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Abstract

Background: The development of technology and information systems has led to important changes in public health surveillance.

Objective: This scoping review aimed to assess the available evidence and gather information about the use of digital tools for
arbovirus (dengue virus [DENV], zika virus [ZIKV], and chikungunya virus [CHIKV]) surveillance.

Methods: The databases used were MEDLINE, SCIELO, LILACS, SCOPUS, Web of Science, and EMBASE. The inclusion
criterion was defined as studies that described the use of digital tools in arbovirus surveillance. The exclusion criteria were defined
as follows: letters, editorials, reviews, case reports, series of cases, descriptive epidemiological studies, laboratory and vaccine
studies, economic evaluation studies, and studies that did not clearly describe the use of digital tools in surveillance. Results were
evaluated in the following steps: monitoring of outbreaks or epidemics, tracking of cases, identification of rumors, decision-making
by health agencies, communication (cases and bulletins), and dissemination of information to society).

Results: Of the 2227 studies retrieved based on screening by title, abstract, and full-text reading, 68 (3%) studies were included.
The most frequent digital tools used in arbovirus surveillance were apps (n=24, 35%) and Twitter, currently called X (n=22,
32%). These were mostly used to support the traditional surveillance system, strengthening aspects such as information timeliness,
acceptability, flexibility, monitoring of outbreaks or epidemics, detection and tracking of cases, and simplicity. The use of apps
to disseminate information to society (P=.02), communicate (cases and bulletins; P=.01), and simplicity (P=.03) and the use of
Twitter to identify rumors (P=.008) were statistically relevant in evaluating scores. This scoping review had some limitations
related to the choice of DENV, ZIKV, and CHIKV as arboviruses, due to their clinical and epidemiological importance.

Conclusions: In the contemporary scenario, it is no longer possible to ignore the use of web data or social media as a
complementary strategy to health surveillance. However, it is important that efforts be combined to develop new methods that
can ensure the quality of information and the adoption of systematic measures to maintain the integrity and reliability of digital
tools’ data, considering ethical aspects.

(J Med Internet Res 2024;26:e57476) doi: 10.2196/57476
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Introduction

Arboviruses have become relevant public health problems in
tropical and subtropical areas due to either socioeconomic or

environmental factors, involving inadequate occupation of urban
space, poor sanitary conditions, and deforestation [1].

Dengue, caused by the dengue virus (DENV), is 1 of the most
important neglected tropical diseases transmitted by mosquitoes
in humans. Since its onset in Southeast Asia in the 1950s, the
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disease has rapidly spread throughout tropical regions and
currently remains a health concern worldwide [2].

Chikungunya, caused by the chikungunya virus (CHIKV), was
first described in 1952 [3] and has been responsible for
outbreaks and epidemics in Asia and Africa. Between 2005 and
2007, 266,000 cases were reported in the Reunions Islands,
affecting almost 34% of the island’s population [4]. A major
outbreak occurred in 2013 with the emergence of an Asian
lineage of the virus affecting the Caribbean Saint Martin Island,
from where the virus spread to more than 50 countries of the
South American continent, leading to over 1 million infections
[5]. It is important to highlight the chikungunya disease burden,
which includes chronicity, severe infections, increased
hospitalization risks, and associated mortality [6].

Zika was first described in 1947 in nonhuman primates, and
infections in humans were sporadic and mild. In 2013-2014, an
outbreak occurred in French Polynesia, and severe neurological
manifestations were reported [7]. In 2015, cases of congenital
microcephaly among pregnant women infected with zika virus
(ZIKV) were reported in Brazil. Those findings raised concerns
about the infection during pregnancy, and a body of evidence
showed the association of ZIKV infection with fetal death,
growth restriction, and a series of abnormalities in the fetal
central nervous system, as well as microcephaly [8,9].

The infection scenario caused by arboviruses has pointed to
relevant threats to public health in recent years. The
cocirculation of the 3 arboviruses (DENV, CHIKV, ZIKV) has
imposed major challenges in surveillance and increased the
demand for health service support in affected areas [10]. Among
the arboviruses, we chose DENV, CHIKV, and ZIKV as they
have great medical importance and similar clinical
manifestations and as transmission occurs through the same
vector, the mosquito Aedes aegypti. Dengue fever has a high
incidence in several countries. Chikungunya presents high
morbidity, considering the course of the disease in the acute
phase, which can lead to chronic symptoms. Zika in pregnant
women has an important impact on congenital neurological
manifestations, in addition to being an emerging disease.

The continuous and systematic collection, analysis, and
interpretation of health-related data are part of the scope of
public health surveillance. Monitoring of outbreaks and
epidemics, tracking of cases, evaluation of interventions,
evaluation of rumors, communication (cases and bulletins), and
decision-making by health agencies are essential steps for a
surveillance system. Therefore, the effectiveness of a
surveillance system is directly related to its ability to control
diseases [11,12]. However, the rapid development of data
science, including big data and artificial intelligence (AI), and
the growth of accessible and heterogeneous health-related data
are definitely changing the field of health surveillance [13]. The
use of technology in health care has increased in recent years.
Digital tools, such as apps, digital forms, online chats, video
calls, telemedicine, social media, and games, have been used
for data collection, case tracking, and disease risk classification
[14-16]. Furthermore, the use of big data composing hybrid
systems, through the combination of structured and unstructured
data, is a promising strategy to collect electronic health records

in real time, potentially impacting infectious disease surveillance
[17].

It is noteworthy that public engagement in the digital
technological universe is becoming increasingly important
worldwide. Therefore, the use of digital tools for arbovirus
surveillance seems relevant due to the impact of the diseases
and the need for timely and effective control strategies [18].

This review aimed to assess the available evidence and gather
information about the use of digital tools for arbovirus (DENV,
ZIKV, and CHIKV) surveillance.

Methods

Study Design
We conducted a scoping review to systematically map the use
of digital tools in arbovirus surveillance [19], defined as
technological resources/electronic devices capable of
establishing communication between individuals through data
sharing [20,21]. Our protocol was elaborated using the Joanna
Briggs Institute PRIMSA-ScR (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses Extension for Scoping
Reviews) guidelines for scoping reviews (Table S1 in
Multimedia Appendix 1) [19,22]. The protocol was registered
with the Open Science Framework.

Search
Data were retrieved from the following bibliographic databases:
MEDLINE, EMBASE, LILACS, SCIELO, Web of Science,
and SCOPUS. The research question was based on the
population, context, concept (PCC) approach [19]: population,
digital tools; context, arbovirus surveillance; and concept, use
of digital tools to perform surveillance. The following Medical
Subject Headings (MeSH) descriptors were combined:
“arbovirus infections,” “dengue,” “zika virus,” “chikungunya
fever,” “public health surveillance,” “epidemiological
monitoring,” “technology,” “audiovisual aids,” “social media,”
“big data,” “mobile apps,” and “social networking.” The search
was performed in April 2023 (Table S2 in Multimedia Appendix
2).

Selection, Reading, and Data Extraction
The selection was independently performed by 2 authors (CLM
and LR), and disagreements were resolved by a third author
(MDW). The inclusion criterion was defined as studies that
described the use of digital tools in arbovirus surveillance.

First, titles and abstracts returned by the search were read, and
the following were excluded: letters, editorials, reviews, case
reports, series of cases, descriptive epidemiological studies,
laboratory and vaccine studies, economic evaluation studies,
and studies that did not clearly describe the use of digital tools
in surveillance. Next, potentially eligible studies were read in
full, and the same inclusion and exclusion criteria were applied.
The online software Rayyan was used for the selection process
[23].

Data from included studies were collected using a standardized
data extraction tool designed for this study. The form included
the following sections: identification of the study (authors,
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journal, year of publication, language), studies characteristics
(period, study population, place of study), digital tools used,
frequency of data collection, objective of the method used for
the surveillance of arboviruses, and practical applicability. Data
charting was implemented using EpiData 3.1 software.

The form was tested initially with 5 papers and subsequently
subjected to minor adjustments, such as including new data
record fields or changes in format to improve information
recording. Two reviewers independently collected data from
each included paper. Any disagreements were resolved through
discussion between the 2 reviewers or by a third reviewer.

Data Synthesis and Analysis
A descriptive analysis of the methods and results of using digital
tools was carried out based on the attributes for evaluating
surveillance systems proposed by the Centers for Disease
Control and Prevention (CDC) and on some essential
surveillance activities. We used the following attributes: (1)
sensitivity (proportion and cases of the disease detected by the
surveillance system, ability to detect outbreaks, ability to
monitor changes in the number of cases over time), (2)
opportunity (speed between the steps of the surveillance system),
(3) simplicity (structure and ease of operationalization of the
surveillance system), (4) acceptability (willingness of people
or organizations to participate in the system), (5) flexibility
(ability to adapt to changing information needs and operating
conditions with minimal need for time, personnel, and
resources), (6) specificity (capacity of the system to exclude
“noncases” of the disease), and (7) positive predictive value
(PPV: proportion of reported cases that actually have the event
under surveillance) [24]. Furthermore, the criteria for evaluating
the contributions of digital tools to arbovirus surveillance were
applied based on the Epidemiological Surveillance Guide, and
the International Health Regulations (IHR) [25,26]. The
following surveillance activities were used: monitoring of
outbreaks or epidemics, tracking of cases, decision-making by
health agencies, identification of rumors, communication (cases
and bulletins), and dissemination of information to society.

If the attributes or activities were not clearly mentioned in the
study, each independent observer (CLM and LR) imputed the
presence or absence according to the CDC definition or
according to the performance of the surveillance system. A third
observer (MDW) resolved conflicts. A dichotomous variable
was created to evaluate the presence or absence of the
contribution of digital tools to arbovirus surveillance. An
arbitrary value of 2 was assigned when the attributes sensitivity,
opportunity, simplicity, acceptability, flexibility, specificity,
and PPV were present and 1 if they were absent.

The sum of the scores of the 7 attributes was calculated for each
of the selected studies, and this sum variable was categorized
as follows: 7 or 8, unsatisfactory; 9 or 10, moderately
satisfactory; 11 or 12, satisfactory; and 13 or 14, very
satisfactory. The sum of the scores of the 6 health surveillance
activities (monitoring of outbreaks or epidemics, tracking of
cases, decision-making by health agencies, identification of
rumors, communication [cases and bulletins], and dissemination
of information to society) was performed for each of the selected
studies, and this sum variable was categorized as follows: 6,

unsatisfactory; 7 or 8, moderately satisfactory; 9 or 10,
satisfactory; and 11 or 12, very satisfactory.

Next, the percentage of the use of each digital tool in the
reviewed studies was calculated. The frequency with which the
7 health surveillance attributes and 6 activities were present in
the included studies was also calculated according to the use of
digital tools (Multimedia Appendices 3 and 4).

The mean (SD) and P value of the sum attributed to the score
of each axis were calculated: 7 surveillance system attributes
and 6 health surveillance activities according to the digital tools
that were used with the greatest value absolute in the included
studies (apps, Twitter, Google Trends, and big data), with the
aim of identifying whether the groups had a statistically
significant difference. Subsequently, we compared the means
using ANOVA for the aforementioned digital tools according
to the 2 axes to verify the difference between them.

We used R software version 4.3.1 (summarytools package for
descriptive analysis, dplyr package for working with dataframes,
and MASS and car native R packages for ANOVA; R
Foundation for Statistical Computing) to perform data analysis.

Results

Study Characteristics
The search strategy retrieved 2227 studies; after removing
duplicates and applying the inclusion and exclusion criteria, we
included 68 (3%) studies in the review (Figure S1 in Multimedia
Appendix 1).

The characteristics of the studies included are outlined in
Multimedia Appendix 5. Of the 68 studies, 50% (n=34) were
performed in Asia, 16% (n=11) in North America, and 9% (n=6)
in Europe or Central America. In addition, 32% (n=22) of the
studies were performed in South America, with 17 (77%) of
these in Brazil. Dengue was addressed in 50 (74%) studies,
followed by zika (n=21, 31%) and chikungunya (n=9, 13%); 6
(9%) studies addressed the 3 arboviruses simultaneously.

The digital tools most studied were apps (n=24, 35%); Twitter,
currently called X (n=22, 32%); Google Trends (n=7, 10%);
and big data (n=6, 9%). Social media (Twitter, Facebook,
Instagram, YouTube, Flirck, Sina Weibo, and blogs) was used
in 37% (n=25) of the studies.

The time range between health data collection and dissemination
of information was defined by the studies as real time (n=48,
71%), near real time (n=2, 3%), yearly (n=1, 2%), weekly (n=7,
10%), daily (n=8, 12%), other (n=1, 2%), and not clearly
described (n=9, 13%), as shown in Multimedia Appendix 5.

Data from digital tools were compared with official data in 16
(24%) studies: [27-42]. Of these, 12 (75%) studies
[27,29,31,33-40,42] showed statistically significant correlations
(P<.05) or strong correlations between official and unofficial
data coming from online trends, social media, or big data, of
which 6 (50%) addressed the use of Twitter data.

In addition, 21 (31%) studies [28,29,32,34,35,43-58] developed
predictions, forecasts, detection of reemergent events, and early
warning models, while 7 (10%) studies [44,59-64] presented
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results regarding the use of digital tools to design a participatory
syndromic surveillance system, and 32 (47%) studies evaluated
the use of digital tools for several surveillance activities:
prevention and control of arboviruses [40,51,59,65-82], content
analysis and rumors [83-91], and mitigation of the lack of
epidemiological data in surveillance systems [92,93].

Most studies presented an enhancement in opportunity (n=63,
93%), flexibility (n= 57, 84%), sensitivity (n=63, 93%), and
simplicity (n=46, 68%) indicators. In addition, 18 (26%) studies
[28,32,39,41,43,45,47,50,52,56,58-60,65,70,79,83,92] presented
an enhancement in the ability of the system to exclude
“noncases” of the disease (specificity) and the proportion of
reported cases that actually had the event under surveillance
(PPV).

Furthermore, 63 (93%) studies addressed the monitoring of
outbreaks or epidemics, and 60 (88%) studies addressed case
tracking. More than half of the studies improved
decision-making by health agencies (n=43, 63%) and
communication (cases and bulletins; n=40, 59%). Dissemination
of information to society and identification of rumors were
addressed in 29 (43%) studies.

The use of apps in surveillance enhanced the following
indicators: opportunity (n=22, 92%), sensitivity (n=21, 88%),
simplicity (n=21, 88%), acceptability (n=19, 79%), and
flexibility (n=19, 79%). Furthermore, 23 (34%) studies showed
that the use of apps enhanced the monitoring of outbreaks or
epidemics (n=22, 96%), the tracking of cases (n=21, 92%),
decision-making by health agencies (n=17, 74%), and the
availability of information for society (n=14, 61%)
[38,44-48,50,57,60-62,64-66,71-74,76,77,79-81,94]. Figure 1
illustrates health surveillance system attributes and contributions
to health surveillance activities according to use of apps and
Twitter in the 68 studies.

Of the 24 (35%) studies that mentioned the use of apps, 11
(46%) were evaluated as very satisfactory and 9 (38%) as
satisfactory according to surveillance activity enhancement. In
addition, 7 (29%) studies were very satisfactory and 14 (58%)
were satisfactory when surveillance indicators were assessed.
No study that mentioned the use of apps was evaluated as
unsatisfactory.

Among the studies that addressed the use of Twitter (n=22,
32%) [27,29,30,32,35-37,41,42,49,51,63,75,82-84,86,88-92],
19 (86%) described an increase in speed between the steps of
the surveillance system (opportunity) and the ability to adapt
to changing information needs, while 18 (82%) described
operating conditions with minimal need for time, personnel,
and resources (flexibility). More than 12 (55%) studies that
addressed the use of Twitter described an enhancement in system
sensitivity, and 12 (55%) described the ease of operation and
the willingness of people or organizations to participate in the
system (acceptability). Less than 7 (32%) studies pointed out
an enhancement to system specificity and the PPV.

Furthermore, 18 (82%) studies that addressed the use of Twitter
described enhancement in monitoring of outbreaks or epidemics.
Of these, 11 (61%) studies described an increase in
communication (cases and bulletins) and decision-making by
health agencies. In addition, 15 (68%) addressed the
identification of rumors, while dissemination of information to
society was mentioned in 6 (27%) of the studies (Figure 1).

Of the 22 studies that addressed the use of Twitter, 7 (32%)
were evaluated as very satisfactory and 9 (41%) were
satisfactory regarding surveillance activities. In addition, 6
(27%) studies were very satisfactory, 11 (50%) were
satisfactory, 4 (18%) were moderately satisfactory, and 1 (5%)
was unsatisfactory according to the analysis of surveillance
system indicators.

Studies that reported the use of Google Trends (n=7, 10%)
enhanced the following indicators: simplicity, sensitivity,
flexibility, and opportunity. Furthermore, 6 (86%) studies
enhanced the monitoring of outbreaks or epidemics and tracking
of cases.

Studies that reported the use of big data (n=6, 9%)
[28,30,37,43,51,93] assessed sensitivity and flexibility of the
surveillance system, as well as opportunity (speed between the
surveillance system steps). All of them contributed to the
monitoring of outbreaks or epidemics. Additionally, 3 (50%)
studies [30,43,93] addressed decision-making by health
agencies.

A total of 27 (40%) studies [27,33,39-41,47,48,50,53,56,
57,61-64,67,71-73,75,79,82,85,87,91,94] were rated as very
satisfactory regarding surveillance activities and addressed the
use of the following digital tools: apps, Twitter, game platforms,
web-based digital tools, Facebook, Google Trends, Google
News, Wikipedia, and Sina Weibo. Of these, 19 (70%)
investigated dengue, 7 (26%) investigated zika, and 1 (4%)
addressed diarrheal syndrome, respiratory syndrome, arboviral
syndrome, chikungunya, zika, and influenza.

In addition, 15 (22%) studies [27,29,36,45,50,52,59-61,
65,72,79,84,90,92] were classified as very satisfactory regarding
surveillance system indicators and reported the use of the
following digital tools: apps, Twitter, Google Trends, Google
News, blogs, Wikipedia, telepidemiological surveillance,
eletronic bracelets, Google Maps, drones, and the GPS.

In comparing the means of the sums of health surveillance
system activities, there was a difference between apps, Twitter,
Google Trends, and big data. The activities communication
(cases and bulletins; P=.01), dissemination of information to
society (P=.02), and identification of rumors (P=.008) showed
a statistically significant difference (Table 1).

In comparing the means of the sums of health surveillance
system attributes, there was a difference between apps, Twitter,
Google Trends, and big data (Table 2).

However, the attribute simplicity (P=.03) showed a statistically
significant difference.
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Figure 1. Health surveillance activities and surveillance system indicators according to the use of apps and Twitter.
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Table 1. ANOVA of health surveillance activity scores.

P valueaTwitter (n=22), mean
(SD)

Google Trends (n=7),
mean (SD)

Big data (n=6),
mean (SD)

Apps (n=24), mean
(SD)

Health surveillance system activity

.311.5 (0.5)1.4 (0.5)1.5 (0.5)1.7 (0.5)Decision-making by health agencies

.011.5 (0.5)1.7 (0.5)1.0 (0.0)1.7 (0.5)Communication: cases and bulletins

.021.3 (0.4)1.1 (0.4)1.2 (0.4)1.6 (0.5)Dissemination of information to society

.361.8 (0.4)1.9 (0.4)2.0 (0.0)2.0 (0.2)Outbreak or epidemic monitoring

.0081.7 (0.5)1.3 (0.5)1.2 (0.4)1.2 (0.4)Rumor identification

0.61.8 (0.4)1.9 (0.4)2.0 (0.0)1.9 (0.3)Case tracking

aP values (ANOVA) of health surveillance system activities considering the use of digital tools (apps, big data, Google Trends, and Twitter).

Table 2. ANOVA of health surveillance system attribute scores.

P valueaTwitter (n=22), mean
(SD)

Google Trends (n=7),
mean (SD)

Big data (n=6), mean
(SD)

Apps (n=24), mean
(SD)

Health surveillance system
attribute

.941.9 (0.2)2.0 (0.0)2.0 (0.0)1.9 (0.3)Sensitivity

.641.2 (0.4)1.2 (0.5)1.7 (0.5)1.8 (0.4)Specificity

.881.8 (0.4)2.0 (0.0)2.0 (0.0)1.9 (0.3)Opportunity

.821.9 (0.3)2.0 (0.0)1.7 (0.5)1.8 (0.4)Flexibility

.121.5 (0.5)1.2 (0.4)1.3 (0.5)1.8 (0.4)Acceptability

.671.4 (0.5)1.0 (0.0)1.3 (0.5)1.3 (0.5)PPVb

.031.5 (0.5)1.8 (0.4)1.0 (0.0)1.8 (0.4)Simplicity

aP value (ANOVA) of health surveillance system attributes considering the use of digital tools (apps, big data, Google Trends, and Twitter).
bPPV: positive predictive value.

Discussion

Principal Findings
This scoping review demonstrated different approaches for the
use of digital tools to prevent and control arboviruses. The use
of apps and Twitter in surveillance revealed the best results.

Due to the extensive health crisis caused by COVID-19, health
agencies around the world have concentrated efforts to adopt
strategies aimed at providing reliable information for the
population, detecting symptoms, providing first care in suspected
cases, and supporting the detection of new cases and laboratory
diagnosis using apps [95]. Therefore, the use of apps has proved
to be beneficial, not only for surveillance, but also as a valuable
aid in dealing with public health emergencies. Initiatives in
Brazil, such as the COVID-19 observatory, Infogripe, and
Infodengue, are used to monitor and to inform society about
health problems online. In our review, 88% of the studies used
a digital tool for tracking cases or monitoring arbovirus
outbreaks, and most of them used social media data or apps,
which is in line with the measures adopted in the response to
the COVID-19 pandemic. Furthermore, our review showed a
higher score for apps, indicating statistical relevance in the use
of apps to disseminate information to society (P=.02),
communication (cases and bulletins; P=.01), and ease of
operationalization of the surveillance system (P=.03), with the
highest means in the evaluation of scores.

Of the 24 studies that mentioned the use of apps, 96% pointed
to monitoring outbreaks or epidemics and 92% mentioned
tracking cases. In agreement, a systematic review conducted by
Quinn et al [96] evaluated studies of web-based apps,
indicator-based surveillance, and the response to communicable
disease outbreaks. Their review highlighted the use of apps to
improve the early detection of disease outbreaks and disease
notification, as well as the active participation of users; however,
they indicated a low PPV [96]. As we also observed in our
review, the use of apps in arbovirus surveillance contributes
either to the opportunity and ease of operationalization of the
surveillance system and case detection or to a reduction in costs.
Furthermore, in our review, 62% of the studies underlined the
availability of information (data) in real time, which implies
the triggering of timely actions with an impact on prevention
and control measures. It is even more important to have real-time
data in an epidemic or pandemic situation, when information
and data sources need to be available in a timely manner for the
implementation of infection control measures and minimization
of risk factors associated with the health of the population [97].

The correlation analysis between unofficial data from social
media and official data of arbovirus surveillance may be helpful
to assess the potential use of nonofficial data. Twitter data on
influenza was monitored for a year in the United States. Data
were collected and processed based on geographic information
science (GIS) and data mining and then compared with official
data from national, regional, and local reports of disease
outbreaks. This correlation revealed strong statistical relevance

J Med Internet Res 2024 | vol. 26 | e57476 | p. 6https://www.jmir.org/2024/1/e57476
(page number not for citation purposes)

Melo et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


between the data sources [98]. Samaras et al [99] reported the
feasibility of building an early detection and forecasting system
for influenza epidemics with data from Twitter and Google
search engines. This process took place in real time for 23
weeks, and the data collected from the digital tools were
compared with official data. The results pointed to a high
correlation with Google data and to the usefulness of Twitter
data. In our review, 12 studies [27,29,31,33-40,42] showed a
statistically significant correlation (P<.05) or strong correlation
between official data of arbovirus surveillance and unofficial
data from online trends, social media, or big data. Of these,
more than half addressed the use of Twitter data. However, data
collection and processing are crucial steps that require
investment in appropriate techniques. One study showed the
correlation was positive and statistically significant but with
several limitations [41].

Our data showed good results regarding the use of Twitter
according to either surveillance activities or surveillance system
indicators. Twitter was used to propose a framework to explore
online data sources to mitigate the lack of epidemiological data,
assess digital behaviors and complex interaction between new
data streams induced by the chikungunya outbreak, identify
public health problems during a dengue epidemic, identify
rumors, track and monitor cases, and support arbovirus case
prediction and early warning models.

The phenomenon of misinformation and fake news became
notorious during the COVID-19 pandemic, where the use of
social media intensified. The sharing of fake news is a social
problem that threatens public health. Jain [100] proposed an
entropy approach to identify and monitor rumors related to
COVID-19 based on shared tweets. In our review, the use of
Twitter to identify rumors was statistically relevant in evaluating
scores (P=.008), presenting a higher mean compared to other
digital tools.

Moreover, our data showed 21 studies [28,29,32,34,35,43-58]
that developed early warning models and enhanced the
prediction, forecast, and detection of remergent events. The
authors reported the use of apps, big data, Twitter, Google
Trends, AI, the internet of things (IoT), and statistical models
with algorithm adjustment to predict arbovirus cases. One study
[29] presented the possibility of predicting dengue cases up to
8 weeks in advance using data from Twitter, Google Trends,
and Wikipedia. In addition, the authors addressed the use of
apps with geospatial and meteorological information capable
of detecting and predicting possible breeding sites of the
mosquito vector, predicting dengue outbreaks, generating
detailed reports, and providing users with health education about
dengue. Applications of fog computing were also discussed, as
well as a model capable of merging large volumes of data
through big data to generate early warnings. The use of Google
Trends was also reported to predict the COVID-19 outbreak in
India 2-3 weeks before routine surveillance [101]. Furthermore,
our review showed that the use of Google Trends in arbovirus
surveillance can facilitate operationalization of the surveillance
system (P=.03), with the highest means in the evaluation of
scores.

AI algorithms play a key role in rapidly predicting, detecting,
classifying, sorting, and diagnosing an infection. An AI-based
system is capable of accurately predicting changes in human
behavior, contributing to the detection of and response to
epidemic risks [102,103]. In this scoping review, one study [55]
used AI and IoT as an approach to collect data and predict future
situations and support preparedness and response.

Considering that we live in the big data era, and that society is
increasingly connected, the use of data available on the web has
been growing in several areas, although there is criticism
regarding their use. The use of open, nonstructured data to obtain
health outcomes requires not only the storage and processing
of large volumes of data but also methodological concerns
[104,105]. The balance regarding the quantity versus the quality
of data remains a challenge. Nevertheless, statistical methods
are being rapidly developed to meet public health demands
based on the analysis of large volumes of data. The combination
of data is a resource that expands the analysis capacity of a
system, and this area of epidemiology is increasingly leading
this scenario [105,106]. A strategy for expanding the use of
social media in the surveillance area would be the “data
science–based approach,” encompassing multidisciplinary
teams, and “app of techniques,” with machine learning
algorithms and natural language processing (NLP). In our
review, the use of big data was addressed in 6 studies
[28,30,37,43,51,93] that combined data from social media for
tracking cases, monitoring outbreaks or epidemics,
disseminating information to society, and identifying children
with incomplete immunization. Moreover, the use of big data
contributed to decision-making by health agencies and to
prevention and control measures concerning emerging and
reemerging infectious diseases.

The use of unofficial data from the internet and social media in
surveillance has some limitations, such as information overload
as well as uncertain quality and validity of data for surveillance
purposes. Therefore, more evidence is needed regarding the
efficacy and assessment of integrated systems. The phenomenon
of information overload could be mitigated by investing in
automated technology for monitoring health-related
internet-based data so that these strategies could be adopted
within the health surveillance system [105,107]. Leal et al [104]
argued that in Brazil, there is an immediate lack of technological
incorporation to reduce information time and improve the means
used in the surveillance routine, which harms the “information
for action” issue, the hallmark of public health surveillance.

Although searches by web sources are in continuous growth, it
is important to emphasize that digital inclusion is limited
worldwide [108]. The mitigation of biases related to the
representativeness digital vehicles data is a complex process.
Data about a certain disease may be underrepresented in Twitter
due to the lack of digital coverage in different locations [106].
Thus, an important point to consider is the inequality of internet
access to the population, which can limit the implementation
of digital health surveillance strategies [109].

The validation of data through statistical techniques and other
approaches is desirable to increase the reliability of the data and
their use in the decision-making process for action [12]. It is
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important to emphasize the relevance of regulation of the use
of data from digital tools to ensure the protection of the
participant, especially the ethical aspects involved, even if they
are available in the social networks [110].

Investment in innovation, technology, and digital tools in the
routine of health surveillance is essential, especially as we are
experiencing exponential technological advances and an increase
in public health demands [111]. However, there is a major
methodological challenge in validating information collected
from unofficial sources. Additionally, it is necessary to review
the regulations to support alternative and complementary
surveillance systems, as described.

Limitations
Our scoping review has some limitations related to the choice
of the arboviruses DENV, ZIKV, and CHIKV, due to their
clinical and epidemiological importance. Furthermore, there
are some limitations regarding the assessment of accessibility
and digital inclusion of the populations studied. However, these
issues were not found in the included studies, despite the search

including 6 databases and gray literature, without language and
period restrictions.

Conclusion
Our review outlined the use of several digital tools for arbovirus
surveillance, with emphasis on the use of apps and Twitter in
surveillance. These tools can contribute to surveillance in a
complementary way and strengthen the following aspects:
dissemination of information to society, rumor identification,
information opportunity, acceptability of users to participate in
the system, capacity to adapt to new epidemiological situations,
monitoring of outbreaks or epidemics, case detection and
tracking, operationalization of the system, and reduction in
costs.

In the contemporary scenario, it is no longer possible to ignore
the use of web data or social media as a complementary strategy
to health surveillance. However, it is important that efforts be
combined to develop new methods that can ensure the quality
of information and the adoption of systematic measures to
maintain the integrity and reliability of digital tools’ data,
considering ethical aspects.
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