24.3%)
postoperative SIRS events. The development cohort was then
randomly separated into the training set and the internal
validation set, which consisted of 2882 and 720 patients,
respectively. Meanwhile, 844 and 307 patients were finally
included in the external validation-1 set (Lingnan Hospital) and
the external validation-2 set (Yuedong Hospital), respectively
(Figure 1).
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Figure 1. Study design and flowchart. ASA: American Society of Anesthesiologists; LASSO: least absolute shrinkage and selection operator; LR:
logistic regression; MLP: multilayer perceptron; RF: random forest; SIRS: systemic inflammatory response syndrome.

The characteristics of the 3 cohorts from different medical
centers are shown in Table 1. The incidence rates of
postoperative SIRS in each of the 3 medical centers were 24.3%
(876/3602), 29.6% (250/844), and 6.5% (20/307), respectively.
The different incidences of SIRS across the 3 medical centers
may result from factors such as different regional characteristics,
economic development levels, patient characteristics, surgical
procedures, and the medical and nursing team.

Among the 3602 patients in the development cohort with a mean
age of 70.0 years, 2144 (59.5%) were women, 2152 (59.7%)
had comorbid hypertension, 1140 (31.6%) had comorbid
diabetes, and 437 (12.1%) were smokers. In addition, 420
(11.7%) patients had preoperative fever, and 1330 (36.9%) were
assessed as ASA III/IV/V preoperatively.

The characteristics of patients with or without postoperative
SIRS in the development cohort are shown in Table 2. Patients

who ended up with SIRS (SIRS group vs the non-SIRS group)
were mainly women (573/876, 65.4% vs 1571/2726, 57.6%,
P<.001) and more likely to have been diagnosed with diabetes
(334/876, 38.1% vs 806/2726, 29.6%, P<.001) and assessed as
ASA III/IV/V preoperatively (472/876, 53.9% vs 858/2726,
31.5%, P<.001). With evident incidence of preoperative fever
(182/876, 20.8% vs 238/2726, 8.7%, P<.001), the total volume
of fluid loss, volume of blood loss, and duration of surgery were
also significantly higher and longer in the SIRS group than in
the non-SIRS group (700 [330-1200] mL vs 430 [200-800] mL,
100 [50.0-200] mL vs 50 [20.0-100] mL, 207 [133-310] min
vs 150 [90-232] min, respectively; all P<.001). Additionally,
laboratory indicators including hs-CRP, BUN, direct bilirubin
(DBILI), and prothrombin time (PT) were higher in SIRS
patients than in non-SIRS patients, whereas albumin was lower
in SIRS patients (all P<.001; Table 2).
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Table 1. Baseline characteristics of patients.

External validation-2
(n=307)

External validation-1
(n=844)

Development cohort
(n=3602)

Characteristics

Postoperative SIRS a , n (%)

287 (93.5)594 (70.4)2726 (75.7)No

20 (6.5)250 (29.6)876 (24.3)Yes

Demographics

72.0 (67.2-78.8)70.0 (67.0-76.0)70.0 (67.0-75.0)Age, (years), median (IQR)

Gender, n (%)

169 (55)468 (55.5)2144 (59.5)Female

138 (45)376 (44.5)1458 (40.5)Male

Hypertension, n (%)

173 (56.4)313 (37.1)1450 (40.3)No

134 (43.6)531 (62.9)2152 (59.7)Yes

Diabetes, n (%)

51 (54.8)526 (62.3)2462 (68.4)No

42 (45.2)318 (37.7)1140 (31.6)Yes

History of smoking, n (%)

257 (86.2)755 (89.5)3165 (87.9)No

41 (13.8)89 (10.5)437 (12.1)Yes

Preoperative fever, n (%)

290 (94.5)642 (76.1)3182 (88.3)No

17 (5.54)202 (23.9)420 (11.7)Yes

ASA b classification, n (%)

236 (76.9)509 (60.3)2272 (63.1)I/II

71 (23.1)335 (39.7)1330 (36.9)III/IV/V

Preoperative variables

6.69 (5.57-8.53)6.57 (5.38-8.66)6.41 (5.15-8.11)WBCc (109/L), median (IQR)

1.73 (1.32-2.19)1.50 (1.09-1.96)1.60 (1.20-2.05)Lymphocytes (109/L), median (IQR)

4.29 (3.91-4.72)4.15 (3.74-4.62)4.27 (3.85-4.66)RBCd (1012/L), median (IQR)

125 (111-136)124 (111-137)127 (113-138)HGBe (g/L), median (IQR)

13.5 (12.9-14.4)0.13 (0.12-0.14)0.13 (0.13-0.14)RDW-CVf (%), median (IQR)

10.0 (4.17-34.9)6.56 (5.30-8.66)6.41 (5.10-8.20)hs-CRPg (mg/L), median (IQR)

37.8 (34.3-40.8)39.0 (36.0-41.7)39.6 (36.2-42.7)Albumin (g/L), median (IQR)

19.0 (13.0-28.0)18.0 (13.0-28.0)17.0 (13.0-26.0)ALTh (U/L), median (IQR)

14.6 (11.2-19.5)10.3 (7.30-14.7)9.80 (7.00-13.9)TBILIi (umol/L), median (IQR)

3.40 (2.60-4.85)3.51 (2.30-5.55)3.10 (2.10-4.90)DBILIj (umol/L), median (IQR)

10.8 (8.15-14.4)6.50 (4.60-9.20)6.50 (4.50-9.10)IBILIk (umol/L), median (IQR)

5.43 (4.92-6.48)5.52 (4.83-6.69)5.42 (4.87-6.48)Glucose (mmol/L), median (IQR)

74.0 (62.4-89.4)79.0 (64.0-96.0)75.0 (61.0-90.0)Creatinine (umol/L), median (IQR)

5.66 (4.50-6.82)5.83 (4.70-7.58)5.67 (4.60-7.02)BUNl (mmol/L), median (IQR)

2.55 (2.06-2.99)2.87 (2.24-3.53)2.90 (2.24-3.59)LDLm (mmol/L), median (IQR)
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External validation-2
(n=307)

External validation-1
(n=844)

Development cohort
(n=3602)

Characteristics

1.21 (0.98-1.56)1.11 (0.92-1.33)1.05 (0.86-1.26)HDLn (mmol/L), median (IQR)

11.1 (10.6-11.6)13.1 (12.5-13.8)13.2 (12.8-13.9)PTo (seconds), median (IQR)

31.1 (29.2-33.7)36.3 (33.5-39.1)37.4 (34.9-40.0)APTTp (seconds), median (IQR)

3.23 (2.83-3.92)3.67 (3.08-4.58)3.65 (3.08-4.52)Fibrinogen (g/L), median (IQR)

15.7 (14.9-16.4)17.0 (17.0-17.0)17.5 (17.5-17.5)TTq (seconds), median (IQR)

1.01 (0.96-1.05)0.99 (0.94-1.07)1.00 (0.96-1.06)PTINRr, median (IQR)

Intraoperative variables

Ulinastatin, n (%)

305 (99.3)627 (74.3)2817 (78.2)No

2 (0.65)217 (25.7)785 (21.8)Yes

Dexamethasone, n (%)

303 (98.7)762 (90.3)3222 (89.5)No

4 (1.3)82 (9.72)380 (10.5)Yes

Dexmedetomidine, n (%)

110 (35.8)566 (67.1)2270 (63)No

197 (64.2)278 (32.9)1332 (37)Yes

0.00 (0.00-40.0)0.00 (0.00-40.0)0.00 (0.00-0.00)Methylprednisolone (mg), median (IQR)

420 (220-808)505 (250-900)500 (220-900)Total volume of fluid loss (mL), median (IQR)

20.0 (10.0-80.0)100 (30.0-200)50.0 (20.0-150)Volume of blood loss (mL), median (IQR)

500 (500-500)500 (500-500)500 (500-500)Intraoperative colloid (mL), median (IQR)

140 (87.8-210)170 (105-253)163 (95.0-250)Duration of surgery (min), median (IQR)

aSIRS: systemic inflammatory response syndrome.
bASA: American Society of Anesthesiologists.
cWBC: white blood cell count.
dRBC: red blood cell count.
eHGB: hemoglobin.
fRDW-CV: red blood cell distribution width-coefficient of variation.
ghs-CRP: high sensitivity C-reactive protein.
hALT: alanine aminotransferase.
iTBILI: total bilirubin.
jDBILI: direct bilirubin.
kIBILI: indirect bilirubin.
lBUN: blood urea nitrogen.
mLDL: low-density lipoprotein.
nHDL: high-density lipoprotein.
oPT: prothrombin time.
pAPTT: activated partial thromboplastin time.
qTT: thrombin time.
rPTINR: international normalized ratio of prothrombin time.
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Table 2. Characteristics of non-systemic inflammatory response syndrome (SIRS) and SIRS groups in the development cohort.

Development cohortCharacteristics

P valueSIRS (n=876)Non-SIRS (n=2726)Total (n=3602)

Demographics

<.00171.0 (67.0-76.2)70.0 (67.0-75.0)70.0 (67.0-75.0)Age (years), median (IQR)

<.001Gender, n (%)

573 (65.4)1571 (57.6)2144 (59.5)Female

303 (34.6)1155 (42.4)1458 (40.5)Male

.76Hypertension, n (%)

357 (40.8)1093 (40.1)1450 (40.3)No

519 (59.2)1633 (59.9)2152 (59.7)Yes

<.001Diabetes, n (%)

542 (61.9)1920 (70.4)2462 (68.4)No

334 (38.1)806 (29.6)1140 (31.6)Yes

.001History of smoking, n (%)

742 (84.7)2423 (88.9)3165 (87.9)No

134 (15.3)303 (11.1)437 (12.1)Yes

<.001Preoperative fever, n (%)

694 (79.2)2488 (91.3)3182 (88.3)No

182 (20.8)238 (8.7)420 (11.7)Yes

<.001ASA a classification, n (%)

404 (46.1)1868 (68.5)2272 (63.1)I/II

472 (53.9)858 (31.5)1330 (36.9)III/IV/V

Preoperative variables

<.0016.80 (5.44-8.94)6.32 (5.07-7.88)6.41 (5.15-8.11)WBCb (109/L), median (IQR)

.0071.54 (1.12-2.05)1.63 (1.23-2.05)1.60 (1.20-2.05)Lymphocytes (109/L), median (IQR)

.0064.22 (3.73-4.65)4.28 (3.88-4.66)4.27 (3.85-4.66)RBCc (1012/L), median (IQR)

.04126 (110-139)127 (115-138)127 (113-138)HGBd (g/L), median (IQR)

<.0010.13 (0.13-0.14)0.13 (0.12-0.14)0.13 (0.13-0.14)RDW-CVe (%), median (IQR)

<.0016.83 (5.46-9.20)6.31 (5.03-7.93)6.41 (5.10-8.20)hs-CRPf (mg/L), median (IQR)

<.00138.2 (35.0-41.7)40.0 (36.6-42.9)39.6 (36.2-42.7)Albumin (g/L), median (IQR)

<.00119.0 (14.0-32.0)17.0 (12.0-25.0)17.0 (13.0-26.0)ALTg (U/L), median (IQR)

<.00110.2 (7.30-15.2)9.70 (6.90-13.5)9.80 (7.00-13.9)TBILIh (umol/L), median (IQR)

<.0013.50 (2.30-5.50)3.00 (2.10-4.70)3.10 (2.10-4.90)DBILIi (umol/L), median (IQR)

.166.60 (4.50-9.50)6.40 (4.60-8.90)6.50 (4.50-9.10)IBILIj (umol/L), median (IQR)

.315.43 (4.88-6.75)5.41 (4.87-6.41)5.42 (4.87-6.48)Glucose (mmol/L), median (IQR)

<.00178.0 (63.0-96.0)73.0 (60.0-88.0)75.0 (61.0-90.0)Creatinine (umol/L), median (IQR)

<.0015.96 (4.69-7.42)5.59 (4.56-6.90)5.67 (4.60-7.02)BUNk (mmol/L), median (IQR)

.0552.81 (2.19-3.58)2.92 (2.26-3.59)2.90 (2.24-3.59)LDLl (mmol/L), median (IQR)

<.0011.02 (0.81-1.24)1.07 (0.88-1.28)1.05 (0.86-1.26)HDLm (mmol/L), median (IQR)

<.00113.4 (12.9-14.2)13.2 (12.7-13.8)13.2 (12.8-13.9)PTn (seconds), median (IQR)
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Development cohortCharacteristics

P valueSIRS (n=876)Non-SIRS (n=2726)Total (n=3602)

.00138.0 (35.0-41.3)37.2 (34.9-39.9)37.4 (34.9-40.0)APTTo (seconds), median (IQR)

.033.77 (3.05-4.75)3.63 (3.09-4.44)3.65 (3.08-4.52)Fibrinogen (g/L), median (IQR)

.05517.5 (17.5-17.5)17.5 (17.5-17.5)17.5 (17.5-17.5)TTp (seconds); median (IQR)]

<.0011.02 (0.97-1.09)1.00 (0.96-1.06)1.00 (0.96-1.06)PTINRq, median (IQR)

Intraoperative variables

<.001Ulinastatin, n (%)

603 (68.8)2214 (81.2)2817 (78.2)No

273 (31.2)512 (18.8)785 (21.8)Yes

.81Dexamethasone, n (%)

786 (89.7)2436 (89.4)3222 (89.5)No

90 (10.3)290 (10.6)380 (10.5)Yes

.01Dexmedetomidine, n (%)

521 (59.5)1749 (64.2)2270 (63)No

355 (40.5)977 (35.8)1332 (37)Yes

<.001000Methylprednisolone (mg), median (IQR)

<.001700 (330-1200)430 (200-800)500 (220-900)Total volume of fluid loss (mL), median (IQR)

<.001100 (50.0-200)50.0 (20.0-100)50.0 (20.0-150)Volume of blood loss (mL), median (IQR)

<.001500 (500-1000)500 (500-500)500 (500-500)Intraoperative colloid (mL), median (IQR)

<.001207 (133-310)150 (90.0-232)163 (95.0-250)Duration of surgery (min), median (IQR)

aASA: American Society of Anesthesiologists.
bWBC: white blood cell count.
cRBC: red blood cell count.
dHGB: hemoglobin.
eRDW-CV: red blood cell distribution width-coefficient of variation.
fhs-CRP: high sensitivity C-reactive protein.
gALT: alanine aminotransferase.
hTBILI: total bilirubin.
iDBILI: direct bilirubin.
jIBILI: indirect bilirubin.
kBUN: blood urea nitrogen.
lLDL: low-density lipoprotein.
mHDL: high-density lipoprotein.
nPT: prothrombin time.
oAPTT: activated partial thromboplastin time.
pTT: thrombin time.
qPTINR: international normalized ratio of prothrombin time.

The prognoses of the non-SIRS and SIRS groups in the
development cohort are shown in Table 3. Compared with the
non-SIRS group, patients in the SIRS group were significantly
more likely to develop postoperative complications that included
hemorrhage (446/876, 50.9% vs 939/2726, 34.4%, P<.001),
acute respiratory distress syndrome (14/876, 1.6% vs 2/2726,
0.1%, P<.001), cardiac arrest (10/876, 1.1% vs 5/2726, 0.2%,
P<.001), agitation and delirium (65/876, 7.4% vs 32/2726, 1.2%,
P<.001), coma (60/876, 6.8% vs 7/2726, 0.3%, P<.001), and

acute kidney injury (81/876, 9.2% vs 55/2726, 2%, P<.001).
Furthermore, SIRS patients had a longer median postoperative
hospitalization (12.0 [8.0-19.0] days vs 7.0 [5.0-10.0] days,
P<.001), higher median cost (¥91,846 [¥61,765-¥135.5] vs
¥56,542 [¥34,273-¥76,956], P<.001; a currency exchange rate
of ¥1=US $0.14 is applicable), higher risk of postoperative
intensive care unit admissions (273/876, 37.1% vs 79/2726,
3.3%, P<.001), and higher in-hospital mortality rate (21/876,
2.4% vs 10/2726, 0.4%, P<.001) than non-SIRS patients.
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Table 3. Prognoses of the non-systemic inflammatory response syndrome (SIRS) and SIRS groups in the development cohort.

P valueSIRS (n=876)Non-SIRS (n=2726)Total cohort (n=3602)Prognoses

Postoperative complications, n (%)

<.001446 (50.9)939 (34.4)1385 (38.5)Hemorrhage

<.00114 (1.6)2 (0.1)16 (0.4)ARDSa

<.00110 (1.1)5 (0.2)15 (0.4)Cardiac arrest

<.00165 (7.4)32 (1.2)97 (2.7)Agitation and delirium

<.00160 (6.8)7 (0.3)67 (1.9)Coma

<.00181 (9.2)55 (2)136 (3.8)Acute kidney injury

<.001273 (37.1)79 (3.3)352 (11.4)Postoperative ICUb admission, n (%)

<.00121 (2.4)10 (0.4)31 (0.9)In-hospital death, n (%)

<.00112.0 (8.0-19.0)7.0 (5.0-10.0)8.0 (5.0-12.0)Postoperative hospital stay (days), median
(Q1-Q3)

<.00121.5 (15.0-32.0)15.0 (10.0-20.0)16.0 (11.0-22.0)Total hospital stay (days), median (Q1-Q3)

<.00191,846 (61,675-135,548)56,542 (34,273-76,956)62,434 (39,886-87,937)Total cost (¥)c, median (Q1-Q3)

aARDS: acute respiratory distress syndrome.
bICU: intensive care unit.
cA currency exchange rate of ¥1=US $0.14 is applicable.

Variable Selection
Details of the missing rates in each center for the 36 variables
selected based on the literature and our clinical experience are
shown in Table S1 in Multimedia Appendix 1, and the highly
correlated variables with a correlation coefficient higher than
0.7 were deleted to avoid collinearity (based on the principle
of keeping the variable with the highest area under the
receiver-operating curve [AUC] in the independent prediction
of postoperative SIRS; Figure S1 in Multimedia Appendix 1).

Since partially relevant or less important features may negatively
affect the performance of ML models, feature selection was

performed on the development cohort using least absolute
shrinkage and selection operator (LASSO) regression methods.
As shown in Figure 2, the dimensionality was reduced to 15
features after LASSO, including preoperative fever, ASA, PT,
hsCRP, BUN, diabetes, duration of surgery, ulinastatin,
methylprednisolone, alanine aminotransferase, total volume of
fluid loss, volume of blood loss, DBILI, albumin, and gender.
Except albumin and gender, which were negatively associated
with postoperative SIRS, all other features were positively
associated with postoperative SIRS in older adult patients (Table
4).
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Figure 2. Feature selection using least absolute shrinkage and selection operator (LASSO) regression.
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Table 4. Correlation coefficients between postoperative systemic inflammatory response syndrome (SIRS) and the 15 selected features using least
absolute shrinkage and selection operator (LASSO) regression methods.

Correlation coefficientCharacteristics

0.104Preoperative fever

0.101ASAa classification

0.016PTb

0.005hs-CRPc

0.004BUNd

0.001Diabetes mellitus

<0.001Duration of surgery

<0.001Ulinastatin

<0.001Methylprednisone

<0.001ALTe

<0.001Total volume of fluid loss

<0.001Volume of blood loss

<0.001DBILIf

–0.002Albumin

–0.005Gender

aASA: American Society of Anesthesiologists.
bPT: prothrombin time.
chs-CRP: high-sensitivity C-reactive protein.
dBUN: blood urea nitrogen.
eALT: alanine aminotransferase.
fDBILI: direct bilirubin.

Model Construction, Internal Validation, and
Horizontal Comparison
Finally, the 15 selected predictors were used in the 4 ML
models, including RF, XGBoost, LR, and MLP, to predict
postoperative SIRS. The performance of the different ML
algorithms in the internal validation set are shown in Figure 3,
and the calibration curves are presented in Figure 4. The AUC
of the RF model was 0.751 (95% CI 0.709-0.793) with the
highest sensitivity of 0.682 and specificity of 0.681. The F1

score of the RF model (0.508) was the highest among the 4 ML
models, and the Brier score (0.153) was also relatively higher.
As a result, upon general consideration of the AUC, F1 score,

Brier score, calibration curve, and the ability of subsequent
cross-center promotion and application, we thought that the RF
model demonstrated the best performance. Additionally, the
performance of RF model in the internal validation set was
compared with the nomogram [23] we once established to
predict postoperative SIRS in older patients (Figure 3). The
results showed that the RF model had a significantly higher
AUC (AUC=0.751) than the nomogram (AUC=0.671) in the
internal validation set, which further proved the generalizability
of the RF model (Table 5). The internal validation results after
applying SMOTE are shown in Table S2 in Multimedia
Appendix 1, where the AUC values increased for almost all ML
algorithms except for LR and RF still exhibited the best
performance with an AUC of 0.923.
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Figure 3. Performance of different machine learning algorithms in the internal validation set. LR: logistic regression; MLP: multilayer perceptron; RF:
random forest.

Figure 4. The calibration curves in the internal validation set for the (A) random forest model, (B) XGBoost model, (C) logistic regression model, and
(D) multilayer perceptron model.
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Table 5. Internal validation performance of different machine learning models.

NomogramMultilayer perceptronLogistic regressionXGBoostRandom forestMetrics

0.671 (0.648-0.694)0.756 (0.715-0.797)0.752 (0.711-0.793)0.744 (0.702-0.786)0.751 (0.709-0.793)AUCa (95% CI)

0.2760.2160.2300.2260.237Cutoff

0.6260.6650.6710.6650.682Sensitivity

0.6250.6650.6720.6670.681Specificity

0.6260.6650.6720.6660.682Accuracy

0.4480.4880.4960.4890.508F1 score

0.3490.3860.3930.3870.404PPVb

0.8390.8620.8660.8630.871NPVc

0.1740.1540.1510.1530.153Brier score

aAUC: area under the receiver operating curve.
bPPV: positive predictive value.
cNPV: negative predictive value.

External Validation Performance
External validation of the developed RF algorithm was
conducted with the eligible data from patients from Lingnan
Hospital (external validation-1) and Yuedong Hospital (external
validation-2). As shown in Table 6, the RF model achieved
relatively higher AUCs for the external validation-1 (0.759,
95% CI 0.723-0.795) and external validation-2 (0.804, 95% CI
0.746-0.863) sets. Moreover, the external validation-2 set
demonstrated much higher sensitivity (lower false-negative
rate) than the internal validation set (0.800 vs 0.682), and the
specificity of the model was improved in both external validation
sets. On the other hand, the negative predictive value was high,
and the positive predictive value (PPV) was relatively low for

all 3 validation sets since we chose a balanced cutoff between
sensitivity and specificity to ensure as high a true positive (TP)
as possible, which also results in a high false positive (FP) and
low false negative. Notably, the PPV and F1 score of external
validation-2 was very low due to the low incidence rate of
postoperative SIRS (20/307, 6.5%) at Yuedong Hospital.

After applying SMOTE, the performance of the RF model in
the external validation set was basically the same as the model
without SMOTE, with AUCs of 0.783 vs 0.759 in external
validation set 1 and 0.784 vs 0.804 in external validation set 2,
which further proves that the RF model has good generalizability
to different validation populations and different data processing
methods (Table S3 in Multimedia Appendix 1).

Table 6. External validation performance of the random forest model.

External validation-2External validation-1Internal validationMetrics

0.804 (0.746-0.863)0.759 (0.723-0.795)0.751 (0.709-0.793)AUCa (95% CI)

0.2370.2370.237Cutoffb

0.8000.6800.682Sensitivity

0.6900.6890.681Specificity

0.6970.6860.682Accuracy

0.2560.5620.508F1 score

0.1520.4790.404PPVc

0.9800.8360.871NPVd

aAUC: area under the receiver operating curve.
bWe chose a cutoff balanced between sensitivity and specificity.
cPPV: positive predictive value.
dNPV: negative predictive value.

Feature Importance Weight
The feature importance permutation was used to rank the levels
of feature importance, which is defined as the decrease in a
model score when a single feature value is randomly shuffled

(Figure 5). The results showed that the total volume of fluid
loss, duration of surgery, ASA, and volume of blood loss had
a significant impact on the outcome, with higher importance
weight values of 0.121, 0.119, 0.118, and 0.101, respectively
(Table 7).
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Figure 5. Feature importance weight of the random forest algorithm. ALB: albumin; ALT: alanine aminotransferase; ASA: American Society of
Anesthesiologists; BUN: blood urea nitrogen; DBILI: direct bilirubin; hsCRP: high sensitivity C-reactive protein; PT: prothrombin time.

Table 7. Feature importance weight of the random forest algorithm.

Feature importance weightPermutation importance scores, mean (SD)Characteristics

0.1210.047 (0.002)Total volume of fluid loss

0.1190.047 (0.001)Duration of surgery

0.1180.046 (0.003)ASAa

0.1010.039 (0.001)Volume of blood loss

0.0880.035 (0.002)hs-CRPb

0.0880.034 (0.002)Albumin

0.0850.033 (0.000)BUNc

0.0610.024 (0.001)DBILId

0.0600.023 (0.001)ALTe

0.0530.021 (0.001)PTf

0.0270.011 (0.001)Methylprednisolone

0.0270.011 (0.001)Preoperative fever

0.0210.008 (0.001)Ulinastatin

0.0160.006 (0.000)Gender

0.0130.005 (0.000)Diabetes mellitus

aASA: American Society of Anesthesiologists.
bhs-CRP: high sensitivity C-reactive protein.
cBUN: blood urea nitrogen.
dDBILI: direct bilirubin.
eALT: alanine aminotransferase.
fPT: prothrombin time.
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Online Application
Figure S2 in Multimedia Appendix 1 shows the online calculator
for our RF model to predict the risk of postoperative SIRS in
older adult patients, which can be found at [36]. Users can
quickly obtain the predicted probability of the patient’s
postoperative SIRS risk by entering the values of the 15
predictors.

Discussion

Principal Findings
In this study, we evaluated the ability of 4 ML algorithms
including RF, XGBoost, LR, and MLP to predict postoperative
SIRS in older adult patients based on eligible data from EHR
systems and concluded that the RF model has moderately better
performance than the other ML algorithms, with an AUC value
of 0.751, highest sensitivity of 0.682, and specificity of 0.681.
The RF model also exhibited better performance in the internal
validation set than the nomogram we once established to predict
postoperative SIRS in older patients. Furthermore, the
applicability of the RF model was proved by external validation
in the other 2 independent medical centers, with relatively higher
AUC values of 0.759 and 0.804, indicating good reproducibility
and generalizability of the model in older adult patients. Notably,
the model exhibited a high negative predictive value and
relatively low PPV because we chose a balanced cutoff between
sensitivity and specificity to ensure as high a TP as possible,
which inevitably leads to a high FP and low false negative.
Especially for external validation-2 (Yuedong Hospital), which
had a very low incidence rate of postoperative SIRS (20/307,
6.5%), 16 TP were successfully predicted with a high sensitivity
of 0.800, which comes with 89 FP and results in a low PPV
(0.152) and F1 score (0.256).

The model indicators used in this study include preoperative
fever, ASA, PT, hsCRP, BUN, diabetes, duration of surgery,
ulinastatin, methylprednisolone, ALT, total volume of fluid
loss, volume of blood loss, DBILI, albumin, and gender. These
indicators are mainly related to the individual disease
characteristics and are not affected by the level of different
medical institutions or regional characteristics, which makes
the model more generalizable. The results of our study further
prove that the model has a good generalization ability for
populations with different SIRS incidences. The high recall of
our model is important for reminders to check patients early
and prevent SIRS in advance; this demonstrates a more
responsible attitude toward patients.

Currently, given the more severe mortality and adverse
prognosis, most studies have adopted sepsis as a clinical
endpoint [2]. In our study, we used SIRS as the primary outcome
because it has been an acknowledged criterion that is easier to
identify and can help physicians notice the possibility of sepsis
and prescribe tests to examine whether infection truly exists.

As the population ages, the surgical population is also aging
faster than the general population, with higher morbidity and
mortality rates [37]. Notably, older adults are predisposed to
postoperative infections, SIRS, and even sepsis due to
preexisting comorbidities, repeated and prolonged

hospitalizations, immune dysregulation, and functional
limitations [38]. Although preoperative antimicrobial
prophylaxis has been routinely administered for older adult
patients in various specialized operations, the persistent high
incidence of postoperative SIRS suggests that it cannot be
effectively prevented in this way [12]. In fact, for older patients
undergoing different types of surgery, there is still a lack of
effective tools to identify high-risk patients with postoperative
SIRS and assist with decision-making on the need for
individualized interventions.

In this study, we used ML methods to analyze diverse data types
[13] due to the advantages of flexibility and scalability. A
predictive model based on an RF algorithm was developed to
identify older adult patients with a high risk of postoperative
SIRS. Internal validation and two external validations confirmed
that the established model could predict postoperative SIRS
with high accuracy and specificity. The results might be
important derivatives and supplements to the current
perioperative prevention and management programs, which
enable surgeons and anesthesiologists to identify older adult
patients who are suspected of having postoperative SIRS. In
addition to screening high-risk groups, this model can also help
prevent and treat postoperative SIRS in older adult patients
more accurately and in a timelier manner by using various drug
or nondrug means under the guideline of enhanced recovery
after surgery, so as to promote the short-term and long-term
prognoses of patients [39]. Finally, an online risk calculator
was developed to improve clinical usability and make our model
accessible to anesthesiologists and peers around the world.

Comparison With Prior Work
Distinguished from previous investigations that mainly focused
on a single indicator or a single surgery, we fully used the
perioperative data of patients and constructed an optimal
combination of risk factors to predict postoperative SIRS in
older adult patients. In this study, 15 variables were identified
to be significantly associated with postoperative SIRS, including
preoperative fever, ASA [40], PT, hsCRP, BUN, diabetes [41],
duration of surgery [42], ulinastatin, methylprednisolone, ALT,
total volume of fluid loss, volume of blood loss, DBILI [43],
albumin, and gender [44]. These variables have also been
reported to be associated with postoperative SIRS and sepsis
in earlier studies, adding clinical credibility to our model.
Meanwhile, all the variables were routinely recorded and widely
used in clinical practice, which makes the model more feasible
and can be widely used in different hospitals.

Methylprednisolone and ulinastatin have also been associated
with postoperative SIRS, which may be attributed to the fact
that both medicines are widely used among high-risk surgical
patients with postoperative infection according to
anesthesiologists’ clinical experience [45-47]. Additionally,
intraoperative fluid loss ranks first in the feature importance
weight of the RF model, which indicates that fluid management
such as intraoperative intravenous infusion should be given
higher priority during the perioperative period to prevent
postoperative SIRS, and this was consistent with the consensus
on early management of sepsis [48].
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Limitations
Notably, several limitations must be listed here, including that
(1) this is a retrospective cohort study with collection and entry
bias, as well as possible residual confounding, which requires
future prospective studies to validate the model. In addition,
some indicators for SOFA scoring were missing, so we could
not perform a comparative study between our model and SOFA
scoring. (2) We selected 36 variables based on the availability
in the EHR, correlation with SIRS risk, and predictive potential,
but it should be noted that we may have missed other indicators
with more predictive performance in postoperative SIRS due
to the limitation of our data. (3) The model demonstrated a low
PPV because we wanted the model to have a relatively high
recall rate to predict more patients who were truly at a high risk
of postoperative SIRS, which would inevitably lead to more
FPs, but from a health economics perspective, the economic
burden associated with enhanced perioperative management of
high-risk patients is much less than that resulting from the

progression of the patient to SIRS or even after sepsis, resulting
in medical-economic stress. (4) The generalizability of this
model in different ethnic groups and different regions also needs
further validation. (5) It should be emphasized that estimates
in our model are predictive and should not be interpreted as
causal [49], such as the association between intraoperative use
of methylprednisolone and ulinastatin and the higher SIRS
incidence rate. Intraoperative use of such drugs is likely a marker
of risk stratification with a lower risk of infection patients using
these drugs than those at high risk.

Conclusions
We enrolled 3 independent cohorts to develop and validate a
generalizable RF model for the prediction of postoperative SIRS
in older adult patients that enables surgeons and
anesthesiologists to screen susceptible and high-risk populations
for SIRS in older adult surgical patients and to implement early
individualized interventions based on existing prevention and
management programs.
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Abbreviations
ALT: alanine aminotransferase
ASA: American Society of Anesthesiologists
AUC: area under the receiver operating curve
BUN: blood urea nitrogen
DBILI: direct bilirubin
EHR: electronic health record
EPV: events per variable
FP: false positive
hs-CRP: high-sensitivity C-reactive protein
LASSO: least absolute shrinkage and selection operator
LR: logistic regression
ML: machine learning
MLP: multilayer perceptron
PACS: picture archiving and communication system
PPV: positive predictive value
PT: prothrombin time
RF: random forest
SIRS: systemic inflammatory response syndrome
SMOTE: synthetic minority oversampling technique
SOFA: Sequential Organ Failure Assessment
TP: true positive
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