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Abstract

Background: Adaptive systems serve to personalize interventions or training based on the user’s needs and performance. The
adaptation techniques rely on an underlying engine responsible for processing incoming data and generating tailored responses.
Adaptive virtual reality (VR) systems have proven to be efficient in data monitoring and manipulation, as well as in their ability
to transfer learning outcomes to the real world. In recent years, there has been significant interest in applying these systems to
improve deficits associated with autism spectrum disorder (ASD). This is driven by the heterogeneity of symptoms among the
population affected, highlighting the need for early customized interventions that target each individual’s specific symptom
configuration.

Objective: Recognizing these technology-driven therapeutic tools as efficient solutions, this systematic review aims to explore
the application of adaptive VR systems in interventions for young individuals with ASD.

Methods: An extensive search was conducted across 3 different databases—PubMed Central, Scopus, and Web of Science—to
identify relevant studies from approximately the past decade. Each author independently screened the included studies to assess
the risk of bias. Studies satisfying the following inclusion criteria were selected: (1) the experimental tasks were delivered via a
VR system, (2) system adaptation was automated, (3) the VR system was designed for intervention or training of ASD symptoms,
(4) participants’ ages ranged from 6 to 19 years, (5) the sample included at least 1 group with ASD, and (6) the adaptation strategy
was thoroughly explained. Relevant information extracted from the studies included the sample size and mean age, the study’s
objectives, the skill trained, the implemented device, the adaptive strategy used, the engine techniques, and the signal used to
adapt the systems.

Results: Overall, a total of 10 articles were included, involving 129 participants, 76% of whom had ASD. The studies included
level switching (7/10, 70%), adaptive feedback strategies (9/10, 90%), and weighing the choice between a machine learning (ML)
adaptive engine (3/10, 30%) and a non-ML adaptive engine (8/10, 80%). Adaptation signals ranged from explicit behavioral
indicators (6/10, 60%), such as task performance, to implicit biosignals, such as motor movements, eye gaze, speech, and peripheral
physiological responses (7/10, 70%).

Conclusions: The findings reveal promising trends in the field, suggesting that automated VR systems leveraging real-time
progression level switching and verbal feedback driven by non-ML techniques using explicit or, better yet, implicit signal
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processing have the potential to enhance interventions for young individuals with ASD. The limitations discussed mainly stem
from the fact that no technological or automated tools were used to handle data, potentially introducing bias due to human error.

(J Med Internet Res 2024;26:e57093) doi: 10.2196/57093
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Introduction

Background
Recent research on assessment, training, and intervention applied
to technologies has focused on creating complex adaptive
systems [1-5]. According to Almirall et al [6], an adaptive
intervention is characterized by a set of clinical decision rules
that offer guidance on when and how to adjust the dosage and
nature of the treatment, considering specific measures. In this
way, adaptivity can be defined as the system’s capability to
alter its actions in response to the preferences and needs of the
user [4,7]. Moreover, adaptive systems have the potential to
enhance the individualized training experience and prevent
issues such as overtraining, undertraining, cognitive overload,
frustration, and boredom [5]. This differs from the nonadaptive
approach, where the same settings are used throughout training,
or adjustment is based on settings that are unrelated to the
participant’s performance [8].

Technologies, such as robots, mobile phones, and screen-based
systems, provide controlled and engaging environments that
facilitate adaptive training and support the development of
multiple interaction abilities in a secure and predictable manner
[9]. The conventional computer is the predominant hardware
choice for adaptive and personalized systems [3,4] because
adaptive systems have been built upon existing development
tools and infrastructure designed for traditional computers and
devices. This approach aims to streamline the development
process, ultimately reducing the human effort and time required
for implementation. In contrast with traditional computer-based
therapies, virtual reality (VR) excels in promoting ecological
validity by delivering immersive, lifelike experiences, thus
creating a strong sense of presence and facilitating the transfer
of learning outcomes to real-world situations [10-13]. VR is
intended as a computer-generated simulation of an environment
that allows users to interact with and experience an artificial
world as if it were real. VR aims to create a sense of presence,
where users feel as though they are physically present within
the virtual environment, enabling them to explore the simulated
space, manipulate objects, and engage with the surroundings in
a lifelike manner [12]. Indeed, VR technology can achieve
varying degrees of immersion, categorized into 3 levels:
nonimmersive, semi-immersive, and fully immersive (depending
on the capabilities of the device being used). VR offers various
avenues for adaptation, including adjusting the complexity of
content, tailoring evaluations, and modifying autonomous virtual
agents [14]. Another form of adaptation could involve
integrating system input, such as using voice commands and
haptic feedback. Moreover, VR not only enables the recording
of real-time information but also facilitates the integration of
data collected from various devices, each dedicated to

monitoring distinct psychophysiological activities [15]. Several
studies have yielded significant training findings on
implementing adaptive VR interfaces. Among them are
interventions related to mental health or neuropsychiatric
conditions, such as emotional and affective training [16],
treatment of phobias [17], management of pathological stress
[18], and therapy for posttraumatic stress disorder [19].

In recent decades, research has focused on using VR in the
assessment, treatment, and training of neurodevelopmental
disorders such as autism spectrum disorder (ASD) [13,20-25].
Studies increasingly focus on this disease due to the escalating
worldwide incidence and the high demand for early interventions
[26]. Moreover, extensive research has demonstrated that
training with VR can lead to notable enhancements in various
domains among the young population with ASD [14,21,23-25].
ASD is a neurodevelopmental condition characterized by
impairments in social communication and the presence of
restrictive and repetitive behaviors [27]. One distinguishing
aspect of ASD is its spectrum nature, indicating significant
variability in symptom severity among the individuals affected.
This heterogeneity results in clinical phenotypes that differ
substantially from one person to another while sharing common
underlying features. The heterogeneity in symptom severity
observed in ASD requires the implementation of personalized
treatment approaches that target each individual’s specific
symptom configuration. By designing early interventions
tailored to each child’s characteristics, it becomes possible to
provide targeted training and improvements in deficits
commonly associated with ASD [14,28]. In this connection,
adaptive VR technologies seem to have the potential to pave
the path for a new generation of highly efficient
technology-driven therapeutic tools for the young population
with ASD.

Following this approach, a variety of ASD adaptive technologies
have been proposed. Among them, Bian et al [29] presented a
VR training system for improving driving skills that
autonomously adapted its difficulty levels according to
participants’ engagement and performance metrics. Another
adaptive system was applied to a VR job interview training
platform, which dynamically adjusted the conversation
according to users’ responses and stress levels [30]. Research
has demonstrated that using such a solution for rehabilitation
yields favorable outcomes in enhancing certain abilities of
children with ASD; specifically, the VR system was able to
tailor the intervention in accordance with the user’s actions [31].

Given the evidence demonstrating the effectiveness of using
adaptive VR systems to address deficits associated with ASD
and the showcased advantages of early intervention, there arises
a need to examine the technical aspects of system adaptation
and the complexities of handling user data. To do this, it is
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crucial to dissect the components of an adaptive system
generally used to train or treat ASD symptoms. The following
taxonomy will facilitate the reading of this work.

Adaptive Strategy: Level Switching, Feedback, and
Time
A system can be adapted through different strategies, such as
level-switching techniques or feedback. Level switching follows
a logic of level difficulty, and the choice of switching can be
based on progression or regression techniques. The progression
technique can be considered the core training principle because
it is necessary to increase the difficulty level to continue training
certain skills, improve them, and prevent the occurrence of
learning effects. Therefore, in this scenario, training is adapted
through a gradual increase in difficulty level based on the
individual’s abilities. Unlike progression, the regression
technique allows for a finer, more flexible, and more nuanced
approach, adapting the difficulty level according to the arising
needs. Rooted in traditional therapy practices, this strategy
allows for dynamic adjustments that increase or decrease the
difficulty level based on the observed performance of the
individual [8]. This would ensure that the individual is able to
perform satisfactorily at an easier level before increasing the
difficulty level, allowing more time to learn the content [8].

Conversely, feedback consists of a system response transmitted
visually, audibly, verbally, or haptically to enhance user
understanding. Both strategies can occur in 2 temporal
dimensions: real time or deferred time. Real-time adaptation
occurs based on real-time measures during training, while
deferred adaptation happens before the training or session
begins, and it depends on the trainee’s prior knowledge, level,
preferences, or experience [5]. Underlying these, an engine is
responsible for processing the information it receives (refer to
the Signals: Explicit and Implicit subsection) to transmit an ad
hoc response regarding level switching and feedback. The role
of the engine can be performed either by a professional, resulting
in person-automatized technologies; or directly by the system
itself, resulting in system-automatized technologies.

The Adaptive Engine: Person-Automatized
Technologies and System-Automatized Technologies
Within the engine’s framework, it is defined as person
automatized when a professional is in charge of analyzing the
engine input signals and making decisions about the type of
adaptation needed according to each case. Often, clinicians
adapt the interaction by observing the user without playing any
active role in the virtual environment [28]. Alternatively, users
may interact with a virtual environment where the main avatars
are controlled by real people who adapt the system responses
according to the user [32,33]. Although this is a valid choice
for adaptation, the limitation lies in the need for technical
expertise to effectively use these systems [32]. In
person-automatized systems, a professional makes clinical
decisions by integrating behavioral and psychophysiological
user data to adapt the system. However, this could result in time
and bias problems. Conversely, advanced systems that automate
clinical integrations through multicomputer interactions stand
out as a promising choice [32].

A cost-effective and streamlined approach involves using a
system-automatized adaptive engine [5]. In this configuration,
the system autonomously processes input signals and directly
makes decisions to tailor the intervention. Thereby, together
with reducing the signal processing time and adaptation decision
delays, there is a lower risk of errors or attention problems for
professionals [9,34]. In this context, non–machine learning
(ML) techniques can be strategically used to adapt the engine.
These techniques rely upon explicitly defined rules or heuristics
to guide decision-making and system adaptation. These rules
are typically designed by professionals and are based on a set
of predetermined conditions and actions. The process involves
analyzing input signals and making adaptive decisions based
on the application of rule-based methods, handcrafted
algorithms, or expert knowledge [35,36]. Engines can also be
designed through ML techniques to make adaptive decisions
based on learned patterns from data rather than rigid explicit
rules. ML models are trained on stored data to make predictions
or decisions. These systems then refine their knowledge through
data-driven methodologies, automated learning processes, and
continuous improvement mechanisms, enabling them to learn
and make strategic adaptive decisions autonomously [29,30].

In recent years, the focus has been moving increasingly toward
system-automatized technologies that use real-time adaptive
techniques [34,37]. Indeed, these adaptive systems are capable
of responding in real time to behaviors with accuracy beyond
human capabilities [34]. Real-time responses seem to confer
advantages in creating effective and realistic interventions
[35,38]. To enhance user experience, comfort, or task efficiency,
systems may apply ML techniques to recognize patterns in the
data, allowing them to make adaptive decisions in real time
[29,39]. This is often achieved by using sensors and algorithms
to interpret and analyze the data effectively by leveraging the
input signals of the system.

Signals: Explicit and Implicit
Concerning what has been reported about adaptive strategies
and their features (level switching, feedback, time, and engine),
it is now important to explain what kind of information is
processed by the engine to make an adaptive decision. A signal
refers to user information or data used as input to the engine
that guides the adaptive decision-making. The adaptation process
occurs through the recording, analyzing, and interpreting of the
collected signals to make informed decisions about how the
system should adjust its behavior, settings, or functionality. On
the basis of the available information, the underlying goal is to
improve the system’s performance, efficiency, efficacy, and
user experience. These signals can be explicit or implicit in
nature, and they play a crucial role in enabling the system to
adapt and respond effectively to changing conditions. Only
through the analysis of the user’s signals can an intervention
be adapted according to the user’s needs. The signal is
considered explicit when it corresponds to visible behaviors,
such as verbal responses or task performance. The latter
typically involves quantifiable metrics of how effectively a user
is performing a specific task, with the purpose of informing the
system about the quality or efficiency of the task execution
[40,41]. By contrast, the implicit signal (or biosignal) refers to
data or information inputs that are not explicitly provided by a
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user but are inferred or recorded by the system. These implicit
biosignals often include nonverbal behaviors such as eye gaze,
motor movements, speech patterns, and peripheral physiological
responses [30,36,42,43]. Implicit biosignals are valuable because
they can uncover insights not directly visible from the user’s
overt actions.

Moreover, real-time processing of behavioral, biological, and
psychological information is used to continuously assess the
user’s state and adapt the human-machine interface. Adaptive
VR systems establish robust communication with users,
detecting their current state and adjusting tasks to support
specific behavioral goals.

Aim of the Study
In accordance with the aforementioned points, in recent years,
the use of adaptive VR systems as a therapeutic tool for
individuals with ASD has garnered increasing attention
[20,23-25]. Due to the diverse nature of ASD, which manifests
differently in individuals and evolves over the lifespan,
intervention requirements differ significantly between pediatric
and adult populations. Acknowledging the substantial evidence
endorsing the advantages of early intervention [44], this
systematic review concentrates specifically on the pediatric
population affected by ASD. Therefore, considering the
relevance of using adaptive systems in ASD to improve the
customization of treatment based on young individuals’
characteristics and their progress, this systematic review
primarily aims to comprehensively investigate and analyze the
existing literature on the application of adaptive VR systems in
the context of interventions for children with ASD. Specifically,
the goal is to discuss those studies that have implemented
adaptive VR systems, analyzing the study objectives, the
methodologies chosen for the functioning of the adaptive engine,
and the types of signals implemented. This review focuses only
on system-automatized adaptive engines due to their
convenience compared with the person-automatized ones [5,32].
Therefore, the methodology investigated refers to level
switching, feedback, time, the autonomous adaptation of system
engines, and the signals processed. In addition, this review aims
to identify the current body of research on adaptive VR systems
used in interventions for children with ASD, highlight
methodological considerations, and propose directions for future
research to guide the development and refinement of adaptive
VR interventions for young individuals on the autism spectrum.

To our knowledge, there are no systematic reviews or
meta-analyses on this topic. The only similar work is the study
by Alcañiz et al [9], which, however, did not use a systematic
approach for the comprehensive screening and review of existing
literature. Furthermore, it not only considered those adaptive
interventions in VR but followed a broader gaze aimed at any
type of technology.

Methods

Approach
The literature search adhered to the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines [45], ensuring a rigorous search process for this
systematic review. The PRISMA checklist is available in
Multimedia Appendix 1.

Literature Search Strategy
A comprehensive search was conducted on March 13, 2024, to
identify relevant studies in 3 different databases: PubMed
Central, Scopus, and Web of Science. These databases were
searched using a combination of keywords and Medical Subject
Headings terms related to the research question; in addition, the
literature was searched for peer-reviewed articles and conference
articles in English, with full texts available, published between
January 1, 2013, and March 13, 2024. Considering the recent
increase of interest in the field and the continual evolution of
hardware and software, a literature review that includes sources
published in approximately the past decade would provide an
up-to-date overview of the state of the art, ensuring the inclusion
of the most advanced technologies and the latest methodologies
[23,46,47]. The first author used the following Boolean string
to search the databases: (“virtual” OR “VR”) AND (“adaptive”
OR “personalized” OR “customized” OR “individualized” OR
“tailored”) AND (“training” OR “intervention” OR “therapy”
OR “clinical*”) AND (“toddler” OR “children” OR “infant”
OR “teen*” OR “young adult*”) AND (“autistic spectrum
disorder” OR “autism” OR “ASD”). Studies that fulfilled the
following inclusion criteria were selected: (1) the experimental
tasks were presented through a VR system, (2) the adaptation
was system automatized, (3) the VR system was designed for
intervention or training of ASD symptoms, (4) participants’
ages varied between 6 and 19 years, (5) the sample included at
least 1 group with ASD, and (6) the adaptive strategy was
comprehensively explicative. Accordingly, the following criteria
were used to exclude studies from this systematic review: (1)
studies not using a VR system for experimental tasks, (2)
absence of automated adaptation mechanisms within the VR
system, (3) studies whose objective was not specifically aimed
at intervention or training of ASD symptoms, (4) studies
involving participants outside the age range of 6 to 19 years or
absence of specified age, (5) absence of at least 1 group with
ASD in the study sample, and (6) studies failing to provide a
sufficient or clear explanation of the adaptive strategy used.
Applying these criteria aimed to ensure the selection of studies
meeting stringent standards for relevance to the review
objectives and rigor in methodology.

The selection of studies was divided into 6 stages, as outlined
in Textbox 1.
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Textbox 1. Study selection stages.

Stages involved in the selection of studies

• Stage 1: the first author conducted the literature search of the databases and manually removed duplicates. The data were recorded in a template
to ensure consistency in the data collection process and organized for subsequent analysis. Following the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) recommendations to avoid bias and reduce errors, the 5 authors operated independently from the
second stage onward.

• Stage 2: the titles and abstracts of the retrieved studies were reviewed to identify potentially eligible ones. Reasons for excluding studies were
documented.

• Stage 3: a full-text assessment based on predefined inclusion and exclusion criteria was performed. Any discrepancies between the reviewers
were resolved through discussion and consensus. Reasons for excluding studies were documented.

• Stage 4: the quality of the selected studies was assessed using the JBI critical appraisal tool [48] to identify and evaluate the risk of bias. Each
article was evaluated according to standardized criteria, such as study design, the robustness of the findings, and potential sources of bias.

• Stage 5: relevant data from each included study were systematically collected using a predefined data extraction form. Relevant information
categories extracted from the studies were chosen and defined by the 5 authors following the aim of this systematic review.

• Stage 6: the extracted data were combined and analyzed to provide an overall summary of the evidence. The data synthesis involved a narrative
synthesis that was tabulated to facilitate the further interpretation of the findings.

No technological or automated tool was used to manage the
collected records. Relevant information extracted from the
studies included the sample size and mean age, the objectives
of the study, the skill trained, the implemented device, the
adaptive strategy used, the engine chosen, and the signal used
to adapt the systems. The adaptive strategy findings are
classified by the mode used to adapt the intervention, such as
through level switching (progression or regression) and
feedback, the time when adaptation occurs (real time or deferred
time), and the engine executing the adaptation (ML based or
non-ML based). Feedback can be verbal, auditive, visual, or
haptic. The signals reported in the results refer only to those
feeding the adaptive engine. Signals recorded for subsequent
analyses that did not refer to the adaptive strategy were
excluded.

Ethical Considerations
This study was deemed exempt by the Polytechnic University
of Valencia.

Results

Review Flow
The study selection process was documented using a PRISMA
flow diagram (Figure 1). The search strategy we used yielded
163 records (PubMed Central: n=67, 41.1%; Scopus: n=70,
42.9%; Web of Science: n=26, 16%). From the 163 articles, 26
(16%) duplicates were removed, leaving 137 (84%) unique
articles. Of these 137 articles, 113 (82.5%) were excluded based
on title and abstract screening. Of the remaining 24 articles, 14
(58%) were excluded after a full-text screening, which was
performed to ensure that the studies met the inclusion criteria.
Some of the studies (9/14, 64%) initially seemed to meet the
inclusion criteria; however, subsequent analysis revealed
discrepancies leading to their exclusion; for instance, some of
the studies (3/9, 33% 9/14, 64%%) were excluded due to the
implementation of person-automatized systems rather than
system-automatized processes as required [32,33], while some
of the articles (6/9, 67%) were excluded because they lacked
an experimental design [49]. Finally, 10 (6.1%) of the initially
identified 163 articles satisfied the inclusion criteria and were
thus included in the review. The data collected were analyzed
following a systematic approach used to identify and synthesize
findings.
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Figure 1. Flow diagram of the study selection process.

Characteristics of the Selected Studies
The selected studies are presented in Table 1 in alphabetical
order. The 10 studies involved 129 participants, of whom 95
(73.6%) were children with ASD. The mean ages of the
participants ranged from 8 to 16 years (mean 12.54, SD 2.12
y). With regard to study objectives, of the 10 studies, 6 (60%)
were usability studies [36,38,40,42,50,51], 3 (30%) had a further
objective aimed at treatment [35,37,41], and 1 (10%) aimed
merely at treatment. All included studies designed training
through serious games, thus having the purpose of teaching or
educating through a game. Most of the studies (7/10, 70%)
focused on training social skills [35,36,40,42,43,50,51], while
20% (2/10) concentrated on motor skills [37,38], and 10% (1/10)
targeted executive functions [41]. The devices used were desktop
computers (8/10, 80%) [35,36,38,40-43,50], a head-mounted
display (1/10, 10%) [37], and a tablet computer (1/10, 10%)
[51].

Regarding the adaptive strategy, level switching was based
either on a progressive strategy (4/10, 40%) [37,41,50,51] or a

regressive strategy (3/10, 30%) [36,40,42]. Moreover, the
systems provided adaptive feedback through the use of verbal
(8/10, 80%) [36,38,40-43,50,51], audio (4/10, 40%)
[38,41,50,51], visual (3/10, 30%) [35,38,51], and haptic (1/10,
10%) [38] cues. A real-time adaptive strategy was used in most
of the studies (9/10, 90%) [35-38,40-42,50,51], while 20%
(2/10) of the studies used a deferred adaptive strategy [41,43].
Finally, regarding the adaptive engine used, either a
non-ML–based method was implemented (8/10, 80%)
[35,36,38,40-43,50,51], or an ML-based method was applied
(3/10, 30%) [37,51]. The number of studies counted does not
equal the total number of studies because some of the studies
(2/10, 20%) used different adaptive strategies for level switching
and feedback, while others (8/10, 80%) used only one of them.

The studies adapted their system through an explicit behavioral
signal, such as task performance (6/10, 60%) [36,40-42,50,51];
or an implicit biosignal, such as motor movements (3/10, 30%)
[37,38,51], eye gaze (2/10, 20%) [35,42], speech (1/10, 10%)
[43], and peripheral physiological responses (1/10, 10%) [36].
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Table 1. Characteristics of the selected studies.

Signal usedAdaptive strategyDevice
used

Training
focus

Study ob-
jective

Sample size (n);
age (years), mean
(SD)

Study, year

EngineTimeFeedbackLevel switchingTDbASDa

Eye gazeNon-MLd

based

Real timeVisual—cDesktop
computer

Social
skills

Treatment,
usability

6; 15.20
(1.68)

6; 15.77
(1.87)

Bekele et
al [35],
2016

Motor move-
ments

ML basedReal time—ProgressionHMDeMotor
skills

Treatment,
usability

—; —10; 14.1
(2.6)

Hocking et
al [37],
2022

Task perfor-
mance

Non-ML
based

Real timeAudio,
verbal

ProgressionDesktop
computer

Social
skills

Usability20; 8.7
(2.3)

20; 8.7
(2.2)

Jyoti and
Lahiri [50],
2020

Task perfor-
mance, mo-
tor move-
ments

Level
switching:
non-ML
based; feed-
back: ML
based

Real timeAudio, vi-
sual, ver-
bal

ProgressionTablet
computer

Social
skills

Usability—; —20; 8.61
(2.03)

Jyoti and
Lahiri [51],
2022

Task perfor-
mance, pe-
ripheral
physiologi-
cal responses

Non-ML
based

Real timeVerbalRegressionDesktop
computer

Social
skills

Usability—; —9; 14.10
(2.6)

Kuriakose
and Lahiri
[36], 2016

Task perfor-
mance, eye
gaze

Non-ML
based

Real timeVerbalRegressionDesktop
computer

Social
skills

Usability—; —8; 16.00
(2.08)

Lahiri et al
[42], 2013

Speech pat-
terns

ML basedDeferred
time

Verbal—Desktop
computer

Social
skills

Treatment—; —4; 12.25
(0.50)

Moon and
Ke [43],
2023

Task perfor-
mance

Non-ML
based

Real timeVerbalRegressionDesktop
computer

Social
skills

Usability2; 11.9
(2.7)

2; 16.25
(3.40)

Pradeep
Raj and
Lahiri [40],
2016

Task perfor-
mance

Non-ML
based

Level
switching:
deferred
time; feed-
back: real
time

Audio,
verbal

ProgressionDesktop
computer

Executive
functions

Treatment,
usability

—; —10; 11.9
(2.7)

Vallefuoco
et al [41],
2022

Motor move-
ments

Non-ML
based

Real timeAudio, vi-
sual; ver-
bal; hap-
tic

—Desktop
computer

Motor
skills

Usability6; 10.73
(1.91)

6; 9.66
(1.36)

Zhao et al
[38], 2018

aASD: autism spectrum disorder.
bTD: typical development.
cNot applicable.
dML: machine learning.
eHMD: head-mounted display.

Discussion

Main Findings
The main findings indicate a trend of balanced use among
adaptive strategies such as level switching (with slight
preferences toward progression techniques) and feedback (with
a preference for verbal mode). Furthermore, a widespread use

of non-ML techniques was found in engines that used explicit
and implicit signals, with a slight tendency toward the latter.
Finally, the results showed significant advantages for real-time
adaptations.

Overall, the mean age range of the participants in the selected
studies (8-16 y) suggests a tendency to prefer a sample
composed of adolescents rather than young children. Extended
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studies [44,52] highlight the benefits of early intervention
(particularly for children younger than adolescents) in achieving
significant improvements by targeting the fundamental
behavioral and skill deficits associated with ASD. Indeed,
younger children tend to make better progress in their treatment,
even with lower-intensity programs, than older children [44].
Considering the theoretical foundations and the benefits that
early intervention brings to children with ASD, future studies
involving adaptive VR systems should consider a younger age
sample, as reported in other research fields on ASD treatment,
such as interventions using robots [53-55]. In this context, when
designing an early intervention, it is crucial to consider pediatric
recommendations advocating for a maximum screen time of 1
hour per day for children aged 2 to 5 years because this
contributes to establishing a high-quality program [56].
Consequently, the implementation of any technological tools
must be carefully crafted and controlled.

Furthermore, concerning study objectives, the findings indicated
that most of the studies (9/10, 90%) primarily focused on
usability [35-38,40-42,50,51]. This confirms the relatively recent
emergence of research in applying adaptive VR systems in ASD
interventions [20,23-25]. Indeed, an emerging field must first
validate new methods and technologies through usability studies.
Moreover, a few of the studies (3/10, 30%) had another clinical
goal of validating the designed treatment, which is valuable
considering that these are innovative and previously untested
adaptive systems [35,37,41]. In addition, the prevalence of
training targeting social skills was observed in a majority of the
studies (7/10, 70%) [35,36,40,42,43,50,51], aligning with a
well-established focus in ASD intervention literature that
emphasizes the importance of addressing the social challenges
faced by individuals with ASD [57,58].

Another prominent trend observed relates to the device
deployed. Notably, among the selected studies, there was a
consistent preference for desktop computers and similar devices,
such as tablet computers [35,36,38,40-43,50,51], which is
consistent with the broader literature on adaptive VR training
[5]. The prominent decision to opt for nonimmersive VR devices
showcase a practical choice grounded in considerations of
accessibility, affordability, and cost-effectiveness, as well as
the avoidance of potential discomfort [36,42,50,51,59].
Nevertheless, it is likely that nonimmersive VR systems were
chosen because evidence suggests that they could also support
individuals with ASD, particularly in addressing comorbidities
such as attention-deficit/hyperactivity disorder and anxiety
disorders [60,61]. Further research targeting the impact of
nonimmersive VR systems on comorbid conditions with ASD
would be valuable for elucidating their full potential and
applications.

The following subsections are organized as follows: the
Adaptive Strategy: Regression, Multimodal, and Real-Time
Adaptation subsection delves into findings regarding the
adaptive strategy in terms of mode and time; the next subsection,
The Adaptive Engine: Non-ML and ML Techniques, delineates
the techniques chosen to adapt the engine used; and, finally, the
Signals: Embodied Adaptation subsection presents a detailed
discussion about the signals involved. Each subsection includes

a segment aimed to highlight methodological considerations
and guide future research development.

Adaptive Strategy: Regression, Multimodal, and
Real-Time Adaptation
The examination of the adaptive systems in the selected studies
reveals a critical interplay between level switching and feedback
strategies, both essential components for addressing the
challenges associated with individualized training. Nevertheless,
not all studies implemented both adaptive strategies in their
intervention. Considering the level-switching strategy, in studies
using progression-based adaptations [37,41,50,51], the difficulty
level was automatically increased after sufficient performance,
while the same level was repeated after insufficient performance;
for example, Jyoti and Lahiri [50] used a performance threshold
score of ≥70% as the criterion for increasing the difficulty level.
In this application, the performance score was calculated based
on the accuracy in recognizing regions of the virtual character’s
face within the maximum response time allowed [50]. In the
study by Hocking et al [37], the performance threshold score
was raised to ≥75% to continuously update the challenge.
However, performance was quantified by calculating the
efficiency, synchrony, and symmetry of the movement
performed [37]. Contrastingly, studies that adopted the
regression technique [36,40,42] increased the level of difficulty
after sufficient performance, while the level remained the same
or decreased in the case of semi-insufficient or insufficient
performance, respectively. Specifically, Kuriakose and Lahiri
[36] designed rules to determine whether the difficulty level
should increase (performance score ≥70% and anxiety level <6
units or performance score <70% and anxiety level <6 units),
remain the same (performance score ≥70% and anxiety level
≥6 units or performance score <70% and anxiety level <6 units),
or decrease (performance score <70% and anxiety level ≥6 units
or performance score ≥70% and anxiety level ≥6 units) based
on the performance score along with the predicted anxiety level.
In the study conducted by Pradeep Raj and Lahiri [40],
performance was assessed on cognitive and emotional tasks,
with adjustments made solely based on the possibility of
increasing the difficulty level when performance was sufficient
(≥70%) and decreasing it when performance was not sufficient.

In the training context, feedback plays a pivotal role in guiding
and enlightening the system’s user regarding their performance,
providing responses to both explicit and implicit behaviors. Of
the 10 selected studies, 9 (90%) implemented at least 1 feedback
mode in their system; the sole exception was the study by
Hocking et al [37]. The decision to use one mode over the other
seems contingent upon the specific training goals and the nature
of the skills being developed. The findings reveal that a majority
of the selected studies (8/10, 80%) adopted the verbal feedback
mode [36,38,40-43,50,51]. This preference can be attributed to
the fact that listening to audio messages or reading written
communication allows complex information to be transmitted.
Moreover, one-fourth of the studies (4/10, 40%) opted for a
combination of feedback modes [38,41,50,51]. In fact, it is well
known that multimodal communication is more likely to be
received effectively and has a greater informational effect [62];
for example, in the study by Jyoti and Lahiri [51], feedback was
provided at the end of each task based on criteria governed by
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performance and face orientation. The feedback included verbal,
visual (ie, the number of stars), and auditory (ie, clapping hands)
components, delivered with positive or negative connotations
to reinforce behavior. The exploration of multimodal feedback,
as demonstrated by Zhao et al [38], introduces a compelling
dimension to the discussion by successfully implementing
complex multimodal feedback. The incorporation of 4 different
feedback modes—verbal (ie, written message), auditory (ie,
crash audio and achievement jingle), visual (ie, reward or
warning images), and haptic (ie, friction and spring
force)—represents a sophisticated approach to enhancing user
engagement [38]. The synergistic effect of multiple sensory
modalities, as supported by previous literature [63], suggests
that integrating diverse feedback elements can have a cumulative
positive impact on the user’s learning experience.

This review also delves into the temporal considerations of
implementing adaptive strategies. These strategies can be
transmitted from the engine to produce an ad hoc adaptive
decision either during the session (real time) or between sessions
(deferred time). The review’s results indicated a preference for
adapting the level or the feedback in real time rather than
deferred time [35-38,40-42,50,51]. Real-time adaptation seems
promising because it aligns with the potential to enhance the
training experience by tailoring content in response to the user’s
performance [5]; for instance, Bekele et al [35] designed a
stimuli occlusion paradigm in which the stimuli were revealed
gradually based on the eye gaze performance of the participants:
the more attentively participants turned their gaze toward the
stimulus, the clearer and sharper it became—providing visual
feedback. A specific case in the study by Vallefuoco et al [41]
involved feedback provided in real time based on the accuracy
of participants’ actions; here, the difficulty level of the first
session was chosen based on the Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition, severity levels of
ASD symptoms [27], and the difficulty level seemed to
progressively increase in line with the game levels and symptom
severity. In addition to the duality of real-time (feedback) and
deferred (level switching) adaptivity of the 2 strategies, there
was further duality inherent in level switching: the initial level
was set by the therapist and then automated by the system.
Indeed, this study was included in this review because, at first,
the system was person automatized and then became system
automatized (refer to the next subsection, The Adaptive Engine:
Non-ML and ML Techniques), highlighting the advantages of
cost-effectiveness and streamlined implementation.

Given these premises, it seems advantageous to introduce at
least 1 strategy in real time when designing an adaptive
automatized system. Training that uses a scaffolding strategy,
which recognizes the need to adjust the level switching up or
down as needed (regression technique), has consistently
demonstrated better learning outcomes [8]. Similarly, feedback
is considered a scaffolding strategy useful for adapting intent
and capabilities during the training by promoting critical
thinking [64]. Considering the findings, the power of verbal
and multimodal feedback [62], and the benefits of in-session
administration of the 2 adaptive strategies [5,64], future studies
should include progression level switching and real-time verbal
feedback in their adaptive interventions. Future research should

also carefully consider the interplay between these adaptive
strategies and their potential synergistic effects on training
efficacy. Practitioners and policy makers involved in designing
training interventions should recognize the complementary
nature of these strategies and strive to incorporate them
synergistically. In conclusion, the comprehensive analysis of
adaptive strategies sheds light on their intricate dynamics within
individualized training environments. By incorporating these
insights into practice frameworks, future researchers can work
toward enhancing the effectiveness, accessibility, and scalability
of adaptive training interventions across various domains.

The Adaptive Engine: Non-ML and ML Techniques
A system-automatized adaptive engine can independently
analyze signals and decide when to apply level switching or
feedback to customize the intervention for each individual. In
this context, the deployment of an adaptive engine in the
reviewed studies confirms the dichotomy in the techniques used
for decision-making: non-ML and ML. A significant majority
of the reviewed studies (8/10, 80%) lean toward non-ML
techniques for adaptive engine design [35,36,38,40-42,50,51].
This approach involves establishing predefined rules, often
binary in nature, to determine the appropriateness of the
participant’s performance. Decisions are made through
established cutoffs to determine whether the performance is
sufficient in terms of duration, successes, gazed area, accurate
movements, and physiological activity levels; for instance,
Kuriakose and Lahiri [36] designed an adaptive engine based
on the composite effect of physiological index levels (high or
low) through the fuzzy logic classification method and the
quality of task performance (adequate or inadequate). Similarly,
Lahiri et al [42] adapted their VR system through complex fixed
rules that blended information from viewing patterns (fixation
duration), eye physiology (pupil diameter and blink rate), and
task performance. The inflexibility of non-ML techniques is
evident in their reliance on a priori knowledge and fixed rules.
While effective for binary decisions, the limitation lies in their
inability to adapt to more intricate data nuances not easily
discernible by human observation. In contrast to non-ML
techniques, the primary goal of ML techniques is to predict
future observations as accurately as possible and increase
efficiency and reproducibility [65,66]. Despite the advantages
of adopting ML techniques, a limited number of the selected
studies (3/10, 30%) opted for ML techniques to drive adaptive
engine decisions [37,43,51]. The use of artificial neural networks
by Hocking et al [37] exemplifies the capacity of ML techniques
to objectively quantify kinematic features by tracking the
biomechanical changes and adapting the challenge level in real
time. Specifically, the authors applied a normalized exponential
transformation translated into a discrete probability assignment
over the potential labels and trained this model until no further
enhancements were observed [37]. Similarly, Moon and Ke
[43] analyzed participants’ speech and used a supervised ML
method to categorize the probability values into threshold
conditions (from high to low emotional state). Feedback was
then tailored based on the individual’s threshold condition. The
novel integration of ML and non-ML approaches in a single
study, as seen in that by Jyoti and Lahiri [51], showcases the
potential for a hybrid model. While the task performance level
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switching remained non-ML, the use of ML-based feedback
signaled a nuanced approach to harnessing the strengths of both
techniques [51]. The ML-based feedback relied on image
processing using a Haar feature–based cascade frontal face
classifier [67] to calculate the percentage of the user’s face
(gross motor movement) oriented toward the area of interest.
However, the method proposed by Viola and Jones [67] is now
considered obsolete because it has been replaced with deep
learning methods, such as convolutional neural networks
[68,69].

Considering the factors discussed, the distinct characteristics
of non-ML and ML techniques raise critical considerations for
their application in adaptive systems. Non-ML techniques,
which are reliant on predetermined rules, demonstrate efficacy
in scenarios where binary decision-making aligns with
straightforward performance metrics. However, their limited
ability to discern subtle patterns in data necessitates caution
when confronted with complex and dynamic user interactions
that are usually not detectable by humans. Conversely, ML
techniques, driven by continuous objective analysis of data sets
and pattern recognition, hold promise in offering adaptive
systems that improve automatically over time. Considering a
growing emphasis on adaptive systems based on ML [5], the
ability to replicate outcomes and accurately predict future
observations, as highlighted by Orrù et al [65], positions ML
as a potent tool to provide more refined and personalized
interventions. Future research should carefully weigh the
trade-offs between non-ML and ML approaches. This review
advocates for increased adoption of ML techniques in future
research aiming to enhance ASD interventions.

However, it is notable that among the selected studies that used
ML techniques, the samples ranged from 4 to 20 participants
[37,43,51]. In ML models, predictions are made by using
versatile learning algorithms to find patterns in typically vast
data sets; this is why extensive data sets are necessary to yield
more accurate algorithm outcomes [65,66]. Acknowledging
that larger data sets enhance the generalization performance of
ML models [66], the limited sample sizes in these studies raise
concerns about the robustness of the ML-based adaptive engines.
Future research should prioritize expanding sample sizes to
bolster the reliability and effectiveness of ML-driven
interventions.

Among other advantages, the adaptive engine, functioning as
the autonomous core of the system, exhibits the capability to
make real-time decisions. Regardless of the chosen technique
(non-ML or ML), an overarching theme in the reviewed studies
is the pervasive use of real-time adaptive systems. This aligns
with the growing interest in adaptive systems that use ML
techniques to recognize patterns in data, enabling real-time
responses and an enhanced user experience [34,39]. This is
frequently accomplished using sensors and algorithms for
effective data interpretation and analysis, harnessing the input
signals to optimize the system’s performance. It is suggested
to implement this approach in future studies to enhance the
system’s ability to provide meaningful responses based on the
gathered dynamic user inputs. Policy makers could support
initiatives aimed at advancing sensor technology and algorithm
development to facilitate real-time data interpretation and

analysis in adaptive systems, which could enhance their
effectiveness in clinical settings.

In conclusion, the architectural choices for adaptive engines
play a pivotal role in shaping intervention efficacy. The
synthesis of real-time adaptability and a preference toward
adopting non-ML techniques as well as a consideration of the
nuances of sample size in ML-based approaches should guide
future endeavors in developing adaptive systems that seamlessly
integrate cutting-edge technologies to enhance user experiences
in ASD interventions.

Signals: Embodied Adaptation
Given what has been discussed with respect to the adaptive
strategies governed by the engine and the techniques used by
the engine, it is pertinent to address what drives and prompts
these adaptation decisions: signals.

The results of this review showed a similar reliance on explicit
and implicit signals, with a slight preference for the latter, in
shaping ASD training adaptations. In particular, a third of the
studies (3/10, 30%) [40,41,50] exclusively used explicit signals,
focusing on behavioral data such as task performance metrics
(ie, reaction time and success rates). Another set of studies (3/10,
30%) [36,42,51] adopted a more integrated approach, combining
explicit signals (task performance) with implicit biosignals such
as gross motor movements, peripheral physiological responses,
and eye gaze. Jyoti and Lahiri [50,51] highlighted the
importance of adapting training through an implicit measure
complementary to performance data. Indeed, in their latest study
[51], the authors introduced informative data on the duration
of face orientation toward the stimulus presented to infer
whether the participant was attending to the task stimulus.
Adding implicit biosignals might augment the potential of
explicit signals, leading to more valid outcomes. Similarly,
Kuriakose and Lahiri [36] adapted their VR system to users’
affective states, such as anxiety, through peripheral physiological
signals (including galvanic skin response and pulse
plethysmogram). Adaptive training based on implicit biosignals
has been demonstrated to hold the potential to optimize
physiological arousal to maximize training outcomes [5].
Conversely, training programs that fail to adjust to users’
affective states may negatively impact performance, leading to
either low arousal levels (as in boredom) or high arousal levels
(as in anxiety) [29]. To prevent this, it is essential to consider
both implicit and explicit biosignals. A combined analysis of
users’ implicit and explicit biosignals enables refined adaptation
decisions based on their needs. During treatment, implicit
biosignals can provide valuable insights into the user’s inner
state, which is often imperceptible to human observation but
easily deciphered by computers [36]. Indeed, compared with
explicit signals, implicit biosignals emerge as pivotal in
providing optimal challenges to users, increasing their
engagement and improving their performance [29,30]. The study
by Lahiri et al [42] stands out as a pioneering work, in
comparison with the other included studies, in anticipating the
benefits of adapting training or interventions through implicit
biosignals. Indeed, it proposed measuring the engagement level
through real-time viewing patterns, subtle eye physiological
changes, and performance metrics to adaptively enhance
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responses for improved social communication skills. This
underscores the clear need to incorporate an implicit biosignal
when training or investigating a complex construct.

Recent studies have suggested the integration of advanced
technologies (eg, eye gaze monitoring, peripheral response
monitoring, motion sensing, and speech input devices) to capture
implicit biosignals, thereby steering ASD interventions toward
a more intuitive and embodied approach [29,35,40]. As
discussed, implicit biosignals unveil hidden meanings and
provide insights that extend beyond observable user behaviors.
This aligns with the concept of embodied cognition [70], which
posits that body and mind are not separate entities but rather
maintain a continuous, tight, and ongoing relationship.
Embodied cognition theories are based on the concept that every
action or reaction is influenced by one’s perception of stimuli,
typically during goal achievement [70,71]. VR interventions,
as embodiments of learning paradigms, represent an illustration
of how technology links the mind, body, and environment
together and where individuals’ perceptions play a crucial role
in shaping their bodily experience of the world [72]. The
selected studies in this review reflect a growing body of
evidence supporting the adaptation of interventions to the unique
needs of children with ASD, incorporating devices capable of
collecting implicit biosignals of fine [38] or gross [37,51] motor
movements, eye gaze [35,42], peripheral physiological responses
[36], and speech [43]; for example, Moon and Ke [43] used
speech data mining to drive adaptive feedback to identify the
emotional states of children.

On the basis of the assumption that embodied cognition theories
indicate that cognition involves a continuous interplay of various
modules encompassing simulation, environmental, situated
action, and bodily state factors [73], implicit biosignals are at
the core of the process of cognition because they reflect and
explain behaviors that are not directly observable. Thus, future
adaptive interventions for children with ASD should go beyond
monitoring user performance as a stand-alone datum and adopt
an embodied perspective by including implicit aspects, assuming
that the arousal component influences the learning experience
in training. Cognition rarely proceeds independently of the body;
however, it is recognized that many researchers address other
forms of cognition assumption [70]. Therefore, the suggestion
is to implement the embodied adaptation framework but
acknowledge that other adaptations may also be valuable.
Practitioners could support initiatives aimed at promoting
embodied perspectives in ASD interventions, recognizing their
potential to enhance learning experiences and outcomes for
individuals with ASD.

Finally, attention should be focused on those included studies
(6/10, 60%) that processed implicit biosignals in real time to
enhance ASD adaptive interventions [35-38,42,51]. Evidence
suggests that VR-automatized systems, which adapt dynamically
based on implicit biosignals, are able to foster ongoing
communication with users by identifying their present state and
aligning activities with specific behavioral objectives [37,38];
for example, sophisticated algorithms have made it possible to
quantify and qualify dynamic whole-body motor movement in
real time, allowing for the adaptation of motor skills
interventions [37]. Even finer motor movements, such as force

or precision and control, can be adapted in real time to improve
the performance of a kinetic task [38]. In conclusion, the
spotlight on studies processing explicit and implicit biosignals
in real time underscores their potential to enhance the
effectiveness of adaptive interventions for young individuals
with ASD. Moreover, as technology continues to advance, the
integration of unobtrusive wearable devices that capture implicit
biosignals, either independently or in combination with explicit
signals, emerges as a promising approach [5]. On the basis of
the literature and the reasons discussed, it is recommended to
embrace the embodied cognition perspective to comprehensively
understand and effectively address the unique needs of children
with ASD.

Overall Findings
The literature search showed that there has been a growing
emphasis on developing objective adaptive technologies to
target the needs of individuals with ASD. This review primarily
aimed to shed light on the methodologies of the included studies
used for the adaptive engine and the types of signals used. In
addition, the review identified methodological insights and
offered guidance for improving adaptive VR interventions for
individuals on the autism spectrum.

The findings suggested a tendency to focus on adolescent
samples, underscoring the need to explore younger age groups
in the context of adaptive VR systems. A predominant focus
on usability, social skills training, and the use of desktop
computers was discussed.

The main findings showed that the use of adaptive strategies
varied among studies, with a noteworthy trend toward real-time
adaptations. The nuanced application of progression techniques,
coupled with the exploration of verbal feedback and real-time
adaptations, provides a foundation for future research aimed at
optimizing adaptive training systems for therapeutic contexts.

The review highlighted considerations associated with non-ML
and ML techniques critical in the engine adaptation. An
overarching theme in the reviewed studies is the widespread
use of real-time adaptive systems, mostly non-ML, although
there has been a growing emphasis over the past 2 years on
using ML techniques for refined and enhanced training.
Moreover, when choosing an ML engine, a wider sample size
should guide the development of future adaptive systems for
personalized ASD interventions.

Finally, both explicit and implicit signals were identified as the
driving force behind adaptive decisions, with increased attention
toward using implicit biosignals for a more comprehensive
understanding of user needs. Embracing an embodied adaptation
framework is suggested for future ASD interventions,
emphasizing real-time processing to optimize adaptation and
contribute to improved performance.

By synthesizing and evaluating the existing evidence, this study
aims to contribute valuable insights that can inform the design
and implementation of more targeted and effective interventions,
ultimately enhancing the quality of life for individuals with
ASD and their families [74]. In fact, an adaptive system holds
the promise of improving outcomes for greater numbers of
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children with ASD by guiding clinicians on how to leverage
the diversity in treatment responses [6].

Limitations
This review is not without limitations. No technological or
automated tools were used to handle the collected data, which
could have introduced bias due to human error. However,
because the literature search identified only a small number of
articles, manual analysis was feasible, and it did not become
necessary to use specific automated techniques. The limitations
of this review primarily stem from the heterogeneity in the study
designs of the selected studies. Future reviews should focus on
different inclusion and exclusion criteria with more consistent
designs to reduce variation and improve comparability. In
addition, the availability of data in the selected studies posed
another constraint. Some of the studies (3/10, 30%) lacked
sufficient information regarding the adaptation of their systems,
making it challenging to conduct specific analyses or fully assess
the study’s contribution.

Conclusions
In recent years, the field of ASD interventions has witnessed a
significant shift toward the development of objective adaptive
technologies. This evolving paradigm aims to not only enhance
the overall effectiveness of interventions but also customize
them to better suit the unique needs of individuals with ASD.
A systematic review was conducted to assess the current body
of literature concerning the application of adaptive VR systems
in ASD interventions.

The findings showed trends that align with theories and similar
studies focused on broader themes, such as the significant
interplay between level-switching strategies and feedback and
a preference for adaptive engines operating in real time [5,64].
However, throughout the paper, we also offered several
reflections on how the methodological focus seems to be
shifting. Specifically, we observed how implementing
multimodal feedback could enhance adaptive interventions in
terms of both qualities and opportunities [38,62,63]. We have
provided critical insight concerning the growth of adaptation
studies implementing ML techniques. Indeed, among the
included records, those from the past 2 years have primarily
focused on this technique (3/10, 30%) [37,43,51], likely due to
its versatile and accurate nature [65,66]. Similarly, the
importance of implicit biosignals was rationalized within the
theoretical framework of embodied cognition [72,73] for a
deeper understanding of unobservable behaviors.

This work can support researchers in designing and testing
adaptive VR systems for ASD interventions and help software
designers develop more engaging and targeted VR applications,
thus improving the effectiveness of digital therapies. In addition,
it can contribute to the research of innovative methodologies
for assessing and monitoring progress in ASD treatments using
advanced VR tools. It can also provide valuable support to
clinical professionals in better adapting interventions to patients’
states and specific needs. Finally, it can guide practitioners
toward a deeper understanding of the potential of VR in ASD
treatments, positively influencing decision-making in the
formulation of health care and educational policies.
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