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Abstract

Background: As part of the TNM (tumor-node-metastasis) staging system, T staging based on tumor depth is crucial for
developing treatment plans. Previous studies have constructed a deep learning model based on computed tomographic (CT)
radiomic signatures to predict the number of lymph node metastases and survival in patients with resected gastric cancer (GC).
However, few studies have reported the combination of deep learning and radiomics in predicting T staging in GC.

Objective: This study aimed to develop a CT-based model for automatic prediction of the T stage of GC via radiomics and
deep learning.

Methods: A total of 771 GC patients from 3 centers were retrospectively enrolled and divided into training, validation, and
testing cohorts. Patients with GC were classified into mild (stage T1 and T2), moderate (stage T3), and severe (stage T4) groups.
Three predictive models based on the labeled CT images were constructed using the radiomics features (radiomics model), deep
features (deep learning model), and a combination of both (hybrid model).

Results: The overall classification accuracy of the radiomics model was 64.3% in the internal testing data set. The deep learning
model and hybrid model showed better performance than the radiomics model, with overall classification accuracies of 75.7%
(P=.04) and 81.4% (P=.001), respectively. On the subtasks of binary classification of tumor severity, the areas under the curve
of the radiomics, deep learning, and hybrid models were 0.875, 0.866, and 0.886 in the internal testing data set and 0.820, 0.818,
and 0.972 in the external testing data set, respectively, for differentiating mild (stage T1~T2) from nonmild (stage T3~T4) patients,
and were 0.815, 0.892, and 0.894 in the internal testing data set and 0.685, 0.808, and 0.897 in the external testing data set,
respectively, for differentiating nonsevere (stage T1~T3) from severe (stage T4) patients.

Conclusions: The hybrid model integrating radiomics features and deep features showed favorable performance in diagnosing
the pathological stage of GC.
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Introduction

Gastric cancer (GC) is one of the most prevalent cancers and
ranks as the fourth most common cause of cancer-related death
globally [1]. Although systemic therapy can increase the survival
rate and improve quality of life, the prognosis remains poor due
to diagnosis at an advanced stage [2]. Currently, GC staging is
performed according to the Union for International Cancer
Control and American Joint Committee on Cancer
tumor‐node‐metastasis (TNM) staging system [3]. This
system could be used to stratify cancer prognosis. As part of
the TNM staging system, T staging based on the tumor depth
of GC is crucial for developing treatment plans. For patients
with clinical stage T1, endoscopic procedures have been
considered the first choice, while for those with clinical stages
T2, T3, or T4, surgery and perioperative chemotherapy have
been recommended [4]. However, the clinical and pathological
diagnosis of tumor depths can sometimes vary [5]. In
preoperative T staging, computed tomography (CT) has a
sensitivity and specificity of 80% to 90%, respectively, for
discriminating between early- and advanced-stage GCs [6], and
precise prediction of preoperative T staging using CT plays a
vital role in GC treatment.

A retrospective study [7] involving 244 patients with GC
reported that the performance of single-phase CT radiomics
models is favorable in differentiating between T2- and
T3/T4-stage tumors [7]. By extracting intricate information that
is imperceptible to the human eye in medical imaging and
transforming it into quantitative data, radiomics and deep
learning approaches have shown potential in improving the
diagnostic capability of current imaging. In radiomics, medical
images are transformed into mineable high-dimensional data,
which can be used to quantify lesion heterogeneity that cannot
be observed in the images. Furthermore, deep learning is the
state-of-the-art machine learning approach that uses multiple
processing layers and connections to learn complex relationships
between input data and desired outputs from a large number of
labeled examples, which could provide clinicians with decision
support and improve diagnostic and treatment accuracy and
efficiency [8,9]. Previous studies have constructed a deep
learning model based on CT imaging radiomics signatures to
predict the number of lymph node metastases and survival in
patients with resected GC [10,11]. Our team has previously
studied occult peritoneal metastasis of GC by using imaging
radiomics and deep learning [12,13]. In addition, the feasibility
and promising performance of machine learning approaches in
assessing T staging in lung cancer has been demonstrated [14].
However, few studies have reported the combination of deep
learning and radiomics in predicting T staging in GC.

To improve the diagnostic accuracy of T staging to better
develop treatment strategies, this study focused on preoperative
differentiation among pathological T stages using deep learning
and combining single-phase CT radiomics models with deep

learning parameters, which can potentially be helpful and assist
in guiding clinicians in regard to personalized medicine.

Methods

Patient Enrollment and Eligibility Criteria
The inclusion criteria were as follows: (1) primary gastric
adenocarcinoma diagnosed via endoscopy-biopsy pathology;
(2) venous images of the whole abdomen (with a slice thickness
of 2 mm) obtained preoperatively followed by laparoscopy or
surgery performed within 2 weeks; (3) no typical peritoneal
metastasis findings, such as omental nodules or omental cake,
extensive ascites, or irregular thickening with high peritoneal
enhancement, on CT; and (4) no indications of distant metastasis
or other tumors.

The exclusion criteria were as follows: (1) previous abdominal
surgery, (2) previous abdominal malignancies or inflammatory
diseases, (3) insufficient distention of the stomach, (4) poor
imaging quality due to artefacts, and (5) indiscernible primary
GC tumor on CT images.

Ethical Considerations
This study was granted approval by the ethics committee of
West China Hospital, Sichuan University (2019-1158). Given
the retrospective nature of the study and the anonymous analysis
of all data, the need for informed consent was waived.

Segmentation and Preprocessing of Tumor Regions
Given the T stage in GC, we divided the images into 3 gradings
for this study: mild (stages T1 and T2), moderate (stage T3),
and severe (stages T4a and T4b) groups. The open-source
software ITK-SNAP (version 3.8.0; University of North
Carolina) was used for image segmentation. The outline for the
tumor regions of interest (ROIs) was manually drawn by a junior
radiologist with 6 years of experience in reading abdominal CT
images and revised by a senior radiologist with 17 years of
experience. When delineating the tumor ROIs, the radiologist
referred to the results of gastroscopy to determine the location
of the tumor. Besides, 40 CT images of GC lesions were
randomly selected and delineated again by the junior radiologist
to assess test-retest reliability. Blinded to segmentations
delineated by the junior radiologist, these 40 CT images of GC
lesions were delineated again by the senior radiologist to assess
the intraclass correlation coefficient (ICC). Features with an
interobserver ICC of >0.85 were retained, and the ICC values
of the selected radiomics features are presented in Table S2 in
Multimedia Appendix 1.

Extraction and Selection of the Radiomics Features
The radiomics features were automatically extracted from the
ROIs on the maximum cross-section layer of the noncontrast
CT images by using the PyRadiomics package (version 3.0). A
set of filters (Wavelet, Square, SquareRoot, and Logarithm)
were applied to highlight certain image properties [15]. Finally,
a total of 1183 radiomics features were extracted from each of
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the patients. Principal component analysis was used for
dimension reduction of the features, to reduce computation
complexity, and to prevent overfitting. Principal component
analysis is an unsupervised method that transforms complex,
high-dimensional original radiomics data into a dimensionally
reduced set of uncorrelated features named “principal
components.” Principal components were computed based on
singular value decomposition of the standardized radiomics
features, and the top 15 components that explained most of the
variance in the training data set were finally selected for model
development.

CT Image Acquisition
The details of the CT protocol are presented in Section 2 and
Table S1 in the Multimedia Appendix 1. Segmentation and
preprocessing of tumor ROIs, Extraction and selection of the
radiomics features are shown in Multimedia Appendix 1. To
reduce the radiologists’ workload of depicting the ROIs, this
study attempted to apply partial markers to automatically
generate 3D patches. The radiologists manually delineated the
ROIs in the initial image, the final image, and maximum
cross-section layers with the largest tumor boundaries. Based
on information regarding the ROIs of the 3 key layers, 3D cubes
including the whole tumor and the surrounding structures were
automatically generated (Figure 1).

Figure 1. Example of the key slice–based automatic generation of a 3D cube including the whole gastric cancer region. CT: computed tomography;
ROI: region of interest.

Development of the Radiomics Model
Based on the selected radiomics features, a radiomics model
was constructed by using the support vector machine classifier.
As a supervised learning method that was very effective in linear
or nonlinear classification tasks, the support vector machine
classifier has been widely used in radiomics analysis. The
radiomics model was developed and validated on the
InferScholar (version 3.5) platform, and the parameters were
set as follows: C=1.0, kernel=“Sigmoid,” gamma=“auto,”
Tol=0.001, class_weight=“balanced,” and other parameters
were set as default.

Development of the Deep Learning Models

Vision Transformer–Based Deep Learning Model
Vision transformers (ViTs), derived by pure transformers, were
first proposed for natural language processing by Vaswani et
al [16]. In this study, we applied a ViT to grade GC severity
based on CT images. The current implementation is inspired
by the work of Alexey Dosovitskiy [17] and his team, who
applied ViT to the ImageNet data set and showed excellent
performance in image classification compared with
state-of-the-art convolutional neural networks. Due to its
advantage of analyzing overall relationships by modeling the
interrelationships among different parts of an image, ViT
showed strength in global image classification, which is very
suitable for our case [18]. The conceptual architecture of the
ViT used in our study is illustrated in Figure 2. Briefly, the 3D
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patches containing GC regions were cropped from CT images.
After resizing, the 3D patch was split into small patches, which,
in turn, were converted to a sequence of patch embeddings via
flattening and linear projection. Then, the patch embeddings
and the positional embedding were fed into the transformer
encoder to obtain the final representation. Consequently, the

learnable features in the inputted images were fed into the
classifier head to identify GC severity. In this study, the
embedding dimension of the ViT models was set at 768, the
numbers of both encoder layers and the attention heads were
12, and the dimensionality of the expanded representation in
the predicting head was 3072.

Figure 2. Overview of the vision transformer (ViT) for the pathological severity classification of gastric cancer on noncontrast computed tomography
(CT) images.

Deep Learning–Based Hybrid Model
To integrate radiomics features and deep learning features, a
ViT architecture–based hybrid model was proposed in this study,
namely, the ViT-Radiomics model [19,20], which combined
both ViT and radiomics models for grading GC severity. In
brief, the deep features extracted by the ViT were first
transformed into a 1280-bit vector, while the selected radiomics
features were also transformed into a 512-bit vector by using a
vectorization transform approach. Then, the vectorized deep
features and radiomics features were further concatenated into
a 1792-bit vector and used to predict the severity of gastric
cancer (mild, moderate, or severe).

Data Augmentation
To meet the high demand for large amounts of training data in
ViT-based deep learning models, several sophisticated data
augmentation techniques were applied in the training data set
to avoid the overfitting problem and promote prediction
performance during the model training process. Data
augmentation techniques in this study mainly referred to a series
of geometric transformations including scaling (0.9 times or
1.1 times the image size), translation (up and down, left and
right, and front and back), mirroring, rotation, and flip
(horizontal and vertical) on the generated 3D patches of the
original images. After data augmentation, the sample size in
the training set increased to 5 times that of the original training
data set.

Training of the Deep Learning Models
The deep learning models (deep learning and hybrid models)
were trained by maximizing their identification performance
(ie, accuracy) for grading GC severity and minimizing the
categorical cross-entropy loss. This study used stochastic
gradient descent with a momentum of 0.95, a weight decay of

0.0001, and an initial learning rate of 0.001 to optimize the
model’s parameters. The number of modeling epochs was set
to 150, and the minibatch size was set to 32. The model
development process was implemented using 4 GeForce RTX
2080ti GPUs on Ubuntu 18.04.4 LTS, Python 3.7.11, and
PyTorch 1.7.1. No samples overlapped at the patient level in
the development and independent data sets.

Evaluation of Model Performance
The trinary diagnostic capability of the predictive models was
assessed on the basis of overall accuracy and the Cohen κ
coefficient [21], and the chi-square test was used to compare
the accuracies of different predictive models. Because of the
imbalanced distribution of the 3 GC severity categories, the
per-class F1-score and weighted average F1-score were also
calculated [22].

In addition, two clinically important subtasks were also
evaluated: (1) binary classification of mild (stages T1~T2) GCs
and nonmild GCs (stages T3~T4) and (2) binary classification
of nonsevere GCs (stages T1~T3) and severe GCs (stage T4).
The discriminative efficacy of binary classification was
evaluated using receiver operating characteristic analysis using
the area under the curve (AUC). The sensitivity, specificity,
positive predictive value, and negative predictive value were
also calculated under the optimal threshold in accordance with
the maximum Youden index [23]. Furthermore, decision curve
analysis was used to evaluate the clinical utility of the radiomics,
deep learning, and hybrid models for binary classification of
mild/nonmild and nonsevere/severe GCs by comparing the net
benefit across a range of threshold probabilities in the training
and validation data sets [24].
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Statistical Analysis
Statistical analysis was performed using R (version 3.3.1; The
R Foundation), SPSS (version 23.0; IBM Corp), and MedCalc
(version 20.0; MedCalc). The differences in continuous variables
with normal or nonnormal distributions were evaluated using
a 2-tailed Student t test or the Mann-Whitney U test,
respectively. Categorical variables were compared using the
chi-square test. Differences between the 2 AUCs of different
models were assessed by using the DeLong test [25]. A decision
curve was plotted using the “rmda” package in R. A 2-sided P
value less than .05 was considered statistically significant.

Results

Patient Characteristics
Ultimately, a total of 706 patients with GC were enrolled in this
retrospective study and randomized 4:1 into a development data

set (n=566) and an independent testing data set (n=140). In total,
65 patients with GC from 2 external centers were also recruited
as the external testing data set (Figure S1 in Multimedia
Appendix 1).

Clinical characteristics in the development, internal, and external
sets are listed in Table 1. Age, peritoneum metastasis, and
carbohydrate antigen 19-9 (CA19-9) differed significantly
among the 3 data sets. No significant difference was observed
among the 3 data sets in terms of sex, size, site, Boorman type,
grade, Lauren type, adjacent tissue invasion, pathological T
stage, TNM stage, serum cancer antigen 72-4 (CA72-4) levels,
serum cancer antigen 125 (CA125) levels, and carcinoembryonic
antigen (CEA) levels.
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Table 1. Characteristics of the enrolled patients with gastric cancer in the development, internal, and external data sets.

P valueExternal (n=65)Testing (n=140)Training (n=566)Variables

.85Sex, n (%)

45 (69.23)93 (66.43)372 (65.72)Male

20 (30.77)47 (33.57)194 (34.28)Female

.00166 (57-70)58 (49-65)60 (51-67)Age (years), median (IQR)

.695 (3-6)5 (3-7)5 (3-7)Tumor size (cm), median (IQR)

.30Tumor location, n (%)

9 (13.85)19 (13.57)93 (16.43)U

7 (10.77)16 (11.43)73 (12.90)M

35 (53.85)74 (52.86)300 (53.00)L

3 (4.62)9 (6.43)7 (1.24)U+E

3 (4.62)6 (4.29)17 (3.00)UM/MU

4 (6.15)11 (7.86)45 (7.95)LM/ML

0 (0)1 (0.71)7 (1.24)L+D

4 (6.15)4 (2.86)24 (4.24)LMU/MLU/MUL/UML

.03Peritoneal metastasis, n (%)

52 (80.00)95 (67.86)363 (64.13)Negative

13 (20.00)45 (32.14)203 (35.87)Positive

.11Borrmann classification, n (%)

1 (1.54)22 (15.71)94 (16.61)Early stage

3 (4.62)6 (4.29)19 (3.36)I

18 (27.69)45 (32.14)157 (27.74)II

34 (52.31)52 (37.14)235 (41.52)III

9 (13.85)15 (10.71)61 (10.78)IV

.14Grade, n (%)

3 (4.62)6 (4.29)14 (2.48)Unknown

20 (30.8)54 (38.57)217 (38.34)1

37 (56.92)78 (55.71)325 (57.42)2

0 (0)0 (0)1 (0.18)3

5 (7.7)2 (1.43)9 (1.59)4

.67Lauren histological type, n (%)

15 (23.08)40 (28.57)170 (30.04)Intestinal

28 (43.08)62 (44.29)249 (43.99)Diffuse

22 (33.85)38 (27.14)147 (25.97)Mixed

.28Adjacent tissues invaded by tumors, n (%)

54 (83.08)127 (90.71)502 (88.69)Negative

11 (16.92)13 (9.29)64 (11.31)Positive

.22T stage, n (%)

2 (3.08)14 (10.00)57 (10.07)T1a

3 (4.62)15 (10.71)57 (10.07)T1b

8 (12.30)24 (17.14)102 (18.02)T2

11 (16.92)27 (19.29)108 (19.08)T3

34 (52.31)49 (35.00)187 (33.04)T4a
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P valueExternal (n=65)Testing (n=140)Training (n=566)Variables

7 (10.77)11 (7.86)55 (9.72)T4b

.88TNMa stage, n (%)

5 (7.69)9 (6.43)33 (5.83)IA

7 (10.77)15 (10.71)59 (10.42)IB

5 (7.69)12 (8.57)77 (13.60)IIA

8 (12.31)25 (17.86)75 (13.25)IIB

7 (10.77)11 (7.86)56 (9.89)IIIA

8 (12.31)20 (14.29)80 (14.13)IIIB

10 (15.38)24 (17.14)94 (16.61)IIIC

15 (23.08)24 (17.14)92 (16.25)IV

.703.04 (1.20-10.55)3.46 (1.89-7.59)3.55 (1.78-8.58)Serum cancer antigen 72-4 level (ng/mL), median
(IQR)

.0313.20 (8.45-27.20)9.50 (5.88-18.09)10.50 (6.44-20.71)Carbohydrate antigen 19-9 level (kU/L), median (IQR)

.0710.00 (7.13-13.82)12.12 (8.16-19.48)11.50 (8.65-17.23)Serum cancer antigen level (U/mL), median (IQR)

.451.77 (1.06-4.15)2.19 (1.40-4.15)2.00 (1.32-3.28)Carcinoembryonic antigen level (ng/mL), median
(IQR)

aTNM: tumor‐node‐metastasis.

Performance Evaluation of the Trinary Classification
of GC Severity
The 3-class confusion matrices of the predictive models in the
development, internal testing, and external testing data sets are
shown in Figure 3. The overall accuracies of the radiomics,
deep learning, and hybrid models were 69.8%, 75.1%, and
83.7% in the development data set; 64.3%, 75.7%, and 81.4%
in the internal testing data set; and 53.8%, 70.8%, and 81.5%
in the external testing data set, respectively. The accuracy of
the deep learning and hybrid models were significantly different
from those of the radiomics model in the development testing
(deep learning vs radiomics: P=.046; hybrid vs radiomics:
P<.001), internal testing (deep learning vs radiomics: P=.04;
hybrid vs radiomics: P=.001), and external testing (deep learning
vs radiomics: P=.047; hybrid vs radiomics: P<.001) data sets.

The overall accuracy of the hybrid model was significantly
different from that of the deep learning model in the
development data set (P<.001); however, no significant
difference was observed in the internal (P=.25) or external
(P=.15) testing data sets. Similarly, the predicted results of both
the deep learning and hybrid models showed high agreement
with the pathologically confirmed ground truth in the
development (Cohen κ=0.660 for the deep learning model and
0.767 for the hybrid model), internal testing (Cohen κ=0.665
for the deep learning model and 0.735 for the hybrid model),
and external testing (Cohen κ=0.689 for the hybrid model) data
sets, while the agreement for the radiomics model was only
moderate (Cohen κ=0.579 for the development, 0.518 for the
internal testing, and 0.400 for the external testing data sets).
These results, as well as the per-class F1-score and weighted
average F1-score, are presented in Table 2.
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Figure 3. Trinary classification performance of the predictive models. (A)-(C) The 3-class confusion matrix of the radiomics, deep learning, and hybrid
models in the development data set. (D)-(F) The 3-class confusion matrix of the radiomics, deep learning, and hybrid models in the internal testing data
set. (G)-(I) The 3-class confusion matrix of the radiomics, deep learning, and hybrid models in the external testing data set.

Table 2. Trinary classification performance of the models in predicting the T stage of gastric cancer.

Cohen κF1-score (average)F1-score (severe)F1-score (moderate)F1-score (mild)Accuracy, %Data set and model

Development data set

0.5790.6350.7470.0530.79969.8Radiomics

0.6600.7630.7530.6280.84275.1Deep learning

0.7670.8410.8470.7670.87083.7Hybrid

Internal testing data set

0.5180.5940.7210.1290.68664.3Radiomics

0.6650.7670.8350.6200.76675.7Deep learning

0.7350.8170.8760.7100.80481.4Hybrid

External testing data set

0.4000.5570.6130.3570.55053.8Radiomics

0.5440.7060.8150.4000.62170.8Deep learning

0.6890.8110.8600.6000.83381.5Hybrid

Evaluation on 2 Binary Classification Subtasks
As depicted in Figure 4, the binary classification performance
of the predictive models for mild versus nonmild and nonsevere
versus severe GCs was evaluated in both internal and external

testing data sets. For binary classification of mild (stage T1~T2)
and nonmild (stage T3~T4) GCs, the radiomics, deep learning,
and hybrid models showed similar performance, with AUCs of
0.875 (95% CI 0.809-0.925), 0.866 (95% CI 0.799-0.918), and
0.886 (95% CI 0.822-0.934) in the internal testing data set,
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respectively (Delong test; P>.05 for all). Meanwhile, The AUC
values of the hybrid, radiomics, and deep learning models in
the external testing data set were 0.972 (95% CI 0.897-0.997),
0.820 (95% CI 0.704-0.904; P=.002), and 0.818 (95% CI
0.703-0.903; P=.03), respectively. For binary classification of
nonsevere (stage T1~T3) and severe (stage T4) GCs, the AUC
values of deep learning and hybrid models were 0.892 (95% CI
0.829-0.938) and 0.894 (95% CI 0.831-0.940), respectively.
Furthermore, the AUC value of the radiomics model was 0.815
(95% CI 0.740-0.875; radiomics vs deep learning: P=.02;

radiomics vs hybrid: P=.03). In addition, the AUC values for
the deep learning, hybrid, and radiomics models were 0.808
(95% CI 0.691-0.895), 0.897 (95% CI 0.797-0.959), and 0.685
(95% CI 0.558-0.795), respectively (radiomics vs deep learning:
P=.03; radiomics vs hybrid: P=.002), in the external testing data
set, and no significant difference was observed between them
(P=.10). The detailed performances of these models in the
internal and external testing data sets are listed in Tables 3 and
4, respectively.

Figure 4. Comparison between the predictive models on 2 binary subtasks. AUC: area under the curve.
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Table 3. Comparison of the performance of the predictive models for binary classification of mild and nonmild gastric cancers in the internal and
external testing data sets.

Negative predictive
value, %

Positive predictive
value, %

Specificity, %Sensitivity, %Area under the curve
(95% CI)

Data set and model

Internal testing data set

89.581.464.295.40.875 (0.809-0.925)Radiomics

88.183.769.894.30.866 (0.799-0.918)Deep learning

88.986.375.594.30.886 (0.822-0.934)Hybrid

External testing data set

40.610010063.50.820 (0.704-0.904)Radiomics

75.092.569.294.20.818 (0.703-0.903)Deep learning

70.697.992.390.40.972 (0.897-0.997)Hybrid

Table 4. Comparison of the performance of the predictive models for binary classification of nonsevere and severe gastric cancers in the internal and
external testing data sets.

Negative predictive
value, %

Positive predictive
value, %

Specificity, %Sensitivity, %Area under the curve
(95% CI)

Data set and model

Internal testing data set

81.969.173.878.30.815 (0.740-0.875)Radiomics

86.492.395.080.00.892 (0.829-0.938)Deep learning

91.591.493.888.30.894 (0.831-0.940)Hybrid

External testing data set

52.491.391.751.20.685 (0.558-0.795)Radiomics

69.284.675.080.50.808 (0.691-0.895)Deep learning

77.892.187.585.40.897 (0.797-0.959)Hybrid

Clinical Utility Analysis
Decision curve analyses for the 2 binary classification subtasks
of the different predictive models in the internal and external
data sets are presented in Figure 5. During binary classification
of mild (stage T1~T2) and nonmild (stage T3~T4) GCs, the
hybrid model had a slightly higher overall net benefit than the
radiomics and deep learning models across the majority range
of reasonable threshold probabilities in the internal testing data

set. For binary classification of nonsevere (stage T1~T3) and
severe (stage T4) GCs, the deep learning and hybrid models
showed a markedly higher net benefit than the radiomics model
across the majority range of reasonable threshold probabilities
in the internal testing data set. A similar tendency was also
observed in the external data set (Figures 5C and 5D). These
results are consistent with those of the receiver operating
characteristic analysis.
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Figure 5. Decision curve analysis (DCA) for the predictive models in the internal testing data set on (A) the binary classification subtask 1 (stage
T1~T2 vs stage T3~T4) and (B) the binary classification subtask 2 (stage T1~T3 vs stage T4) and for the predictive models on binary classification
subtask 1 (C) and 2 (D) in the external testing data set. The net benefit is depicted on the y-axis. The gray line and black line represent situations in
which all patients and no patients underwent biopsy/surgery, respectively.

Visualization of the Internal Features Learned by the
Neural Networks
The internal features learned by the hybrid model were examined
in the internal testing data set by using the t-distributed
stochastic neighbor embedding method [26]. Each point

represented an input noncontrast CT image of a patient projected
from the high-dimensional vector of the neural network’s last
hidden layer into 2 dimensions. The mild (blue point cloud) and
severe (red point cloud) groups showed clear clustering patterns
and were split across the moderate group (green point cloud;
Figure 6).

J Med Internet Res 2024 | vol. 26 | e56851 | p. 11https://www.jmir.org/2024/1/e56851
(page number not for citation purposes)

Tao et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6. Visualization of the internal representations of the hybrid model for three severity classes by t-distributed stochastic neighbor embedding.
Colored point clouds represented the different severity categories, showing how the neural network clustered the diseases.

Discussion

Principal Findings and Comparison With Prior Work
Preoperative evaluation of tumor invasion depth determines
individual treatment plans for GC. CT has been the first choice
for preoperative GC evaluation and is important for clinical
practice. However, routine preoperative determination is still
not accurate enough, especially when radiologists carry out
naked-eye evaluations. This study makes extensive use of the
CT radiomics signature and the signature extracted by deep
learning to generate a better prediction model to overcome the
heterogeneity resulting from naked-eye evaluations. To our
knowledge, this is the first study to demonstrate a CT-based
model using radiomics and deep learning techniques for
automated prediction of the T stage of GC. Our hybrid model
demonstrated superior clinical utility to that of both the
radiomics and deep learning models individually. Moreover,
the hybrid model exhibited promising diagnostic performance
in determining the pathological stage of GC.

Over the past decade, radiomics research has gained increasing
attention, and a growing number of studies reported the use of
radiomics in oncology [27]. At the very least, this could be an
important complement to subjective evaluation by radiologists.
Previous studies have illustrated that CT-based radiomics used
alone or with deep learning or other statistical methods could
predict the number of lymph node metastases [11,28],
chemotherapy treatment responses, and overall survival [10,29]
among patients with GC. Radiomics features are mathematically
defined descriptors, while deep learning features are less
intuitive due to the complexity of deep neural networks. The
predictive values of the two are different and stackable [30]. A
pilot study conducted by Sun et al [31] based on radiomics
analysis reported that the model had a predictive AUC of 0.852
for the diagnostic T stage in rectal cancer. Yang et al [32]
demonstrated that CT radiomics signatures exhibited favorable
predictive performance for the T stage in esophageal carcinoma,
with an AUC of 0.86. Furthermore, our study shows that the
hybrid (83.7%) and deep learning (75.1%) models had higher

accuracy than the radiomics model (69.8%) in evaluating the T
stage based on 3 grades (mild, moderate, and severe groups) in
the development, internal training, and external training data
sets. In addition, the hybrid and deep learning models showed
better performance than the radiomics model, with high
agreement between the model’s prediction and ground truth.
Thus, using the hybrid and deep learning models for pathological
prediction is eligible and reliable. Furthermore, the hybrid model
had higher accuracy than the deep learning model in the
development data set (P<.001); however, no significant
difference was observed in the internal (P=.25) or external
(P=.15) testing data sets, which was possibly due to the limited
sample sizes therein. By using the hybrid model, the diagnostic
accuracy of the T stage could be improved, which can help
clinicians make more precise treatment plans for patients with
GC to avoid treatment delays or mistreatment. Furthermore,
deep learning can reduce the workload of doctors and improve
work efficiency.

Additionally, we aimed to better explore the predictive models
constructed by the deep learning and hybrid models. The tumor
invasion depth was evaluated separately in mild versus nonmild
and nonsevere versus severe GCs. The radiomics, deep learning,
and hybrid models displayed good performance in differentiating
between mild and nonmild GC and severe and nonsevere GC
in both the internal and external training data sets. Meanwhile,
the hybrid model (AUC 0.972, 95% CI 0.897-0.997)
outperformed both the radiomics (AUC 0.820, 95% CI
0.704-0.904; P=.002) and deep learning (AUC 0.818, 95% CI
0.703-0.903; P=.03) models in the external testing data set.
Based on the hybrid model, for patients with stage T1 or T2
lesions, endoscopic resection or surgery was considered in
combination with other examinations, while for patients with
T3 or T4 lesions, adjuvant therapy was recommended. One
retrospective study involving 572 patients with GC diagnosed
at pathological stage T3 or T4 showed that a radiomics model
based on CT images with deep learning is effective in
discriminating serosa invasion in GC [33], which is consistent
with our results. Patients with GC with stage T1~T3 disease
have a lower risk of peritoneal metastasis than those with stage
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T4 disease, while in those with stage T4 disease, the hybrid
model could assist clinicians in improving the detection accuracy
of peritoneal metastasis, especially for regions where staging
laparoscopy was not applicable widely. Furthermore, decision
curve analysis revealed that the deep learning and hybrid models
showed obviously higher net benefit than the radiomics model
across the majority of the range of reasonable threshold
probabilities, implying that the deep learning and hybrid models
have certain clinical applicability. Furthermore, t-distributed
stochastic neighbor embedding analysis revealed that different
GC risk stratifications have their own distinct clusters. Based
on the above results, the deep learning and hybrid models have
good performance in distinguishing T stages in GC.
Additionally, the hybrid model might perform better in
distinguishing T stages than the deep learning and radiomics
models.

Clinical Implications
With respect to patient outcomes, the hybrid model can
accurately predict the T stage directly from conventional CT
images through automated processes. Furthermore, the hybrid
model shows promise in aiding clinicians by offering a more
dependable and accurate preoperative T staging diagnosis, which
can influence real-world clinical decision-making. For example,
by providing accurate T staging, neoadjuvant therapy can be
arranged for patients with advanced GC. Through pretreatment
evaluation of T stages, the hybrid model could help clinicians
choose the correct treatment method. Following surgical
procedures, we offer individualized treatment plans for patients
through precise pathological diagnosis and selection of suitable
adjuvant therapies.

Ethical Implications
A prior investigation identified 3 key domains of ethical
concerns related to the use of artificial intelligence (AI):
algorithms, data, and practices [34]. These domains highlight
the importance of obtaining informed consent and establishing

data use agreements between data providers and third-party data
aggregators. Furthermore, ensuring the quality of data used in
AI algorithms, especially in the context of enhancing patient
treatment decisions, is a significant area of concern.
Furthermore, the integration of AI technology should not be
viewed as a substitute for the collaborative decision-making
process that is integral to optimal patient care. It is important
to juxtapose these findings with the standard clinical practices
currently used for T staging in GC.

Limitations
There are several limitations in the study. First, this was a
retrospective study that had a selection bias, and the limited
sample size of images also contributed to a bias in model
construction. Hence, for further validation and to enhance the
generalizability of our results, a future prospective study with
a large sample size is necessary. Second, our method requires
manual segmentation of the tumor, which is time-consuming.
Automated segmentation methods, as well as fully automated
models, could be valuable in the future. Additionally, when
tumor ROIs were outlined manually, there was some
heterogeneity in the radiologists’experience, and the radiologists
needed to be calibrated. In addition, our study population
included only Asian individuals; future studies from other
centers are necessary to confirm the validity of this model prior
to its potential clinical implementation. Furthermore, AI lacks
the capacity to participate in complex dialogues with patients,
as well as the ability to establish the necessary trust and empathy
essential for fostering a therapeutic alliance that is crucial to
the patient-physician relationship and to favorable treatment
outcomes.

Conclusions
The hybrid model can potentially distinguish T stages of GC
more effectively than the deep learning or radiomics model and
could be applied in clinical practice.
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