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Abstract

Background: Clinical diagnostic assessments and the outcome monitoring of patients with depression rely predominantly on
interviews by professionals and the use of self-report questionnaires. The ubiquity of smartphones and other personal consumer
devices has prompted research into the potential of data collected via these devices to serve as digital behavioral markers for
indicating the presence and monitoring of the outcome of depression.

Objective: This paper explores the potential of using behavioral data collected with smartphones to detect and monitor depression
symptoms in patients diagnosed with depression. Specifically, it investigates whether this data can accurately classify the presence
of depression, as well as monitor the changes in depressive states over time.

Methods: In a prospective cohort study, we collected smartphone behavioral data for up to 1 year. The study consists of
observations from 164 participants, including healthy controls (n=31) and patients diagnosed with various depressive disorders:
major depressive disorder (MDD; n=85), MDD with comorbid borderline personality disorder (n=27), and major depressive
episodes with bipolar disorder (n=21). Data were labeled based on depression severity using 9-item Patient Health Questionnaire
(PHQ-9) scores. We performed statistical analysis and used supervised machine learning on the data to classify the severity of
depression and observe changes in the depression state over time.

Results: Our correlation analysis revealed 32 behavioral markers associated with the changes in depressive state. Our analysis
classified patients who are depressed with an accuracy of 82% (95% CI 80%-84%) and change in the presence of depression with
an accuracy of 75% (95% CI 72%-76%). Notably, the most important smartphone features for classifying depression states were
screen-off events, battery charge levels, communication patterns, app usage, and location data. Similarly, for predicting changes
in depression state, the most important features were related to location, battery level, screen, and accelerometer data patterns.

Conclusions: The use of smartphone digital behavioral markers to supplement clinical evaluations may aid in detecting the
presence and changes in severity of symptoms of depression, particularly if combined with intermittent use of self-report of
symptoms.
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Introduction

In recent years, digital tools and algorithms have become
indispensable in health care, including mental health.
Data-driven technologies have the potential to renew health
care, providing new avenues for personalized care, remote
monitoring, and improved service access. At the same time,
mental health disorders, including depression, have remained
a significant concern. Depressive disorders are estimated to be
the second-leading cause of life-years lost to disability
worldwide [1]. Alongside markedly impacting individuals’
quality of life, depressive disorders impose a substantial
economic burden, including costs to health care and societies
overall due to disability, reduced employment, and impaired
work productivity [2].

Psychiatric evaluations are based on clinical interviews, relying
on patients’ self-reflections and recollections, which are
susceptible to memory biases and subjective inaccuracies [3].
Further, the absence of definitive physiological biomarkers for
mental disorders complicates accurate diagnoses and treatment
[4]. Given these challenges, a growing interest has been in
data-driven clinical monitoring and decision-making,
supplementing subjective evaluations with objective,
longitudinal, physiological, and behavioral data collected via
digital devices [5]. This approach, known as digital phenotyping,
involves creating a digital representation of a patient’s clinical
phenotype using behavioral, social, and physiological markers.
The premise of the data-driven approach lies in the inherent
value of continuous monitoring, uncovering valuable insights
unattainable through intermittent assessments [4].

Recent data-driven studies using devices like smartphones and
activity trackers have effectively used digital behavioral data
to monitor and detect participants’ depressive moods [6-8].
These studies gather sensor data to identify behavioral patterns
associated with depressive disorders, such as changes in physical
activity, phone usage, and sleep routines. The primary goals
include differentiating between patients with depression and
healthy controls, classifying mood state transitions, and
predicting future mood states. Alongside passively collected
data, these studies often use established self-report
questionnaires as the reference standard for subjects' severity
of depressive symptoms.

However, some of the studies have used limited data collection,
sample sizes of fewer than 50 participants [9-11], a sample of
college students [12-15], and data collected over only a few
weeks [9,12,16]. Due to these limitations, it may be challenging
to generalize results to either a broader population or a
free-living setting. Regarding methodologies, earlier research
has used smartphone sensors and data categorized as smartphone
usage [9,10,14,15], GPS location data-based features [9-15,17],
physical activity data or step counts [11-17], communication

patterns [12,14,17], Bluetooth data [13,14], sleep data [13,15],
metrics for behavior regularity [15], and physiological
measurements [17]. Furthermore, studies have used several
metrics for depression as the ground truth, including the 9-item
Patient Health Questionnaire (PHQ-9) [9-11,17,18], a compact
version of the 4-item Patient Health Questionnaire (PHQ-4)
[15,19], the Montgomery and Åsberg Depression Rating Scale
[16,20], and the Beck Depression Inventory-II [13,14,21]. The
analysis methods used in these studies vary, encompassing
correlation analysis [9,10,12], machine learning
[11,13,14,16,17], and deep learning [15,16].

This paper builds on previous research, exploring the potential
of using behavioral data collected with smartphones to detect
and monitor depression symptoms in outpatients diagnosed with
depression. Our study aims to identify digital behavioral markers
indicative of depressive states and assess the accuracy of this
data in detecting depression. Key markers extracted from
smartphone sensors, such as the accelerometer, app usage,
battery status, communication log, screen activations, and GPS
location, comprise metrics like screen-on activation count, total
distance traveled, average battery level, phone call count, app
usage duration, and maximum acceleration. We analyzed a
comprehensive dataset, gathered through smartphones, from
patients with depression who have a diagnosis of either major
depressive disorder (MDD), major depressive episodes with
bipolar disorder (MDE|BD), or MDD with comorbidborderline
personality disorder (MDD|BPD) and healthy controls. The
focus was on distinguishing patients self-reporting moderate or
more severe depression symptoms and tracking changes in
reported depression levels.

Methods

Dataset Description
We used the data from the Mobile Monitoring of Mood
(MoMo-Mood) study, a 1-year multimodal digital phenotyping
study of individuals undergoing treatment for mental disorders
and healthy controls [22,23]. The MoMo-Mood study recruited
164 participants from 4 different groups: healthy controls (n=31)
and patients with MDD (n=85), MDD|BPD (n=27), and
MDE|BD (n=21). Voluntary patients were recruited in Finland
from the mood disorder outpatient treatment facilities of the
Helsinki University Hospital Mood Disorder Division, Turku
University Central Hospital Department of Psychiatry, and City
of Espoo Mental Health Services. The patients were diagnosed
with structured interviews, namely the Mini-International
Neuropsychiatric Interview [24] and the Structured Clinical
Interview for DSM-IV Axis II Personality Disorders [25], as
having ongoing major depressive episodes. Healthy controls
were collected by contacting, via email, lists of students from
the University of Helsinki and Aalto University, users of student
health services from these institutions, and recruiting voluntary
health care personnel from Helsinki University Hospital.
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Each group had more female individuals than male individuals:
(1) control group, 24 female individuals and 7 male individuals;
(2) MDD group, 46 female individuals and 31 male individuals;
(3) MDE|BD group, 18 female individuals and 3 male
individuals; and (4) MDD|BPD group, 23 female individuals
and 1 male individual. On average, control group participants
were older than patient group participants, with average ages
as follows: (1) control group, 41.8 (SD 13.9) years, (2) MDD
group, 39.0 (SD 14.2) years, (3) MDE|BD group, 37.1 (SD 10.3)
years, and (4) MDD|BPD group, 28.3 (SD 6.0) years. A more
detailed description is provided elsewhere [22,23].

Study participants were recruited on a rolling basis, allowing
them to join and leave the research at various intervals. They
were requested to stay involved in the study for 1 year. Data
collection was carried out in 2 phases. In the initial 2 weeks,
called the active phase, participants collected data continuously
via personal devices (smartphones running Android operating
system), bed sensors, and actigraphs, and they answered daily
mood-related questions. The active phase was followed by the
passive phase, lasting up to 1 year. During the passive phase,
data collection via smartphones continued, and participants’
depression was monitored by biweekly PHQ-9 surveys prompted
via the smartphone. The PHQ-9 comprises 9 questions, each
scored from 0 to 3, based on the frequency of depressive
symptoms over the past 2 weeks. Thus, the total score ranges
from 0 to 27, with high values representing more severe
depression. The passive data originate from various smartphone
sensors, including accelerometers, app usage, communication,
battery level and screen status logs, and GPS location data. The
data were collected through the Niima data collection platform

[26]. This work exclusively focuses on the passive phase of the
study, which uses smartphone data and PHQ-9 survey responses.
This phase was selected due to its unobtrusive data collection
methods and, thus, the minimal requirement for behavioral
adjustment from the participants.

Data Preprocessing
We used Python and the Niimpy behavioral data analysis toolbox
[27] for data preprocessing. We extracted 93 behavioral features
from the raw data. Multimedia Appendix 1 provides a detailed
description of data sources and extracted features. Furthermore,
we segmented the data from the accelerometer, app usage,
battery status, communication log, and smartphone screen
activations into 6-hour bins (12:00 AM to 06:00 AM, 6:00 AM
to 12:00 PM, 12:00 PM to 6:00 PM, and 6:00 PM to 12:00 AM).
We extracted 308 additional features, resulting in a total of 401
features. The data from different sensors were resampled and
averaged over 14-day periods. The data were merged with the
PHQ-9 responses to align data from the preceding biweekly
period with the questionnaire responses. Of the 164 participants
in the active phase, 99 proceeded to the passive phase. For the
analysis, we selected participants who had provided passive
data for at least 14 days and had answered a PHQ-9 survey at
the end of this period, yielding 83 participants. Each participant
provided data for up to 1 year, yielding 26 biweekly data points.
Due to missing observations and participant withdrawals from
the study, 818 observations (37.9% of the possible 2158
observations) were available for further analysis. Figure 1 details
the data collection and preparation for the analysis, while Figure
2 provides additional information on data aggregation and
alignment.

Figure 1. The MoMo-Mood study data collection and preparation schema. MoMo-Mood: Mobile Monitoring of Mood; PHQ-9: 9-item Patient Health
Questionnaire.
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Figure 2. Schematics of data aggregation and alignment. PHQ-9: 9-item Patient Health Questionnaire.

Statistical Analysis

Distributional Testing
To examine whether passively collected smartphone sensor data
show differences between patient groups and control
participants, we used distributional testing using the
nonparametric 2-sample Kolmogorov-Smirnov test [28]. The
test was chosen due to its capability to detect variations across
the entire distribution, including the tails. For the test, we
averaged the biweekly sampled data by participant, normalized
the data, and omitted the missing values. For robustness against
the risk of type I errors (false-positive) due to multiple
comparisons, we implemented false discovery rate (FDR)
correction using the Benjamini-Hochberg procedure [29] at a
significance level of α=.05.

Correlation Analysis
We conducted a correlation analysis to assess the association
between passive data features and PHQ-9 scores. We pooled
passive data from all participants, omitted missing values, and
applied the Spearman rank correlation coefficient to assess the

strength of the relationship. Furthermore, we used FDR
correction using the Benjamini-Hochberg procedure at a
significance level of α=.05 to account for the multiple testing
involved, controlling the expected proportion of false
discoveries.

Predictive Modeling
To achieve the research goal, we deployed supervised machine
learning models for predicting both the presence of depression
and state transitions of depressive states. We used a cutoff
PHQ-9 depression score of 10 for binary classification analyses.
Scores of 10 or higher were considered depressed, and scores
below 10 as nondepressed. We chose a cutoff value of 10
because it signifies clinical depression, typically warranting a
treatment plan that may include counseling, follow-up sessions,
and possibly pharmacotherapy for the individual. For defining
the depression state transition, we used the same threshold of
10 and the previous depression state. Each transition is paired
with a specific label, used as the target variable for the
depression state transition modeling. The transition definitions
are presented in Table 1.

Table 1. Overview of depression state transition definitions and corresponding labels.

LabelTransition description

Remains depressedDepressed→Depressed

ImprovesDepressed→Nondepressed

Remains nondepressedNondepressed→Nondepressed

DeclinesNondepressed→Depressed

We built a machine learning pipeline using Python (version
3.10.8) and the following libraries: scikit-learn (version 1.2.0)
[30], extreme gradient boosting (XGBoost; version 1.7.3) [31],

OPTUNA (version 3.1.0) [32], imbalance-learn (version 0.11.0)
[33], and Shapley additive explanations (SHAP; version 0.41.0)
[34]. Initially, we partitioned our dataset into a 75%:25%
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train:test split, preventing data leakage by keeping each
participant’s data exclusively in either the training or test set.
We conducted feature prefiltering by removing features with
no or low variance, many missing observations, and a high
correlation with other features. We compared filtering and
wrapper-based methods and embedded feature selection methods
with XGBoost classifiers for feature selection. We used data
missingness, variance, and cross-correlation thresholding-based
feature selection for the filtering-based method and the
sequential forward selection method for the wrapper-based
method. Standard preprocessing was applied to selected features,
comprising imputation using median values, scaling
transformations, and data normalization. To address the class
imbalance and improve the robustness of our classification
models against overfitting to the majority class, we used the
synthetic minority oversampling technique (SMOTE) [35], a
method for generating synthetic minority class samples to
balance the dataset. We applied SMOTE at 2 stages of the
model’s development. First, the training data folds were
balanced using SMOTE during the cross-validation process.
We then applied SMOTE to the entire training dataset in
preparation for the final model fitting. For pipeline details, refer
to Multimedia Appendix 2.

In our study, we focused on the prediction task of identifying
(1) the presence and (2) the state transitions of depression

symptoms using passively sensed smartphone data and
supervised machine learning models. Figure 3 outlines how
data was used for prediction. Specifically, 3 models were
examined, namely k-nearest neighbors, support vector classifier,
and XGBoost, all of which are commonly used models in digital
phenotyping studies [36,37]. To fine-tune feature filtering,
transformation functions, classification model, and SMOTE
hyperparameters, we used stratified grouped 5-fold
cross-validation, using the OPTUNA framework [32]. The
primary objective in the hyperparameter optimization process
was to maximize the F1-score, which balances precision and
recall, thereby ensuring a more reliable evaluation of model
performance. We used a pruning early stopping technique, which
ceases training if there is no improvement in the F1-score (our
chosen validation metric). Finally, we used the test data and
bootstrapping validation (using 10,000 bootstrap samples from
training data) to evaluate the model performance, assessing the
performances with accuracy, precision, recall, negative
predictive value (NPV), and F1-scores, as defined in Multimedia
Appendix 3. F1-score is a valuable metric because maximizing
it ensures that both false positives (identifying a participant who
is nondepressed as depressed) and false negatives (failing to
identify a participant who is depressed) are minimized. High
recall reflects low false-negative classification, so we
emphasized its importance in model performance evaluation.

Figure 3. Schema for depression presence and transition prediction using passive behavioral data. An asterisk (*) depicts a model using the PHQ-9
measurement from the preceding biweekly period as a predictor. Time point t0 on the analysis timeline represents the active phase, and points from t1
to t26 represent the passive phase. PHQ-9: 9-item Patient Health Questionnaire.

Measuring Feature Importance
For the final part, focusing on model interpretation, we assessed
the importance of features (behavioral markers) for the
best-performing XGBoost models to gain insight into the
underlying classification mechanisms of the model. We
evaluated the importance of each feature for depression presence
and the state transition classifications using SHAP values [34].
SHAP values measure each feature’s contribution to the model
prediction, their relative importance compared with other
features, and the significance of feature interactions.

Ethical Considerations
The Helsinki and Uusimaa Hospital District’s Ethics Committee
approved the research protocol for the MoMo-Mood study
(approval number § 125/2018). A research permit was granted
by Helsinki and Uusimaa Hospital District Psychiatry. This
covered data streams, data collection platform security, and
participants’ consent information. All data in transit were
encrypted, and participant privacy was a key design value. Local
IT support and the research ethics committee approved the
written data security statement. Study participants were
presented with full study information and data collected prior
to providing written consent. The participants were allowed to
withdraw whenever they chose. As remuneration for their

J Med Internet Res 2024 | vol. 26 | e56874 | p. 5https://www.jmir.org/2024/1/e56874
(page number not for citation purposes)

Ikäheimonen et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


participation, participants received 4 movie tickets at the end
of the initial phase of the study.

Results

Descriptive Statistics
The raw data from the passive collection phase contained over
67 million data points, and 819 biweekly PHQ-9 surveys
gathered data from 99 participants from 4 subgroups: 25 healthy
controls, 46 patients with MDD, 16 patients with MDD|BPD,
and 12 patients with MDE|BD. Participant selection, filtering,
and preprocessing reduced the raw data to 327,200 data points
(818 observations with 401 data features) and PHQ-9 scores to
818 observations. The resulting dataset had 83 participants,
comprising 20 healthy controls, 41 patients with MDD, 12
patients with MDD|BPD, and 10 patients with MDE|BD.

PHQ-9 Scores
Most of the patients’ PHQ-9 scores during the passive data
collection phase remained within the range of 5-19, representing

mild to moderate clinical depression, while most control scores
remained within the range of 0-4, representing no depression.
The group-wise mean scores over the passive phase were as
follows: control group, 1.2 (SD 1.8); MDD group, 11.9 (SD
6.7); MDE|BD group, 13.7 (SD 6.5); and MDD|BPD group,
13.8 (SD 6.6). It is noteworthy that the patient group scores
predominantly represent mild to moderately severe clinical
depression. Figure 4 [38] presents these differences and the
distribution of PHQ-9 scores across the various groups.

On average, PHQ-9 scores remain at similar levels within patient
groups throughout the study, while all patient groups express a
slightly decreasing trend at the beginning of the study. At the
group level, MDE|BD and MDD|BPD groups exhibited more
fluctuation in the scores toward the end of the study period as
the number of participants within those groups decreased.
Control group scores exhibited a slightly decreasing trend.
Figure 5 shows the overall trends in PHQ-9 scores, averaged
over each group throughout the study. It is worth noting that
the number of participants decreased over time, leading to
increased fluctuations in average scores.

Figure 4. PHQ-9 score distributions for control and patient groups.To assess differences in PHQ-9 scores across various groups, we used a generalized
estimating equations approach. We chose the method due to its effectiveness in dealing with correlated response data and its ability to provide robust
SEs. The analysis revealed statistically significant differences in PHQ-9 scores between the control group and each of the patient groups. The significance
of these differences was high, with P<.001 for each comparison. MDD: major depressive disorder; MDD|BPD: major depressive disorder with comorbid
borderline personality disorder; MDE|BD: major depressive episodes with bipolar disorder; PHQ-9: 9-item Patient Health Questionnaire.
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Figure 5. Averaged PHQ-9 score trends for controls and patient groups (standard deviations depicted by shaded regions). MDD: major depressive
disorder; MDD|BPD: major depressive disorder with comorbid borderline personality disorder; MDE|BD: major depressive episodes with bipolar
disorder; PHQ-9: 9-item Patient Health Questionnaire.

We compared the groups by depression severity by categorizing
participants using a cutoff PHQ-9 score threshold of 10.
Participants with a PHQ-9 score of 10 or higher were
categorized as “Depressed,” and those below 10 were
categorized as “Nondepressed.” Table 2 shows the prevalence
of depression severity across different patient groups.

We categorized the 818 data points into 2 groups: 347 (42.4%)
participants who are depressed and 471 (57.6%) participants
who are nondepressed, resulting in mildly imbalanced classes
considering the classification tasks. We assessed biweekly
depression state transitions for each group, as described in Table
1. Table 3 summarizes these transitions. Notably, the number

of transitions for “Declines” and “Improves” was significantly
lower than those for “Remains Depressed” and “Remains
nondepressed.”

These results show that in the data, the state changes in
depression are infrequent compared with the occurrences where
the state remains the same. Here, we noticed that transition
classes have a significant imbalance, as only 119 (14.5%) out
of 818 state changes counted as transitions, and 699 (85.5%)
were stationary. This pronounced imbalance could bias
classification algorithms toward the majority class, necessitating
corrective measures for reliable analysis in subsequent stages.

Table 2. Distribution of PHQ-9a scores by severity and group (n=818).

TotalMDDdMDD|BPDcMDE|BDbControlGroup

Depression severity, n (%)

347 (42.4)231 (28.2)50 (6.1)65 (7.9)1 (0.1)Depressed

471 (57.6)207 (25.3)24 (2.9)36 (4.4)204 (24.9)Nondepressed

818 (100)438 (53.5)74 (9)101 (12.3)205 (25.1)Total

aPHQ-9: 9-Item Patient Health Questionnaire.
bMDE|BD: major depressive episodes with bipolar disorder.
cMDD|BPD: major depressive disorder with comorbid borderline personality disorder.
dMDD: major depressive disorder.
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Table 3. Depression state transition counts for the control group and each patient group.

TotalMDDcMDD|BPDbMDE|BDaControlGroup

Transition, n

4934591Declines

704311151Improves

32022242570Remains depressed

3791391720203Remains nondepressed

81843874101205Total

aMDE|BD: major depressive episodes with bipolar disorder.
bMDD|BPD: major depressive disorder with comorbid borderline personality disorder.
cMDD: major depressive disorder.

Data Completeness
Participant compliance and, thus, data completeness decreased
as the study’s passive phase progressed. PHQ-9 survey answer
compliance dropped below 70% after 6 weeks (3 biweekly
periods) had passed, and after that, it continued to decline
steadily. For further details, refer to Multimedia Appendix 4.
Passive data collection compliance shows a pattern similar to
answering the PHQ-9 survey. Most of the missing data occurred
due to the participant dropping out of the study, while some
participants had gaps in data collection. Notably, only a few
participants remained in the study for the entire year. Also, the
data collection for participants was incomplete due to missing
features.

Statistical Analysis
Two-sample distributional testing using a 2-sample
Kolmogorov-Smirnov test identified 20 significant features
(5%), with P values ranging from .0045 to .0497. However,
after applying the FDR correction for multiple comparisons at
a significance level  =.05, none of these features were
statistically significant; thus, we found no evidence for patient
group behavioral data differing from control data. For further
details, see Table S1 in Multimedia Appendix 5.

Correlation analysis between the behavioral features and PHQ-9
scores using Spearman ranked correlation and FDR correction
for multiple comparisons at significance level  =.05 resulted in
32 (8%) out of 401 features exhibiting statistically significant
correlations. The majority (18/32, 56%) of the correlations were
very weak (absolute value from 0 to 0.19), and the rest (14/32,
44%) were weak (absolute value from 0.2 to 0.39). For more
information, refer to Table S2 in Multimedia Appendix 5.

Depression Presence Classification
We used 2 distinct approaches for classifying the presence of
depression. The initial approach treated all biweekly aggregated

passive data features (aligned with corresponding biweekly
PHQ-9 scores) as independent observations. Using the XGBoost
classifier with filter-based feature selection, we achieved the
highest accuracy of 66% (95% CI 56%-70%) and an F1-score
of 0.66 (95% CI 0.5-0.7). The performance comparison of
various classifiers and feature selection methods is detailed in
Table S1 in Multimedia Appendix 6, while Table S2 in
Multimedia Appendix 6 provides a comprehensive summary
of the model’s performance.

For the second modeling approach, we included the measured
PHQ-9 score from the previous biweekly period as a predictor
in the model. Model performance improves notably after adding
the predictor. XGBoost classifier with a filtering-based feature
selection method achieved the best accuracy of 82% (95% CI
80%-84%) and a corresponding F1-score of 0.82 (95% CI
0.80-0.85) across the test data of 208 samples.

This classifier outperformed the other classifiers (k-nearest
neighbor and support vector classifier) by a small margin. The
“Nondepressed” class (99 samples) achieved a precision of 0.80
and recall of 0.83, with an NPV of 0.84 and an F1-score of 0.81,
reflecting balanced performance. The “Depressed” class (109
samples) had a slightly higher precision of 0.84, a recall of 0.81,
an NPV of 0.80, and an F1-score of 0.82, indicating a similar
level of predictive accuracy to the “Nondepressed” class. Both
macro- and weighted averages across precision, recall, F1-score,
and NPV are 0.82, demonstrating consistent performance in
detecting both the presence and absence of depression. Table
S3 in Multimedia Appendix 6 summarizes the performance of
selected classifiers and feature selection methods. Table 4
summarizes the XGBoost classifier's performance, and Figure
S1 in Multimedia Appendix 6 presents the receiver operating
characteristic curve for the classifier.
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Table 4. XGBoosta model performance metrics for depression presence classification (using previous PHQ-9b score as a predictor).

Support, nF1-scoreNPVcRecallPrecisionMetric

Class

990.810.840.830.80Nondepressed

1090.820.800.810.84Depressed

Averages

2080.820.820.820.82Macroaverage

2080.820.820.820.82Weighted average

aXGBoost: extreme gradient boosting.
bPHQ-9: 9-item Patient Health Questionnaire.
cNPV: negative predictive value.

Depression State Transition Classification
For depression state transition classification, we used the
XGBoost classifier with feature filtering since it performed best
in the depression presence classification. The model was able
to classify relatively well the cases where a participant’s state
remains the same, while the accuracy is considerably lower for
cases where the state changes. Applying SMOTE’s synthetic
oversampling technique to alleviate class imbalance significantly
increased the recall of the minority classes (depression
transitions for “Declines” and “Increases”). The model achieved
an accuracy of 75% (95% CI 72%-76%) and a corresponding
F1-score of 0.67 (95% CI 0.63-0.69). Table 5 summarizes the
model validation results for each transition type. For the
transition of “Declines,” the model shows high NPV (0.98) but
lower precision (0.34). It indicates that while the model reliably
identifies cases where the state will not decline, it is less accurate
at correctly identifying the cases where it declines. The recall
is 0.76, leading to an F1-score of 0.47, signifying unbalanced
classification performance. “Increases” shows a similar pattern

with high NPV (0.96) and moderate recall (0.74) but lower
precision (0.46), resulting in an F1-score of 0.57, also indicating
unbalanced classification performance. For the “Remains
Depressed” and “Remains nondepressed” states, the model
exhibits higher precision (0.93 and 0.95, respectively) and NPV
(0.86 and 0.83, respectively), along with recall rates of 0.72 and
0.77, leading to a more balanced performance with F1-scores
of 0.81 and 0.85. The macroaverage F1-score of 0.67, compared
with the overall accuracy of 0.75, reflects the effect of class
imbalance on the model's performance. Further, Figures S2 and
S3 in Multimedia Appendix 6 display classification outcomes
for the test data and a multiclass receiver operating characteristic
curve for the XGBoost classifier.

The results show the model’s ability to classify most cases
correctly. With an overall accuracy of 75%, the model
effectively balances precision across different cases. These
findings demonstrate the model’s potential for predicting
depression state transitions, leveraging smartphone-sensed
behavioral data and self-reported PHQ-9 scores.

Table 5. XGBoosta model performance metrics for depression state transition classification (using previous PHQ-9b score as a predictor).

Support, nF1-scoreNPVcRecallPrecisionMetric

Transition

170.470.980.760.34Declines

230.570.960.740.46Increases

740.810.860.720.93Remains depressed

940.850.830.770.95Remains nondepressed

Averages

2080.670.910.750.67Macroaverage

2080.770.870.750.84Weighted average

aXGBoost: extreme gradient boosting.
bPHQ-9: 9-Item Patient Health Questionnaire.
cNPV: negative predictive value.

Feature Importance Analysis Using SHAP Values
In our analysis of feature importance for classification of the
presence of depression and depression state transition, we
evaluated the relative significance of different features by

examining the SHAP values in the best-performing XGBoost
models. In summary, our findings highlight the previous PHQ-9
score as the most impactful feature when included in the model.
For depression presence classification, additional significant
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features include smartphone screen status, app usage, battery
level, phone call, and location–related information. In addition
to the previous PHQ-9 score for state transition classification,
screen status, location–, battery level– and accelerometer–related
features stand out as the most important. Conversely, app usage
and communication–related features had a limited impact on
the models.

The importance of the previous PHQ-9 score implies that the
depression scores are autocorrelated, thus reflecting future
depression levels. Smartphone screen status (e.g., screen on and
off event counts) reveals users' interaction with the device,
showing usage frequency and patterns. Similarly, battery level
indicates phone usage, reflecting battery drains and charges.
App usage features (especially apps labeled as leisure, sports,
and social media) suggest behavioral patterns related to such
activities as watching movies or listening to music, exercising,
and communicating via social media. Finally,
accelerometer-related features reveal physical activity and
mobility patterns.

Figures S1-S3 in Multimedia Appendix 7 present the most
important features of these classifications. Specifically, Figure
S1 in Multimedia Appendix 7 illustrates the important features
of depression presence classification without considering the
previous biweekly PHQ-9 scores. Conversely, Figure S2 in
Multimedia Appendix 7 shows the results for the model,
including these scores as a predictor. Finally, Figure S3 in
Multimedia Appendix 7 explores features pertinent to depression
state transition classification.

Discussion

Principal Findings
Our analysis encompassed passively sensed digital behavioral
data, which we compared against actively collected PHQ-9
survey data. Using the generalized estimating equation approach,
we discovered a statistically significant difference in PHQ-9
score distributions between the control and patient groups. It is
important to note that some patients likely experienced recovery
after recruitment for the study, potentially lessening the severity
of symptoms reflected in their PHQ-9 scores. Consequently,
our data could underrepresent the depression severity spectrum,
particularly among patients with more severe depression.

After adjusting for multiple comparisons, distributional testing
on behavioral features revealed no significant differences
between control and patient groups. This finding suggests that
the differences in behavioral data at the group level are minimal.
Therefore, our study implies that detecting these subtle
differences might require larger sample sizes or alternative
statistical methodologies that can leverage hierarchical structures
and temporal correlations.

Correlation analysis identified 32 behavioral features with weak
or very weak correlations with PHQ-9 scores, predominantly
involving smartphone screen interaction (18 features) and
accelerometer data (14 features). Despite most features showing
no significant correlation with PHQ-9 scores, their potential
value in classification tasks remains, especially considering

possible nonlinear relationships or interactions with other
features.

For the depression prediction tasks, we found that the XGBoost
classifier with filtering-based feature selection performed the
best in discriminating between participants who are depressed
and nondepressed, achieving 66% accuracy. The accuracy
increased to 82% when we added the PHQ-9 score from the
previous biweekly period as a predictor. The difference implies
the importance of the temporal structure of the data. Therefore,
we propose to include temporal information in future analyses
to improve the accuracy. Further, for clinical monitoring
applications, information about participants’depression histories
should be available, providing the temporal context necessary
to enhance the model's predictive accuracy.

Furthermore, our results show that the XGBoost classifier,
combined with filter-based feature selection and PHQ-9
measurement from the previous biweekly monitoring period as
a predictor, can differentiate mood state transitions with a
classification accuracy of 75%. While promising, this accuracy
level suggests room for further improvement in the model’s
performance. Like the depression presence classification, we
suggest using more comprehensive methods, personalized
models, and temporal information. Additionally, we suspect
that the data’s limited sample size and sparsity of transition
events hinder the classification performance. Therefore, model
development should benefit from a larger sample.

Finally, feature importance analysis revealed insights into the
key features of depression prediction models. The most
significant predictor for detecting and classifying depression
presence was previous biweekly PHQ-9 scores, complemented
by features related to accelerometer, app usage, battery level,
location, and screen events. The results emphasize the
significance of daily behavioral patterns and time-of-day
distinctions (morning, afternoon, evening, and nighttime) in
accurately predicting depression. Interestingly, some features
were identified by both the correlation and feature importance
analyses for classifier models. While the methods and objectives
of these analyses differ, the consistency in identifying the same
key features across both approaches implies their potential
relevance in depression prediction.

Comparison With Previous Studies
Our study aligns methodologically with previous research using
validated depression assessments and analyzing passively
collected smartphone behavioral features. Also, it focuses on
statistical inference and machine learning techniques to classify
depression among participants and distinguish participants based
on behavioral data. Additionally, the identified important
features are consistent with earlier research reporting features
related to phone usage [9,10,14,15], physical activity [11-17],
and location data [9-15,17]. By contrast, the importance of
features related to communication [12,14,17] were slightly
underrepresented in our analysis.

Our classification results are numerically comparable to previous
studies using machine learning methods with smartphone data
for depression detection. Using a cohort of college students,
Chikersal et al [14] achieved an 85% accuracy and an F1-score
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of 0.82 in the postsemester depression detection task. They also
achieved an 85% accuracy and an F1-score of 0.80 in detecting
a change in the depression state task. Similarly, Wang et al [15]
used machine learning and deep learning models to detect
depression using a subset of smartphones, also from a cohort
of college students, achieving an F1-score of 0.65 using a
machine learning model and an F1-score of 0.7 using deep
learning.

However, our study differentiates itself by including a diverse
cohort of real outpatients, clinically diagnosed with structured
interviews, alongside control participants, thereby offering a
broader perspective on depression. Additionally, the data are
collected over an extended period in a naturalistic setting,
enhancing the reliability of the findings. Unlike other studies
that often focus on student populations, it demonstrates the
feasibility of digital behavioral monitoring in real outpatients.
Furthermore, it excludes certain data features like physiological
measurements and social engagement metrics. Lastly, the study
does not aim to predict future depressive states, setting it apart
from other predictive modeling efforts in the field.

Limitations
While this research yields insightful outcomes, it is crucial to
acknowledge certain limitations. First, dropouts and missing
data increased substantially after the first 3 biweekly periods.
Some participants provided data only for 1 biweekly period,
limiting our model’s ability to capture patient symptom
fluctuations. Second, our analysis does not fully account for the
hierarchical and autocorrelational structure of the data. We rely
on simplified analysis, using aggregated features and pooled
participants, resulting in the loss of available information.
Finally, our study does not accommodate external factors that
might impact the participants’behavior patterns and mood states.
Given that the data collection partially took place during the
COVID-19 era, factors such as social isolation could have

played a role in changing the behavior patterns and emotional
states of participants.

Recommendations for Future Work
This study lays the groundwork for multiple future research
endeavors. A direct expansion of our work would be the
implementation of personalized models designed to predict the
depression state of individuals. These personalized models,
which incorporate both group and participant variations and
sample-level information, have demonstrated improved accuracy
in depression classification tasks [39]. Furthermore, we
recommend fully using the temporal structure of the data in
classification tasks. Given the inherent variability in
symptomatic periods among patients with depression, analyzing
temporal patterns and trends from longitudinal data could offer
a more accurate representation of their evolving mental states
than single-point estimates. We also encourage the exploration
of deep learning models in future studies, as these models tend
to surpass conventional machine learning methods in predictive
accuracy [15,16]. However, due to their complexity and less
clear interpretability relative to more traditional methods, we
suggest not starting with these models at the outset, instead
gradually incorporating them into the analysis. Lastly, to address
the challenges posed by the unbalanced dataset in our study,
we suggest collecting additional data to enhance the robustness
and generalizability of future research findings.

Conclusions
In summary, this study demonstrates the potential of using
smartphone-sensed behavioral data for monitoring depression
symptoms, thereby paving the way for personalized and more
effective mental health care. The results contribute to an
expanding body of evidence supporting the integration of
data-driven methods into mental health services. These insights
may complement and enhance clinical practices, supplementing
conventional diagnostic and monitoring approaches.
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