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Abstract

Background: Systematic reviews (SRs) are considered the highest level of evidence, but their rigorous literature screening
process can be time-consuming and resource-intensive. This is particularly challenging given the rapid pace of medical
advancements, which can quickly make SRs outdated. Few-shot learning (FSL), a machine learning approach that learns effectively
from limited data, offers a potential solution to streamline this process. Sentence-bidirectional encoder representations from
transformers (S-BERT) are particularly promising for identifying relevant studies with fewer examples.

Objective: This study aimed to develop a model framework using FSL to efficiently screen and select relevant studies for
inclusion in SRs, aiming to reduce workload while maintaining high recall rates.

Methods: We developed and validated the FSL model framework using 9 previously published SR projects (2016-2018). The
framework used S-BERT with titles and abstracts as input data. Key evaluation metrics, including workload reduction, cosine
similarity score, and the number needed to screen at 100% recall, were estimated to determine the optimal number of eligible
studies for model training. A prospective evaluation phase involving 4 ongoing SRs was then conducted. Study selection by FSL
and a secondary reviewer were compared with the principal reviewer (considered the gold standard) to estimate the false negative
rate.

Results: Model development suggested an optimal range of 4-12 eligible studies for FSL training. Using 4-6 eligible studies
during model development resulted in similarity thresholds for 100% recall, ranging from 0.432 to 0.636, corresponding to a
workload reduction of 51.11% (95% CI 46.36-55.86) to 97.67% (95% CI 96.76-98.58). The prospective evaluation of 4 SRs
aimed for a 50% workload reduction, yielding numbers needed to screen 497 to 1035 out of 995 to 2070 studies. The false negative
rate ranged from 1.87% to 12.20% for the FSL model and from 5% to 56.48% for the second reviewer compared with the principal
reviewer.

Conclusions: Our FSL framework demonstrates the potential for reducing workload in SR screening by over 50%. However,
the model did not achieve 100% recall at this threshold, highlighting the potential for omitting eligible studies. Future work should
focus on developing a web application to implement the FSL framework, making it accessible to researchers.
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Introduction

The evidence generated from systematic reviews (SRs) and
meta-analyses of the published literature is considered to reflect
the pinnacle of the evidence hierarchy pyramid [1,2], which in
part explains the approximately 20-fold increase in published
SRs between 2000 and 2019 [3]. However, conducting an SR
requires significant time and human resources, particularly for
the screening and selection of potentially eligible studies, data
extraction, and bias assessment [4]. Furthermore, some SRs can
be outdated by the time of publication, especially in highly
progressive medical fields [5].

Multiple automated artificial intelligence (AI) tools have been
developed using natural language processing techniques (eg,
Abstrackr [6], DistillerSR [7], EPPI-reviewer [8], Rayyan [9],
and Covidence [10]) to facilitate the SR processes, particularly
study screening. Although the use of automated tools remains
controversial [11], the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) 2020 guideline [12]
considers them a valuable tool given their potential to
significantly reduce screening time or workload [13-18].

These tools [6-10] have largely been developed using supervised
machine learning approaches with various document
representation techniques and active learning frameworks, which
typically require a considerable number of annotated studies as
a training set. For example, Abstrackr typically requires 100
studies or more that have been manually screened by a reviewer
before making a prediction [13]. During the model training
process, iterative annotation of eligible and ineligible studies
is required for improved model performance, with the AI model

ranking or reordering studies according to their relevance.
Subsequently, reviewers can choose between excluding all
ineligible AI-predicted studies or simply using the predictions
as a guide. The drawback of this approach is that reviewers must
annotate studies without previous knowledge of the sufficient
number of studies required for model training.

“Few-shot learning” (FSL) is a supervised machine learning
approach that can learn from a small number of samples for
model training and generalize from limited data [19]. Unlike
traditional machine learning, it typically requires large datasets
for high accuracy. FSL relies on metric learning during training
to measure the similarity between new samples (unseen data)
and known samples. Recently, FSL approaches have been
successfully applied in many research areas, including computer
vision, robotics, and natural language processing [19]. In
addition, FSL has been used for concept extraction in health
care, such as named entity recognition and text classification
[20]. Therefore, the FSL approach is potentially useful for the
development of SRs, particularly for study eligibility screening.
Only a small number of studies need to be identified for training
the FSL framework; theoretically, this approach should make
machine learning faster at identifying the most relevant studies
for SR compared with traditional approaches.

To the best of our knowledge, the use of FSL has yet to be
applied as an automated tool for screening studies for SRs.
Therefore, this study aimed to develop a new automated
framework using FSL to facilitate the SR screening process
with similarly high performance to traditional approaches. The
model was trained and evaluated using previously published
SRs completed within our institute and was prospectively
validated.
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Figure 9. Inline graphic 9.

Methods

Model Development and Validation Phase

Data Source
A total of 9 SRs [21-29], hereafter called SR1-9, were used to
develop and validate the FSL framework. These SRs covered
a range of SR topics including therapy (n=4), prognosis or risk
(n=2), genetic association (n=2), and economic evaluation (n=1).
All were conducted and published by researchers from the
Department of Clinical Epidemiology and Biostatistics, Faculty
of Medicine Ramathibodi Hospital, Mahidol University between

2016 and 2018. This diverse set of 9 SRs was chosen to
encompass various types of SRs, providing a comprehensive
dataset to evaluate the flexibility and robustness of the FSL
framework. The total number of identified studies for the 9 SRs
ranged between 426 and 7341, of which 9 to 48 studies met the
eligibility criteria for individual SRs (Table 1). Titles and
abstracts of the studies identified were used as input for model
training; the median number of tokens (words) per individual
study ranged between 244 and 305. For each SR, the principal
and second reviewers selected studies based on individual
eligibility criteria. These reviewers included experts in specific
areas, such as general physicians, surgeons, pharmacists, and
clinical epidemiologists.
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Table 1. Individual systematic review characteristics for model development and prospective evaluation.

Principal reviewer or
secondary reviewer
background

Words per
study medi-
an (IQR)
(range)

Total words

(Vocabulary size)

Number of
studies

Study typeProject nameStudy

Surgeon285 (206-
343) (32-
1629)

1,120,513 (37,777)3966Therapeutic studiesMesh Position for Hernia Pro-
phylaxis After Midline Laparo-
tomy: A Systematic Review
and Network Meta-Analysis of

SRa1

Randomized Clinical Trials
[21]

Epidemiologist or sur-
geon

244 (164-
307) (37-
877)

411,157 (18,174)1702Therapeutic studiesThe Efficacy of Antibiotic
Treatment versus Surgical
Treatment of Uncomplicated
Acute Appendicitis: Systematic

SR2

Review and Network Meta-
Analysis of Randomized Con-
trolled Trial [22]

Internist or pharmacist297 (214-
364) (20-
1385)

2,205,482 (71,645)7341Therapeutic studiesEfficacy and Safety of Urate-
Lowering Agents in Asymp-
tomatic Hyperuricemia: System-
atic Review and Network Meta-

SR3

Analysis of Randomized Con-
trolled Trials [23]

Pharmacist or internist272 (195-
337) (33-
3509)

874,261 (30,226)3144Therapeutic studiesEfficacy and Safety of Antiviral
Agents in the Prophylaxis and
Pre-Emptive Strategies for Cy-
tomegalovirus Infection on

SR4

Kidney Transplantation: A
Systematic Review and Net-
work Meta-Analysis [24]

Physician274 (189-
340) (20-
821)

191,189 (15,298)699Prognostic or risk
studies

Association Between Vitamin
D and Uric Acid in Adults: A
Systematic Review and Meta-
Analysis [25]

SR5

Epidemiologist292 (232-
339) (17-
1112)

125,362 (10,843)426Prognostic or risk
studies

Prognostic Model of Complica-
tions in Type 2 Diabetes: Sys-
tematic Review and Meta-
Analysis [26]

SR6

Pharmacist259 (204-
312) (29-
635)

444,383 (26,883)1708Genetic association
studies

The Association Between Ge-
netic Polymorphisms in
ABCG2 and SLC2A9 and
Urate: An Updated Systematic
Review and Meta-Analysis [27]

SR7

Physician305 (255-
346) (70-
647)

318,339 (18,787)1053Genetic association
studies

AHSG Gene Polymorphisms,
Serum Fetuin-A Levels and
Association with Type 2 Dia-
betes and Cardiovascular Dis-

SR8

eases: A Systematic Review
and Meta-Analysis [28]

Pharmacist244 (176-
322) (18-
2542)

463,892 (30,602)1653Economic evalua-
tion studies

Evaluation of the Cost Utility
of Phosphate Binders as a
Treatment Option for Hyper-
phosphatemia in Chronic Kid-

SR9

ney Disease Patients: A System-
atic Review and Meta-Analysis
of the Economic Evaluations
[29]
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Principal reviewer or
secondary reviewer
background

Words per
study medi-
an (IQR)
(range)

Total words

(Vocabulary size)

Number of
studies

Study typeProject nameStudy

Pulmonologist or on-
cologist

314 (225-
442) (48-
2553)

386,456 (21,281)1061Therapeutic studiesEfficacy of EGFR-TKIs Target-
ed Therapy as Adjuvant Sys-
temic Treatment for Non-Small
Cell Lung Cancer: A Systemat-
ic Review and Meta-Analysis
[30]

Prospective evalua-
tion SR1

Rehabilitation physi-
cian or obstetrician

307 (254-
362) (19-
4422)

561,904 (22,733)1699Therapeutic studiesEffect of Repetitive Peripheral
Magnetic Stimulation on Upper
Extremity Function After
Stroke: A systematic review
and meta-analysis [31]

Prospective evalua-
tion SR2

Oncologist or pulmo-
nologist

324 (271-
384) (20-
2539)

752,467 (26,540)2136Therapeutic studiesRegular versus As-needed
treatments for mild asthma in
children, adolescents, and
adults: A systematic review and
meta-analysis [32]

Prospective evalua-
tion SR3

Obstetrician or rehabil-
itation physician

301 (243-
361) (44-
6122)

522,366 (22,494)1646Prognostic or risk
studies

The association between cervi-
cal sonographic and successful
induction of labor: A Systemat-
ic review and meta-analysis
[33]

Prospective evalua-
tion SR4

aSR: systematic review.

Data Splitting
In each SR, identified studies were dichotomized as either
eligible or ineligible, denoted as S+ and S–, respectively. Studies
were subdivided into training, validation (for model tuning),
and test pools according to the following steps (Figure S1 in

Multimedia Appendix 1). First, each eligible study 

was randomly assigned to the training , validation ,

or test pools with a split ratio of 50%:25%:25%. The
eligible studies in the data pools were denoted as

for the training pool,

for the validation pool, and

for the test pool, where n is the number
of eligible studies in the pool. Second, training and validation

pools included the integration of ineligible studies and

, which were randomly selected from the overall S–. The

number of ineligible studies and included in the
training and validation pools was ten times higher than the

eligible studies and , that is, in a ratio of 1:10
representing 1 eligible per 10 ineligible studies. Finally, the

remaining ineligible studies were assigned as and then

combined with to form the test pool. The ineligible studies
in training, validation, and test pools could be denoted as

, , and

, respectively, where m is the number
of ineligible studies in each pool.

Experimental Scenarios
Multiple scenarios for each SR were tested by varying the

number of studies included in and as follows:

• Using all studies in both training and validation pools
(scenario 1).

• Reducing S+ iteratively by 10% in the training and
validation pools (scenario 2, 3, …, i) to a minimum number
of 2 in S+ (as training data requires a minimum of one
positive paired sample in the model framework [refer to

Data pairing section]). For and selection in
scenario 2 to scenario i, the Euclidean distance between the
centroid (ie, the estimated center of all S+ in the vector
space) and individual S+ was used as a criterion for the
iterative exclusion of S+ from the training and validation
pools. The S+ farthest from the centroid was initially
excluded for each iteration.

Furthermore, the S– number for both pools was reduced to
maintain a constant ratio (ie, 1:10) of S+ and S–. In the test pools,

the numbers of and remained the same as scenario 1
for all scenarios to determine the optimal number of eligible
studies required for model training and validation.

Data Pairing
The model was trained using the Sentence-Bidirectional Encoder
Representation for Transformer (S-BERT) [34] which requires
paired samples for input data that were generated from each
data pool (ie, training, validation, and test pools). For instance,

each was paired with and ; and

pairs were labeled as 1 (ie, positive pairs), whereas and
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pairs were labeled as 0 (ie, negative pairs). The same pairing
process was also performed in the validation set and used for
model tuning. All potential combinations of positive paired

samples were represented by , where is a
combination of positive paired samples, and the number of
eligible studies. For instance, the scenario with 6 eligible studies
will have 60 ineligible studies. A training dataset will consist
of 4 and 40 eligible and ineligible studies, respectively. These
could be paired as 6 positive pairs and 160 negative pairs with
a total of 166 paired samples (Figure S2 in Multimedia
Appendix 1). A validation dataset includes 2 eligible and 20
ineligible studies with a total of 41 paired samples. The
remaining studies were used as test data.

Model Architecture and Word Embedding
This study adopted an FSL framework that required several
samples for initial model training. We used S-BERT, a Siamese
networks architecture model [35] (Figure S3 in Multimedia
Appendix 1), for model training with pretrained weighting of
“all-mpnet-base-v2,” available on Hugging Face [36]. Each
paired sample represented 2 individual studies, study A and B.
Raw text data (ie, title and abstract) from each study were fed
into S-BERT and transformed into a numerical vector
represented by a size of 1 × 384 dimensions. The cosine
similarity score was computed from the vector representations
of studies A and B, normalized to a scale between 0 and 1 to
align contrastive loss in model training. This training approach
learns vector representations that bring similar data points closer
together and push dissimilar data points further apart. The raw
text for each study included was truncated to a maximum length
of 384 tokens (words) for S-BERT.

Experiment
The FSL model framework was trained separately for each SR
project, with training tailored to the specific number of paired
samples for each scenario. For instance, in a scenario involving
6 eligible and 60 ineligible studies, the dataset was structured
as follows:

• Training data: 4 eligible and 40 ineligible studies were used,
resulting in 6 positive pairs and 160 negative pairs (Figure
S2 in Multimedia Appendix 1).

• Validation data: 2 eligible and 20 ineligible studies were
used, resulting in a total of 41 paired samples.

• Test data: data from the remaining studies were used for
testing.

This ensured models were trained and evaluated on datasets
specifically tailored to the characteristics of each SR project.
The experiments consisted of the following steps:

Determination of the Optimal Number of Eligible Studies
for Model Training
For each experimental scenario, the number needed to screen
(NNS) and %Reduced workload, also known as work, saved
oversampling [37], were estimated using the following formulae:

where TP and FP are true and false positive studies (predicted
eligible studies), and N is the total number of studies for each
SR. The lower the value for the NNS, the higher the %Reduced
workload. The %Reduced workload was estimated by fixing
the recall rate at 100% (ie, sensitivity), plotted against the
number of eligible studies used for training (N positive) for
each scenario. The optimal N positive was estimated using the
Kneedle algorithm [38], which identifies the knee point of the
graph. This method was chosen because it automatically detects
the point where the trend in the data significantly changes,
providing a more objective and accurate estimation compared
with visual inspection or the elbow method.

A CI [39] for the model performance metric (eg, %Reduced
workload, precision, recall, F1-score) was estimated as follows:

where  is the model performance metric, N is the number of
studies identified for each SR, Z is a standardized normal
distribution, and α is a type I error of .05.

Similarity Threshold
Similarity between studies was assessed using a cosine similarity
threshold that represented the distance between 2 vector
representations for each study within a paired sample. For
example, a positive paired sample in a training set consists of

2 eligible studies and . Each study was transformed into
a vector representation with a dimension of 1 × 384. The cosine
similarity score [40] was calculated using the following
equation:

where are vector representations of the first and
second studies within a paired sample.

The cosine similarity score ranges from 1 to –1, where 1
represents perfect similarity between both studies and –1
represents complete dissimilarity enabling quantification of the
degree of similarity between pairs of studies and the
identification of potentially relevant studies based on their vector
representations.

Identification of the optimal similarity threshold was based on
the %Reduced workload as described in the previous phase,
and the feasibility and information available from each of the
SR projects that included 4 to 6 eligible studies and a 10 times
greater number of ineligible studies. The data from the
remaining studies were used as a query set (ie, test pool).
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Following the completion of model training, a support set was

retrieved from . Each was again paired with all studies
from the query set (ie, Q1, Q2, Q3, …, and Qn; Figure S4 in
Multimedia Appendix 1). The average cosine similarity score

for all pairs from the first query study (Q1) for each was
calculated. For instance, the similarity score of Q1 represented
an average cosine similarity score of paired samples between

Q1 and each supporting study set , , , and . The
average cosine similarity score for each query study set (ie, Q1,
Q2, Q3, …, Qn) was ordered from highest to lowest, and an
optimal threshold was selected to achieve 100% recall (ie, the
lowest average similarity score for the eligible studies included).

Prospective Evaluation Phase
Our study prospectively evaluated the FSL framework on four
ongoing SR projects (Prospective evaluation SR [PESR] 1-4;
Table 1). For each PESR, the principal reviewer initially selected
6 eligible and 60 ineligible studies (4 eligible and 40 ineligible
studies for training, and 2 eligible and 20 ineligible studies for
validation), leaving the remaining studies in the query set for
testing. This initial selection was checked and confirmed by a
third senior reviewer and served as the training basis for our
FSL framework. The principal reviewer later completed the
entire study selection process, providing the “ground truth” for
our evaluation.

The FSL framework was applied to rank studies based on
average similarity scores. The top-ranked 50% were positive
studies representing a potential 50% workload reduction, in
contrast to the bottom-ranked 50% which were predicted as
negative studies. Positive studies were then allocated to a
secondary reviewer for independent screening.

The performance was evaluated with the following 2 steps
(Table S1 in Multimedia Appendix 1): (1) comparing the FSL
framework model’s output (positive and negative studies) with
the principal reviewer’s selections, demonstrating model
performance to identify relevant studies and (2) comparing
performance between the secondary reviewer and the principal
reviewer’s screening based on positive studies by FSL
framework. A confusion matrix provided estimates of NNS,
recall, precision, and F1-scores (the harmonic means of precision
and recall) for the query set. In addition, false negative rates
(FNR), that is, the number of eligible studies misidentified by
the FSL framework (not included in the top-ranked 50%,

FNRFSL) and those not selected by the secondary reviewer
(FNRR2) were also estimated. As the model was trained on
abstract and title data only, the evaluation focused solely on the
title and abstract screening.

Results

Optimal Number of Eligible Studies (N positive)
Of the 9 SRs, the optimal number of eligible studies (N positive)
included in the model training varied between 4 and 12 studies,
corresponding to a %Reduced workload of between 80.87%
and 99.37% (Figures S5-S8 in Multimedia Appendix 1). A trend
for a higher %Reduced workload associated with a higher N
positive was observed in SR 1, 3, 4, 5, and 6. In contrast, a
higher N positive did not significantly improve %Reduced
workload for SRs 2, 7, 8, and 9. However, the optimum N
positive ranged between 4 and 12 studies according to the
Kneedle algorithm, as represented by the dashed line (Figures
S5-S8 in Multimedia Appendix 1). Our findings suggest that
the median (range) for the optimum N positive was 9 (4-12)
studies, resulting in a median (range) of 95.78%
(88.87%-99.37%) %Reduced workload. The ideal N positive
for feasible model training ranged from 4 to 6, as indicated by
the similarity threshold, which is considered acceptable by most
reviewers.

Similarity Threshold
Of the 4 therapeutic SRs (ie, SR1-4), the maximum similarity
threshold ranged from 0.439 to 0.617, in line with 100% recall.
These threshold values corresponded to a %Reduced workload
between 64.81% (95% CI 63.14-66.48) and 96.94% (95% CI
96.12-97.76; Table 2 and Figures S9-S12 in Multimedia
Appendix 1). For the prognostic or risk SR5, a similarity
threshold of 0.578 was reported equating to a %Reduced
workload of 84.16% (95% CI 81.45-86.87). A lower %Reduced
workload was observed for prognostic or risk SR6 (51.11%,
95% CI 46.36-55.86 at the similarity threshold of 0.432). For
genetic association SRs, the similarity thresholds were 0.546
(SR7) and 0.635 (SR8), corresponding to %Reduced workload
of 69.11% (95% CI 66.92-71.30) and 97.67% (95% CI
96.76-98.58), respectively. The similarity threshold and
%Reduced workload for the sole economic evaluation SR (SR9)
were 0.636 and 95.34% (95% CI 94.32-96.36), respectively.
Accordingly, the overall median (range) similarity thresholds
and %Reduced workload from our study findings were 0.546
(0.432-0.636) and 84.16% (51.11%-97.67%), respectively.
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Table 2. Reduced workload and similarity threshold for each systematic review included.

Reduced workload, % (95% CI)Optimal similarity scoreType of study and project

Therapeutic study

65.79 (64.31-67.27)0.439SRa1 [21]

96.94 (96.12-97.76)0.617SR2 [22]

87.46 (86.70-88.22)0.544SR3 [23]

64.81 (63.14-66.48)0.539SR4 [24]

Prognostic or risk study

84.16 (81.45-86.87)0.578SR5 [25]

51.11 (46.36-55.86)0.432SR6 [26]

Genetic association study

69.11 (66.92-71.30)0.546SR7 [27]

97.67 (96.76-98.58)0.635SR8 [28]

Economic evaluation study

95.34 (94.32-96.36)0.636SR9 [29]

aSR: systematic review.

Prospective Evaluation
The prospective evaluation included four PESRs, with PESR1-3
representing therapeutic studies and PESR4 a prognostic or risk
study. The total number of studies included ranged from 1061
to 2136, with 49 to 129 of these considered eligible. For model
training, 66 studies (6 eligible and 60 ineligible) were initially
selected, leaving 995 to 2070 studies for testing, with 43 to 123
eligible studies. Our model reduced the number of overall
studies by approximately 50% equating to a workload reduction
of 46.84% to 48.46% (ie, NNS divided by total number of
studies). The NNS ranged from 497 to 1035, with 40 to 108
eligible studies (Table S2 in Multimedia Appendix 1). With the
aspect of the comparison between the FSL framework and
principal reviewer, the FNRFSL varied between 1.87% (95% CI

0-4.44) and 12.2% (95% CI 6.42-17.98), producing a recall rate
(RECFSL) of 87.8% (95% CI 82.02-93.58) to 98.13% (95% CI
95.56-100; Table 3 and Table S2 in Multimedia Appendix 1).
The comparison of screening results between the secondary
reviewer and the principal reviewer based on positive studies
by FSL indicated that PESR1 and PESR4 achieved high recall
rates (RECR2) of 95% (95% CI 88.25-100) and 88.57% (95%
CI 82.48-94.66), respectively, along with FNRR2 of 5% (95%
CI 0-11.75) and 11.43% (95% CI 5.34-17.52). In contrast,
PESR2 and PESR3 indicated high disagreement between both
reviewers, with corresponding recall rates (RECR2) of 80.88%
(95% CI 71.53-90.23) and 43.52% (95% CI 34.17-52.87), with
corresponding FNRR2 of 19.12% (95% CI 9.77-28.47) and
56.48% (95% CI 47.13-65.83; Table 3 and Tables S2-S6 in
Multimedia Appendix 1).
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Table 3. Performance of prospective systematic review evaluation in the test dataset.

Secondary reviewer versus principal reviewerbFew-shot learning versus principal revieweraStudy type and ID

F1secondary review-

er
e (95% CI)

RECsecondary re-

viewer
d (95% CI)

FNRsecondary re-

viewer
c (95% CI)

F1Few-shot learn-

ing
e (95% CI)

RECFew-shot learn-

ing
d (95% CI)

FNRFew-shot learn-

ing
c (95% CI)

Therapeutic study

95 (88.41-100)95.00 (88.25-
100)

5.00 (0-11.75)14.83 (11.71-
17.95)

93.02 (85.40-
100)

6.98 (0-14.60)PESR1f [30]

51.64 (43.85-
59.43)

80.88 (71.53-
90.23)

19.12 (9.77-
28.47)

15.29 (12.83-
17.75)

93.15 (87.36-
98.94)

6.85 (1.06-12.64)PESR2f [31]

51.65 (43.22-
60.08)

43.52 (34.17-
52.87)

56.48 (47.13-
65.83)

18.63 (16.28-
20.98)

87.80 (82.02-
93.58)

12.20 (6.42-
17.98)

PESR3f [32]

Prognostic or risk study

88.57 (82.80-
94.34)

88.57 (82.48-
94.66)

11.43 (5.34-
17.52)

23.46 (20.51-
26.41)

98.13 (95.56-
100)

1.87 (0-4.44)PESR4f [33]

aEvaluation metrics of few-shot learning framework versus principal reviewer, the model evaluation based on the test data.
bEvaluation metrics of secondary reviewer versus principal reviewer, the model evaluation based on number needed to screen.
cFNR: false negative rate.
dREC: recall.
eF1: F1-score.
fPESR: prospective evaluation systematic review.

Discussion

Principal Findings
This study applied an FSL framework to create an automated
SR screening tool. The use of 4 to 6 eligible studies for the
purpose of model training was sufficient to provide a %Reduced
workload between 51.11% and 97.67%, while maintaining 100%
recall efficiency. Optimal similarity thresholds varied between
0.432 and 0.636. Paradoxically, increasing the number of
eligible studies for model training did not always improve
%Reduced workload.

In practice, the principal reviewers undertaking an SR usually
perform a preliminary search to identify potentially eligible
studies before undertaking a full SR. Considering several eligible
studies (4-6 studies) are likely to be identified at this early stage,
an FSL approach offers the potential to substantially reduce the
subsequent labor-intensive effort required to undertake the SR.
The model training within the FSL framework is required once
and is generally less time consuming compared with other AI
algorithms; for example, existing SR screening tools that use
supervised machine learning algorithms with an active learning
framework require multiple iterations compared with FSL,
which only requires a single training iteration with a small
annotated dataset. Subsequently, the trained models are based
on those annotated data to predict the remaining studies.

Another aspect of this approach that differs from the existing
automated tools involves the use of word embedding (ie, text
representation) and classifiers. Several existing tools use text
representation techniques that lack context consideration (eg,
term frequency), and inverse document frequency with simple
classifiers (eg, support vector machine) where performance
depends significantly on text representation [6-10]. Instead of
using context-free embedding and support vector machine

classifiers, this study investigated the feasibility of the use of
S-BERT which considers the semantic relationship patterns
between a target word and its context before its transformation
into a text representation using cosine similarities as a classifier.
Thus, FSL frameworks offer improved model performance over
currently available SR screening tools.

Among the tools currently available, the performance of
Abstrackr has been widely considered with a reported workload
reduction between 9.5% and 88.4%, and recall ranging between
79% and 96% [15]. Gates and colleagues also reported a
15%-43% workload reduction with 0%-14% FNR in the
subsequent study [18]. Another Abstrackr study [13] reported
a 9%-57% workload reduction with associated 0%-0.13% FNR.
Abstrackr has also been compared with DistillerSR and
RobotAnalyst [16], showing a 40%, 49%, and 35% median
workload reduction, respectively. With a 100% principal
reviewer recall aim (ie, 0% FNR), Tsou et al [17] found a
%Reduced workload of 3.99% to 48.41%, and 8.68% to 60.11%
for Abstrackr and EPPI-reviewer, respectively. In this context,
the FSL framework used in our study improved performance
through a %Reduced workload between 51.11% and 97.67%,
under the constraints of 100% recall.

We also further prospectively evaluated and validated our FSL
framework in 4 additional PESRs. Our FSL framework achieved
a 50% workload reduction, with NNS of 497 to 1035 from a
total of 995 to 2070 studies after removing 66 studies for training
from the initial identified studies. The FNRFSL, representing
eligible studies missed by the model framework, ranged between
1.87% and 12.2%. This performance was assessed in a
prospective evaluation where the principal reviewers initially
selected 6 eligible and 60 ineligible studies for training and
validation. However, this process differed from the model
development phase in several key ways. All studies identified
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in the development phase were already annotated, whereas only
66 studies were initially annotated when the prospective
evaluation experiment began. Guidelines recommend
cross-validation between independent reviewer groups for robust
SR. Therefore, the potential misidentification of eligible studies
by the FSL approach can be mitigated through cross-checking
and validation of the principal reviewer’s selection. When
comparing the performance of secondary reviewers (ie,
evaluating based on the top-ranked 50% of studies by FSL) with
the principal reviewer, FNRR2 ranged from 5% to 56.48%, which
is higher than the corresponding FNRFSL, indicating that errors
from secondary reviewers contributed significantly to the overall
error rate. This emphasizes the importance of training reviewers
before and during screening to reduce selection errors. In
addition, the involvement of a third senior reviewer is required
to resolve these conflicts.

SRs typically require at least 2 independent reviewers for study
selection, minimizing potential selection bias as recommended
by the PRISMA guidelines [12]. Disagreements between both
reviewers are resolved and adjudicated by a third senior
reviewer. The aim of our FSL framework is to significantly
reduce the workload of the secondary reviewers while still
retaining a high recall rate, enabling the secondary reviewer to
focus on the studies selected by the FSL framework, rather than
having to evaluate all of the studies identified. However, the
balance between maximizing workload reduction and
minimizing missed eligible studies (ie, FNRFSL) must be
carefully considered.

When considering the desired workload reduction, researchers
should deliberate the complexity of the review topic, including
the type of patients, number of treatments, number of genes,
number of exposures, and outcomes of interest, which in turn
impacts the number of studies identified, which may be subject
to personnel resource constraints. For SRs with many identified
studies and limited reviewers, a higher workload reduction may
be necessary. Conversely, if multiple reviewers are available,
the decreased workload reduction required may be less in order
to still maintain a reasonable FNRFSL. Nevertheless, good
practice guidelines recommend cross-validation between
independent reviewer groups for robust SR. Therefore, the
potential misidentification of eligible studies by the FSL
approach can be mitigated through cross-checking and validation
of the principal reviewer’s selection.

The trade-off between workload reduction and FNRFSL can vary
depending on the type of SR. To assess this variability, our
study included a broad range of SRs including therapeutic, risk
or prognostic, genetic association, and economic evaluation.
While these SRs share a common process, they often involve
different patient populations, interventions (eg, treatments,
exposures, genes, and costs), and outcomes of interest. For
instance, therapeutic studies typically rely on randomized
controlled trials with stringent inclusion criteria, while other
study types may use cohort data with more flexible inclusion
criteria. Model performance is therefore influenced by the
complexity of the subject SRs; for example, therapeutic SRs

often have clearer eligibility criteria compared with prognostic
or risk SRs. Both conceptual approaches resulted in a workload
reduction of 64.81%-96.94% for therapeutic SRs and
51.11%-84.16% for prognostic or risk SRs while maintaining
100% recall. Nevertheless, these thresholds are not absolute
and depend on the specific complexity of the SR as highlighted.

Strengths and Limitations
A strength of this study includes the evaluation of the FSL model
performance in multiple SR types including therapy, risk or
prognosis, genetic association, and economic evaluation. Our
FSL framework has the potential to accelerate SR processes
during urgent situations, such as public health crises, or in
resource-limited settings where efficient resource use is crucial.
Furthermore, our framework might be integrated with digital
information sources, including eHealth, uHealth, or
internet-based medical research, to facilitate study selection for
SRs. However, some limitations should be acknowledged. First,
the study did not provide model performance in terms of
time-saving capabilities. Second, the factors contributing to the
worsening recall in the prospective phase were not fully
investigated. Both these recognized limitations will be examined
in future studies to evaluate the robustness of this approach.
Third, the pretrained model requirement was limited to a
maximum of 384 words (although, most studies identified across
all SRs did not exceed this limit), considering the full texts for
each study may not be feasible. Fourth, this study did not
evaluate user satisfaction or ease of use. Finally, more SR
scenarios are required to prospectively confirm the potential
benefits of FSL, with future full-text evaluation compared with
the limitations associated with title and abstract screening,
although this would likely require the use of high-performance
computer processing.

Directions for Future Work
Our future work will focus on the development of a web
application with a simplified usable interface to leverage FSL
framework algorithms to streamline literature screening for
researchers undertaking SRs to reduce user workload and
maintain high-quality study selection using AI-assisted solutions.
This will include a more comprehensive prospective evaluation
across a wider range of SR types. Furthermore, comparisons of
FSL approaches with the integration of large language models
to automate study selection and data extraction may reduce the
most time-consuming and labor-intensive aspects of SRs and
will offer estimates for accuracy in both study selection and
data extraction. Automation of these key processes will
accelerate the SR workflow and enable researchers to complete
more comprehensive and robust reviews with potentially more
informative translation into clinical and public health practice.

Conclusion
In conclusion, the application of FSL approaches for title and
abstract screening for undertaking SRs is clearly feasible. The
findings from the retrospective evaluation and validation offer
promise, although the balance between workload reduction and
FNRs for the identification of eligible studies is one that
warrants careful consideration.
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