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Abstract

Background: Several machine learning (ML) prediction models for neurodegenerative diseases (NDs) in type 2 diabetes mellitus
(T2DM) have recently been developed. However, the predictive power of these models is limited by the lack of multiple risk
factors.

Objective: This study aimed to assess the validity and use of an ML model for predicting the 3-year incidence of ND in patients
with T2DM.

Methods: We used data from 2 independent cohorts—the discovery cohort (1 hospital; n=22,311) and the validation cohort (2
hospitals; n=2915)—to predict ND. The outcome of interest was the presence or absence of ND at 3 years. We selected different
ML-based models with hyperparameter tuning in the discovery cohort and conducted an area under the receiver operating
characteristic curve (AUROC) analysis in the validation cohort.

J Med Internet Res 2024 | vol. 26 | e56922 | p. 1https://www.jmir.org/2024/1/e56922
(page number not for citation purposes)

Sang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:bard95@hanmail.net
http://www.w3.org/Style/XSL
http://www.renderx.com/


Results: The study dataset included 22,311 (discovery) and 2915 (validation) patients with T2DM recruited between 2008 and
2022. ND was observed in 133 (0.6%) and 15 patients (0.5%) in the discovery and validation cohorts, respectively. The AdaBoost
model had a mean AUROC of 0.82 (95% CI 0.79-0.85) in the discovery dataset. When this result was applied to the validation
dataset, the AdaBoost model exhibited the best performance among the models, with an AUROC of 0.83 (accuracy of 78.6%,
sensitivity of 78.6%, specificity of 78.6%, and balanced accuracy of 78.6%). The most influential factors in the AdaBoost model
were age and cardiovascular disease.

Conclusions: This study shows the use and feasibility of ML for assessing the incidence of ND in patients with T2DM and
suggests its potential for use in screening patients. Further international studies are required to validate these findings.

(J Med Internet Res 2024;26:e56922) doi: 10.2196/56922
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Introduction

Neurodegenerative diseases (NDs) are characterized by the
progressive dysfunction of synapses, neurons, glial cells, and
their networks [1]. NDs include dementia, Parkinson disease
(PD), multiple sclerosis, Huntington disease, and amyotrophic
lateral sclerosis [1]. Risk factors for dementia, the most common
type of ND, include older age, genetic risk factors (family
history of dementia and Apolipoprotein E), cardiometabolic
risk factors (diabetes mellitus, hypertension, dyslipidemia,
obesity, and vascular disease), smoking, hearing impairment,
depression, less education, physical inactivity, alcohol
consumption, traumatic brain injury, and air pollution [2-7].
Known risk factors for Parkinson disease, the second most
common ND, include advanced age, male sex, family history
of Parkinson disease, environmental exposure (pesticides and
air pollution), and comorbidities (obesity, metabolic syndrome,
diabetes mellitus, traumatic brain injury, and a history of
melanoma or prostate cancer) [8-13].

Type 2 diabetes mellitus (T2DM) is a significant health problem
and it requires careful management because it can be
accompanied by several complications. In addition to
well-known diabetic complications such as retinopathy,
neuropathy, and nephropathy, T2DM plays a vital role in the
development of cardiovascular, peripheral vascular, and
cerebrovascular diseases [14]. Recently, the link between T2DM
and the development of NDs has gained attention [15]. The
incidence of dementia and Alzheimer disease (AD) among
people with diabetes is estimated to be 9.5 and 6.8 per 1000
person-years, respectively [16]. Parkinson disease has affected
31,577 people with T2DM as of 2016 [17]. Compared to healthy
people, people with impaired fasting glucose and diabetes for
less than 5 years and diabetes for more than 5 years have a
1.04-fold, 1.19-fold, and 1.62-fold higher risk of Parkinson
disease, respectively [17].

In clinical practice, biomarkers are needed to accurately
diagnose NDs and identify their underlying pathogenesis
[18,19]. Current guidelines for ND prevention strategies state

that prevention should be based on a plan to reduce modifiable
risk factors [20]. To effectively prevent ND in primary care,
where most cognitively impaired patients with suspected ND
are observed, it is essential to identify good predictors of ND
among the standard physical examinations and laboratory tests
performed for health screening purposes. To date, there is a lack
of information on the correlation and dominance of these
predictors.

Recent developments in artificial intelligence have focused on
applying novel techniques, such as machine learning (ML), to
existing disease models [21]. ML is a powerful tool that can
overcome existing limitations using clinical data to uncover
hidden patterns and identify critical variables associated with
disease development. Clinicians can efficiently detect early
warning signs and risk factors of complications by integrating
ML algorithms with clinical data [22]. Recently, several models
using ML have been developed to predict ND in T2DM [23-25].
The purpose of this study was to identify the relationship
between clinical factors and ND and to develop a predictive
model for the occurrence of ND through intensive model training
and validation by taking advantage of the strengths of ML
technology in patients with T2DM in South Korea.

Methods

Study Population and Data Collection
This retrospective study used data from 2 independent
longitudinal cohorts previously enrolled in an observational
study. Hospital-based data were collected from January 1, 2008,
to December 31, 2022. Eligible participants were selected from
patients with T2DM, and those with type 1 diabetes or a history
of ND were excluded. Finally, 22,311 patients from a tertiary
hospital at the Kyung Hee University Medical Center were
selected as the discovery cohort. Data for extra validation were
collected from a retrospective dataset from the secondary
hospitals, Kyung Hee University Medical Center at Gangdong
and Gachon University Gil Hospital (validation cohort), and
2915 eligible patients were selected (Figure 1).
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Figure 1. Study workflow. ALP: alkaline phosphatase; ALT: alanine aminotransferase; AST: aspartate aminotransferase; GGT: gamma-glutamyl
transferase; HbA1c: glycated hemoglobin; HDL: high-density lipoprotein; LDL: low-density lipoprotein; ND: neurodegenerative disease; NIA: National
Information Society Agency.

Input Variables
A comprehensive set of 56 variables is included in the model.
Baseline patient demographics include age and sex, and medical
histories include the presence of hypertension, dyslipidemia,
macrovascular complications (cardiovascular and peripheral
vascular diseases), microvascular complications (retinopathy,
chronic kidney disease, end-stage renal disease, and neuropathy),
and cancer. Medication history includes types of antidiabetic
agents (metformin, sulfonylurea, dipeptidyl peptidase-4
inhibitor, meglitinide, thiazolidinedione, α-glucosidase inhibitor,
insulin, glucagon-like peptide-1 receptor agonist, and
sodium-glucose co-transporter 2 inhibitor), antihypertensive
drugs (angiotensin II receptor blocker [ARB],
angiotensin-converting enzyme inhibitor [ACEi], calcium
channel blocker [CCB], diuretics, and beta-blocker),
dyslipidemia drugs (statin, fibrate, and ezetimibe), and
antiplatelet agents (aspirin, clopidogrel, cilostazol, and
glycoprotein IIb/IIIa antagonist). The clinical parameters include
BMI [26]. Blood tests included those for glycated hemoglobin
(HbA1c), serum glucose, total cholesterol, triglyceride,
high-density lipoprotein (HDL), low-density lipoprotein (LDL),
serum creatinine, aspartate aminotransferase (AST), alanine
aminotransferase (ALT), gamma-glutamyl transferase (GGT),
and alkaline phosphatase (ALP). For BMI and blood test results,
we used the median and standard deviation of each parameter
as input variables.

Identification of New ND Cases
New-onset ND in patients with T2DM was identified using the
ICD-10 (International Statistical Classification of Diseases,
Tenth Revision) codes for dementia (F00.X–F03.X and G30.X)

and Parkinson disease (G20.X). The primary end point was
new-onset ND within 3 years.

Data Preprocessing
Missing data were excluded from the analysis. The covariates
were divided into three sections: (1) demographics, (2) physical
examination and blood tests, and (3) medication and
comorbidities. Using the examination date, we used the physical
examination and blood test data before the ND outbreak. The
dataset was calculated for the entire study period and converted
to a mean value before the onset of ND. Information on
medications and comorbidities at the first visit was used as a
covariate. Data are presented as number (%) or mean (SD).

Model Training and Validation
A common ML approach for prediction involves dividing data
into training and test sets. In this study, the target value of the
given data on the incidence of ND over 3 years was insufficient.
Therefore, the model was trained on the entire dataset rather
than splitting it for internal validation. Although including a
separate test set is beneficial for providing an unbiased
evaluation of the model performance on unseen data from the
same distribution as the training data, using an external dataset
for validation has its own merits. Validating the model with
data from different distributions can verify its robustness and
applicability in various real-world settings. A separate external
dataset was used to assess the extent to which the model would
have generalizability. This approach is essential for verifying
whether the model performs well on new and previously unseen
data.
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Model Development
We chose decision tree–based ensemble models, such as
AdaBoost, LightGBM, Random Forest, and XGBoost.
Hyperparameter tuning was performed using GridSearchCV,
and the area under the receiver operating characteristic curve
(AUROC) was maximized to determine the best combination
of hyperparameters for optimizing the performance of each
model.

ML Analysis
Various tree-based and linear classification models have been
used to determine AUROC scores for predicting ND occurrence.
GridSearchCV was used to optimize the hyperparameters of
models, using the AUROC score as a scoring metric. After
determining the optimal hyperparameters, the model is trained
for subsequent predictions. Given the class imbalance in our
data, we used a synthetic minority oversampling technique to
generate synthetic samples. We used various metrics, such as
AUROC, accuracy, sensitivity, specificity, and balanced
accuracy, to evaluate the model's performance. These metrics
are calculated based on the probability predictions produced by
the model. A 10-fold stratified cross-validation was performed
to assess the model’s ability to handle new data. The Youden
index was used for each stratification to identify the optimal
threshold [27]. Subsequently, we calculated the mean and 95%
CIs for each performance metric to measure the average and
variability of the model's performance.

A receiver operating characteristic (ROC) curve was plotted to
illustrate the performance of the model. This was complemented
by the mean ROC curve and SD within that range, demonstrating
the distribution of the model performance. Because the
AdaBoost model yielded the highest AUROC score among the
various decision tree models tested, we selected this model to
identify the most important features for predicting ND. The
importance of each feature was extracted using the feature
importance attributes of the AdaBoost model. We selected the
top 15 features with the largest impact on the model and plotted
them on a bar graph to visualize their influence on the model
predictions. Logistic regression analysis was used to obtain
odds ratios (ORs) to compare the effects of the different
medications on ND occurrence.

Performance Metrics
To comprehensively understand the performance of our model,
we selected 5 performance metrics: AUROC, accuracy,
sensitivity, specificity, and balanced accuracy. The AUROC is
a robust performance measure that assesses a model’s ability
to discriminate between classes across all possible thresholds.
Its robustness originates from the fact that it considers both
sensitivity and specificity, making it a preferred metric,
particularly in situations where classes are imbalanced. Accuracy

is a simple and intuitive performance metric that indicates the
proportion of true results (both true positives and true negatives)
from the total number of cases examined. However, accuracy
alone can be misleading, particularly for unbalanced datasets;
therefore, additional performance metrics are required.
Sensitivity and specificity were used to assess how well the
model identified the positive and negative cases, respectively.
Sensitivity provides insight into a model’s ability to detect
positive cases by measuring the proportion of true positives
correctly identified by the model. Specificity is a measure of
the proportion of true negatives that are correctly identified and
provides a sense of a model’s ability to avoid false alarms.
Finally, we include balanced accuracy to provide a more
balanced view of the performance of our model, particularly in
the face of class disparity. As an average of sensitivity and
specificity, balanced accuracy assigns equal weights to both
metrics, making it an excellent alternative to accuracy when
addressing unbalanced datasets. Combining these metrics
enables us to evaluate the performance of our model from
different perspectives, thereby ensuring a more robust evaluation
[28,29].

Software and Libraries
Data preprocessing, model development, and analyses were
conducted using Python (version 3.9.16; Python Software
Foundation). The main libraries used in our study include
Scikit-learn 1.2.2, NumPy 1.23.5, and Pandas 1.5.3 for ML
algorithms and data manipulation. Matplotlib 3.7.1 and Seaborn
0.12.2 were used for data visualization.

Ethical Considerations
This study was approved by the Institutional Review Board of
the Kyung Hee University Hospital (KHSIRB-22-473(EA)).
The requirement for informed consent was waived by the
institutional review board because de-identified data were used
in the analyses. This study followed the guidelines outlined in
the TRIPOD (Transparent Reporting of a Multivariate Prediction
Model for Individual Prognosis or Diagnosis) statement.
Participants in this study did not receive compensation as the
data were anonymized.

Results

Cohort Characteristics
A total of 22,311 patients were selected from the discovery
cohort, of whom 133 (0.6%) had ND. Among the participants,
11,545 (51.8%) were male, and the mean age was 63.5 (SD
12.0) years. For additional validation, 2915 patients were
included, including 15 (0.5%) patients with ND from the
validation cohort. The validation cohort had 1625 (55.8%) men
with a mean age of 57.8 (SD 11.8) years (Table 1).
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Table 1. Baseline characteristics of the discovery and validation datasets.

Validation datasetDiscovery dataset

Casea (N=15)
Control
(N=2900)

Total
(N=2915)Casea (N=133)

Control
(N=22,178)

Total
(N=22,311)

69.5 (10.6)57.8 (11.8)57.8 (11.8)73.3 (7.6)63.4 (11.9)63.5 (12.0)Age, mean (SD)

8 (53.3)1617 (55.8)1625 (55.8)53 (39.9)11,492
(51.8)

11,545
(51.8)

Male, n (%)

23.3 (2.7)25.2 (3.4)25.2 (3.4)24.1 (3.6)24.9 (3.6)24.9 (3.6)BMI, kg/m2, mean (SD)

Blood test, mean (SD)

7.64 (1.37)7.19 (1.14)7.19 (1.14)6.77 (0.84)6.78 (1.00)6.78 (1.00)HbA1c
b, (%)

155.8 (38.5)145.8 (45.7)145.9 (45.7)149.0 (45.9)146.8 (44.9)146.8 (44.9)Fasting blood glucose, mg/dL

142.2 (34.4)163.2 (32.9)163.1 (33.0)155.1 (28.3)157.9 (34.0)157.9 (33.9)Total cholesterol, mg/dL

148.9 (86.0)147.7 (67.8)147.8 (67.9)129.9 (51.0)141.9 (68.0)141.8 (67.9)Triglyceride, mg/dL

37.6 (10.7)45.3 (10.0)45.2 (10.0)48.0 (11.6)47.4 (11.9)47.4 (11.9)HDLc cholesterol, mg/dL

76.9 (35.8)92.6 (29.8)92.5 (29.8)87.6 (20.8)90.4 (27.1)90.3 (27.1)LDLd cholesterol, mg/dL

1.42 (1.28)1.08 (0.89)1.08 (0.89)0.96 (0.48)0.90 (0.44)0.90 (0.44)Creatinine, mg/dL

22.6 (9.2)24.7 (8.4)24.7 (8.4)25.1 (9.4)26.9 (13.5)26.9 (13.5)ASTe, U/L

15.4 (6.7)25.7 (13.2)25.6 (13.2)19.6 (9.6)24.5 (14.2)24.5 (14.2)ALTf, U/L

31.3 (18.6)38.4 (32.5)38.4 (32.4)33.0 (30.4)38.4 (35.8)38.3 (35.8)GGTg, U/L

70.8 (23.3)172.1 (89.0)171.6 (89.0)75.3 (21.9)79.1 (25.6)79.1 (25.6)ALPh, U/L

Comorbid conditions, n (%)

10 (66.7)1660 (57.2)1670 (57.3)59 (44.4)9,381 (42.3)9440 (42.3)Hypertension

1 (6.7)1418 (48.9)1419 (48.7)55 (41.4)10,334
(46.6)

10,389
(46.6)

Dyslipidemia

Macrovascular complications, n (%)

12 (80.0)968 (33.4)980 (33.6)53 (39.9)8257 (37.2)8310 (37.3)Cardiovascular diseasei

1 (6.7)421 (14.5)422 (14.5)N/A129 (0.6)129 (0.6)Peripheral vascular disease

Microvascular complications, n (%)

1 (6.7)487 (16.8)488 (16.7)6 (4.5)1664 (7.5)1670 (7.5)Retinopathy

2 (13.3)580 (20.0)582 (20.0)7 (5.3)2131 (9.6)2138 (9.6)Chronic kidney disease

2 (13.3)176 (6.1)178 (6.1)1 (0.8)144 (0.7)145 (0.7)ESRDj

2 (13.3)698 (24.1)700 (24.0)34 (25.6)5027 (22.7)5061 (22.7)Neuropathy

1 (6.7)302 (10.4)303 (10.4)5 (3.8)3604 (16.3)3609 (16.2)Cancer

Medication use, n (%)

Diabetes mellitus

N/A1219 (42.0)1219 (41.8)73 (54.9)12,227
(55.1)

12,300
(55.1)

Metformin

N/A462 (15.9)462 (15.9)53 (39.9)7135 (32.2)7188 (32.2)Sulfonylurea

N/A195 (6.7)195 (6.7)27 (20.3)5347 (24.1)5374 (24.1)DPP-4k inhibitor

N/A171 (5.9)171 (5.9)13 (9.8)972 (4.4)985 (4.4)Meglitinide

N/A40 (1.4)40 (1.4)11 (8.3)1,356 (6.1)1,367 (6.1)Thiazolidinedione

N/A161 (5.6)161 (5.5)6 (4.5)1,001 (4.5)1,007 (4.5)α-Glucosidase inhibitor

N/AN/AN/A53 (39.9)7,135 (32.2)7,188 (32.2)Insulin
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Validation datasetDiscovery dataset

Casea (N=15)
Control
(N=2900)

Total
(N=2915)Casea (N=133)

Control
(N=22,178)

Total
(N=22,311)

N/AN/AN/AN/A32 (0.1)32 (0.1)GLP-1l receptor agonist

N/AN/AN/A3 (2.3)631 (2.9)634 (2.8)SGLT2m inhibitor

Hypertension

N/A245 (8.5)245 (8.4)64 (48.1)9999 (45.1)10,063
(45.1)

Angiotensin II receptor blocker

N/A125 (4.3)125 (4.3)11 (8.3)1724 (7.8)1735 (7.8)ACE inhibitor

N/A603 (20.8)603 (20.7)65 (48.9)10,420
(47.0)

10,485
(47.0)

Calcium channel blocker

N/A229 (7.9)229 (7.9)52 (39.1)7228 (32.6)7280 (32.6)Diuretics

N/A2 (0.1)2 (0.1)45 (33.8)5936 (26.8)5981 (26.8)Beta blocker

Dyslipidemia

N/A958 (33.0)958 (32.9)86 (64.7)12,625
(56.9)

12,711
(57.0)

Statin

N/A92 (3.2)92 (3.2)4 (3.0)892 (4.0)896 (4.0)Fibrate

N/A106 (3.7)106 (3.6)11 (8.3)1531 (6.9)1542 (6.9)Ezetimibe

Antiplatelet

N/A762 (26.3)762 (26.1)72 (54.1)9064 (40.9)9136 (41.0)Aspirin

N/A309 (10.7)309 (10.6)47 (35.3)6359 (28.7)6406 (28.7)Clopidogrel

N/A164 (5.7)164 (5.6)25 (18.8)2682 (12.1)2707 (12.1)Cilostazol

N/AN/AN/A3 (2.3)276 (1.2)279 (1.3)Glycoprotein IIb/IIIa antagonist

aGroup of patients with newly developed neurodegenerative disease within 3 years.
bHbA1c: glycated hemoglobin.
cHDL: high-density lipoprotein.
dLDL: low-density lipoprotein.
eAST: aspartate transaminase.
fALT: alanine transaminase.
gGGT: gamma-glutamyl transferase.
hALP: alkaline phosphatase.
iCardiovascular diseases included ischemic heart disease, myocardial infarction, heart failure, atrial fibrillation, stroke, and other cerebrovascular
diseases.
jESRD: end-stage renal disease.
kDPP-4: dipeptidyl peptidase-4.
lGLP-1: glucagon-like peptide-1.
mSGLT2: sodium-glucose co-transporter 2.

Comparisons of Prediction Model Performance
The AdaBoost model performed well on the discovery set
(AUROC 0.82, 95% CI 0.79-0.85; accuracy 74.2%, 95% CI
70.9-77.4; sensitivity 73.6%, 95% CI 69.9-77.3; specificity
74.2%, 95% CI 70.9-77.4; and balanced accuracy 73.9%, 95%
CI 70.6-77.2). The LightGBM model performed next best
(AUROC 0.791, 95% CI 0.756-0.825; accuracy 72.5%, 95%
CI 68.1-76.8; sensitivity 71.8%, 95% CI 67.0-76.6; specificity
72.5%, 95% CI 68.1-76.8; and balanced accuracy 72.2%, 95%

CI 68.0-76.3). The Random Forest model closely followed,
yielding an AUROC of 0.79 (95% CI 0.76-0.82) and solid
metrics (accuracy 69.3%, 95% CI 63.0-75.5; sensitivity 69.1%,
95% CI 63.6-74.6; specificity 69.3%, 95% CI 63.0-75.6; and
balanced accuracy 69.2%, 95% CI 63.4-75.0). The XGBoost
model also had similar performance (AUROC 0.79, 95% CI
0.77-0.81; accuracy 72.0%, 95% CI 68.5-75.6; sensitivity 69.1%,
95% CI 65.7-72.5; specificity 72.0%, 95% CI 68.5-75.6; and
balanced accuracy 70.6%, 95% CI 67.4-73.8; Table 2).
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Table 2. Performance metrics of 4 different MLa algorithms on the original and external validation datasets.

Balanced accuracy, (%)Specificity, (%)Sensitivity, (%)Accuracy, (%)AUROCbModel

Original dataset

73.9 (70.6-77.2)74.2 (70.9-77.4)73.6 (69.9-77.3)74.2 (70.9-77.4)0.819 (0.786–0.851)ADBc

72.2 (68.0-76.3)72.5 (68.1-76.8)71.8 (67.0-76.6)72.5 (68.1-76.8)0.791 (0.756-0.825)LGBd

69.2 (63.4-75.0)69.3 (63.0-75.6)69.1 (63.6-74.6)69.3 (63.0-75.5)0.788 (0.757-0.819)RFe

70.6 (67.4-73.8)72.0 (68.5-75.6)69.1 (65.7-72.5)72.0 (68.5-75.6)0.788 (0.766-0.810)XGBf

Validation dataset

78.678.678.678.60.830ADB

81.584.478.684.30.833LGB

77.876.978.677.00.820RF

72.974.371.474.30.786XGB

aML: machine learning.
bAUROC: area under the receiver operating characteristic curve.
cADB: AdaBoost.
dLGB: LightGBM.
eRF: Random Forest.
fXGB: XGBoost.

Performance metrics of 4 machine learning models (AdaBoost,
LightGBM, Random Forest, and XGBoost) were provided for
the prediction of the onset of neurodegenerative disease within
3 years in patients, using both the original and an additional
external validation dataset.

Upon applying these models to the external validation set, the
AdaBoost and LightGBM models achieved high AUROCs of

0.83 and 0.83, respectively. The Random Forest and XGBoost
models exhibited improved performance metrics with AUROC
values of 0.82 and 0.79, respectively (Table 2).

Consequently, with excellent and consistent results in both
independent datasets, the AdaBoost model emerged as the best
predictor of ND development within 3 years among patients
with diabetes (Figures 2 and 3).

Figure 2. Model architecture. An electronic medical record (EMR) dataset from Kyung Hee University Medical Center was used for model development
processed by 10-fold cross-validation and AdaBoost. Extravalidation was executed by the National Information Society Agency (NIA) dataset from
Kyung Hee University Hospital at Gangdong and Gachon University Gil Medical Center.
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Figure 3. ROC curves of the AdaBoost model. Mean ROC curve from 10-fold cross-validation on the original dataset. AUC: area under the receiver
operating characteristic curve; ROC: receiver operating characteristic.

Feature Importance for Improving Interpretability of
ML Models
The impacts of the contributing factors analyzed using the
feature importance method are shown in Figure 4. Among the
56 variables considered in this study, age was the most important
factor that contributed to the performance of the ND prediction

model, followed by cardiovascular disease, cancer, neuropathy,
and ALP levels. For other comorbidities, dyslipidemia, chronic
kidney disease, and hypertension were among the top 10 feature
importance, and for medications, metformin, calcium channel
blockers, and meglitinide were among the top 15 feature
importance.
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Figure 4. Top 15 feature-importance of AdaBoost model. ALP: alkaline phosphatase; CCB: calcium channel blocker; CKD: chronic kidney disease;
CVD: cardiovascular disease; LDL: low-density lipoprotein.

Comparison of the Impact of Different Drugs on ND
Occurrence
We compared the risk of developing ND according to the type
of medication previously administered by the participants by
calculating ORs. Among antidiabetic drugs and antiplatelet
drugs, meglitinide (OR 0.42, 95% CI 0.24-0.75), aspirin (OR
0.59, 95% CI 0.42-0.82), and cilostazol (OR 0.59, 95% CI
0.38-0.92) were associated with a significantly reduced risk of
ND. The remaining antidiabetic, antihypertensive,
antihyperlipidemic, and antiplatelet agents did not significantly
increase or decrease the risk of ND development (Multimedia
Appendix 1).

Discussion

This study emphasized the importance of developing a highly
accurate ML-based ND prediction model that can be universally
applied to adults with T2DM in South Korea. This study
provided a simple and precise assessment of the future annual
risk of ND in people with diabetes nationwide. The AdaBoost,
LightGBM, Random Forest, and XGBoost ensemble models
showed excellent performance with AUROC values ranging
from 0.79 to 0.82 on the discovery dataset and 0.79 to 0.83 on
the external validation dataset. Age and cardiovascular disease
were the top 15 factors affecting the feature importance. The
results of this study can potentially improve patient outcomes
by enabling timely intervention, advancing the comprehension
of contributing variables, and reducing the burden of
neurodegenerative complications in patients with T2DM.

This study was based on a large cohort of the Korean population
and used data from 3 university hospitals. Multiple variables,
such as anthropometric variables, medical history, medication

use, and laboratory tests, were used for model development. An
advantage of this study is that long-term follow-up data of
approximately 3 years were available for outcome evaluation.
This ND prediction model is meaningful because it demonstrates
sufficiently good performance, with a mean AUROC of 0.82,
using only questionnaires, body measurements, and blood tests
commonly conducted in clinical practice for patients with
diabetes.

Our findings provide insights into the metrics that can be used
in primary care for ND prediction. In addition to the risk factors
considered by our ML model, other known risk factors for the
development of ND include genetic risk factors, lifestyle factors,
environmental exposure, and traumatic brain injury. Existing
biomarkers for ND are related to amyloid beta or tau proteins,
which are involved in the pathophysiology of ND and are
measured using neuroimaging techniques, such as brain
magnetic resonance imaging, single-photon emission computed
tomography or positron emission tomography, or cerebrospinal
fluid testing [30,31]. Additionally, biomarkers using blood
samples exist, such as high-sensitivity C-reactive protein, GGT,
homocysteine, apolipoprotein E, and uric acid [30,31]. Although
they can be used as adjuncts to increase diagnostic confidence,
most are expensive or invasive and are not recommended as
routine diagnostic tests in clinical practice. As we aimed to
predict ND risk for screening purposes in primary health care
centers, we focused on constructing an ML model that can
predict ND risk based on general physical measurements and
blood tests without requiring specialized tests.

In this study, we performed a feature-importance analysis on
the interpretability of the AdaBoost model, which performed
the best among the models investigated. According to feature
importance analysis, age, cardiovascular disease, cancer,
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neuropathy, and ALP levels were among the top 5 predictors
of ND. The association between age, cardiovascular disease,
and neuropathy with ND was consistent with the results of
previous studies. Age is a conventional risk factor for ND [32].
Cardiovascular disease is a known risk factor for ND [33].
Cardiometabolic risk factors such as diabetes, hypertension,
and hyperlipidemia were also consistently associated with the
risk of developing ND [34]. The association between peripheral
neuropathy and ND in this study is consistent with its association
with the development of mild cognitive impairment and
dementia in the general population and people with diabetes
[35]. Meanwhile, the relationship between cancer and ND is
likely to be inverse according to previous studies. The incidence
of cancer is reportedly lower in patients with ND [36]. It is
important to note that aging also affects the occurrence of cancer
[37], and this study did not adjust for the effect of aging on
cancer; therefore, further research is needed to determine the
causality between cancer itself and ND. The results related to
ALP levels were consistent with previous reports showing that
ALP levels were increased in patients with AD [38]. In contrast,
some studies have found no significant association between
ALP and PD [39]. This may be related to increased bone ALP,
as PD is associated with an increased incidence of osteoporosis,
falls, and fractures [40]. Moreover, the association between
ALP variability and ND development has not been previously
studied and warrants further investigation.

Although the AdaBoost model identified important features,
such as the use of metformin, CCB, and meglitinide, the results
of logistic regression analysis showed that only meglitinide
significantly reduced the risk of ND. This difference arises
because AdaBoost can capture complex patterns and nonlinear
interactions among variables that logistic regression may not
fully capture because of its linear assumptions. The ability of
AdaBoost to highlight nonlinear relationships provides
additional insights into the factors affecting ND risk.

While some studies have shown an increased incidence of ND
with long-term exposure to metformin [41], conflicting studies
have suggested that metformin has a therapeutic potential for
ND [42]. Because metformin users may have more
hyperglycemia than nonusers, it is difficult to conclude that
metformin use worsens the risk of developing ND. However,
few studies have investigated the association between
meglitinide use and ND. In one study, meglitinide showed a
significant protective effect against dementia in combination
therapy rather than in monotherapy [43]. Because meglitinide
is often used in combination with agents such as metformin
rather than as a monotherapy, and in patients with diabetes who
are not glycemically controlled despite multidrug therapy, there
may be more meglitinide users among those who develop ND
due to hyperglycemia [44,45]. However, the number of
meglitinide users was too low to confirm this association.

Given that ARBs and CCBs are the first and second most
prescribed drugs for hypertension in Korea as monotherapy,
and the combination of ACEi/ARBs and CCBs is the first most
prescribed drug in 2-drug therapy [46], CCBs are ranked higher
in feature importance for the development of ND than ARBs.
The preventive effect of CCBs on ND has been recognized in
epidemiologic studies [47], and it is known that specific calcium

channel subtypes are implicated in the pathogenesis of PD and
that dihydropyridine CCBs with selectivity for these ion
channels have a neuroprotective effect in animal models [48].
Although some conflicting studies have shown that
antihypertensive drugs are not associated with ND [49], the
results of this study show that CCB is effective in preventing
ND.

Aspirin has previously been shown to reduce the incidence of
AD and PD, as well as cardiovascular events and cancer.
Aspirin-medicated acetylation prevents several
neurodegenerative pathologies by interfering with protein
aggregation [50]. Cilostazol has been shown to have a
neuroprotective effect against vascular dementia in mice induced
by L-methionine [51]. It is unclear whether the protective effects
of aspirin and cilostazol against ND are due to an indirect
lowering of the incidence of ND because of their pre-existing
effects on reducing the risk of cardiovascular disease, another
risk factor for ND, or whether they directly affect the
pathological mechanisms of ND.

This study has several limitations. First, due to the retrospective
nature of the study, obtaining accurate information from a
dataset based on hospital medical records was difficult. Missing
values, privacy regulations, and historical biases affect data
availability for model training. The model was trained on data
obtained from tertiary care centers, which may introduce
selection bias because the patients may have different
socioeconomic backgrounds from those of primary care patients
and receive more comprehensive health care, thereby affecting
ND risk and diabetes management. Information bias arising
from inaccuracies in data-acquisition methods and the recording
of medications and clinical parameters can result in the
misclassification of both exposure and outcome, thus affecting
the accuracy of the ML model’s predictions for ND in patients
with T2DM. Second, the performance of this prediction model
was not compared with that of other existing prediction models
for ND in T2DM, and we expect that future comparative
analyses will provide insights into the added value of the ML
approach. Additionally, this study was limited to a prediction
period of 3 years because of the availability and robustness of
the follow-up data in the cohort. In the future, including data
from longer periods (eg, 5 or 10 years) would strengthen the
generalizability of the model for assessing long-term ND risk.

Furthermore, this study, on its own, cannot prove a causal
relationship between the predictors used in the model and the
incidence of ND. Confounding factors in predicting ND in
patients with T2DM include possible biases due to medications
prescribed for conditions such as hypertension or dyslipidemia;
the effects of unexplained variables such as the severity and
duration of diabetes; and missing data pertaining to lifestyle
factors (smoking status, physical activity, diet, and alcohol
consumption), all of which can distort the true relationship
between the risk factors and ND outcomes. Further experimental
research is needed to clarify the biological pathways and
demonstrate the mechanisms of interaction between variables
related to ND and their impact on the development of ND.
Additionally, the dataset used was derived from hospital data
based on ICD-10 codes for PD and dementia only, which we
grouped and defined as ND. Subcategories based on the
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pathology of ND were not considered, and other rare diseases
such as multiple sclerosis, Huntington disease, and amyotrophic
lateral sclerosis were not included in the ND outcome.

Also, integrating new models into existing health care systems
can be challenging owing to compatibility issues with legacy
software, potential disruption in clinical workflows, staff
resistance, and the logistical and financial burdens of training.
Hence, compatible software, user-friendly interfaces, and
comprehensive training and support for health care professionals
are necessary. Finally, the ML model used, which was trained
and validated on data from Korean patients, may have limited
generalizability to diverse populations owing to the different
genetic, lifestyle, and environmental backgrounds. To enhance
the applicability of the model, tone must incorporate data from
diverse demographic groups and conduct external validation
across different geographic locations and health care settings.

In conclusion, this study developed an ML-based prediction
model using a representative national cohort. The model
accurately predicted the risk of ND in all members of the Korean
population with T2DM. We also demonstrate that the
performance of several ML models is satisfactory. The
AdaBoost model performed the best (AUROC 0.82 in the

discovery dataset and AUROC 0.83 in the validation dataset).
Our predictive model suggests that clinicians should consider
age and cardiovascular disease, among other relevant variables,
when assessing the risk of ND in patients with T2DM. This
emphasizes the importance of comprehensive cardiovascular
care and early intervention strategies to mitigate the risk of ND
development in older patients with T2DM. This study is the
first to apply an ML-based ND-prediction system to a national
population with diabetes. In clinical practice, ML models
enhance the prediction and management of ND by facilitating
early intervention, personalizing treatment, optimizing resource
allocation, and improving diagnostic accuracy. These models,
when integrated with conventional diagnostics, can facilitate
care for high-risk individuals and reduce long-term health care
costs. The prediction model proposed in this study is expected
to be competitive and cost-effective in preventing ND in Korean
patients with T2DM and is expected to be widely used,
especially in primary care settings. Future studies should focus
on refining these models via longitudinal studies across diverse
settings to address ethical concerns regarding data privacy and
to promote multidisciplinary collaboration for advancing
ND-prediction and treatment strategies.
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