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Abstract

Background: Fall detection is of great significance in safeguarding human health. By monitoring the motion data, a fall detection
system (FDS) can detect a fall accident. Recently, wearable sensors–based FDSs have become the mainstream of research, which
can be categorized into threshold-based FDSs using experience, machine learning–based FDSs using manual feature extraction,
and deep learning (DL)–based FDSs using automatic feature extraction. However, most FDSs focus on the global information
of sensor data, neglecting the fact that different segments of the data contribute variably to fall detection. This shortcoming makes
it challenging for FDSs to accurately distinguish between similar human motion patterns of actual falls and fall-like actions,
leading to a decrease in detection accuracy.

Objective: This study aims to develop and validate a DL framework to accurately detect falls using acceleration and gyroscope
data from wearable sensors. We aim to explore the essential contributing features extracted from sensor data to distinguish falls
from activities of daily life. The significance of this study lies in reforming the FDS by designing a weighted feature representation
using DL methods to effectively differentiate between fall events and fall-like activities.

Methods: Based on the 3-axis acceleration and gyroscope data, we proposed a new DL architecture, the dual-stream convolutional
neural network self-attention (DSCS) model. Unlike previous studies, the used architecture can extract global feature information
from acceleration and gyroscope data. Additionally, we incorporated a self-attention module to assign different weights to the
original feature vector, enabling the model to learn the contribution effect of the sensor data and enhance classification accuracy.
The proposed model was trained and tested on 2 public data sets: SisFall and MobiFall. In addition, 10 participants were recruited
to carry out practical validation of the DSCS model. A total of 1700 trials were performed to test the generalization ability of the
model.

Results: The fall detection accuracy of the DSCS model was 99.32% (recall=99.15%; precision=98.58%) and 99.65%
(recall=100%; precision=98.39%) on the test sets of SisFall and MobiFall, respectively. In the ablation experiment, we compared
the DSCS model with state-of-the-art machine learning and DL models. On the SisFall data set, the DSCS model achieved the
second-best accuracy; on the MobiFall data set, the DSCS model achieved the best accuracy, recall, and precision. In practical
validation, the accuracy of the DSCS model was 96.41% (recall=95.12%; specificity=97.55%).

Conclusions: This study demonstrates that the DSCS model can significantly improve the accuracy of fall detection on 2 publicly
available data sets and performs robustly in practical validation.
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Introduction

According to the World Health Organization, falls rank as the
second leading cause of accidental injury-related deaths on a
global scale [1]. Statistics from the Centers for Disease Control
and Prevention [2] reveal that a significant proportion, at least
a quarter, of US residents aged 65 years and older experience
a fall annually. Among the older adult population, accidental
falls have been the second leading cause of mortality and injury
[3]. To prevent falls from causing severe subsequent harm to
individuals, it is essential to develop an accurate and efficient
fall recognition system, to identify falls and raise the alarm [4].
In the existing research, 2 main categories of systems have
emerged: fall prediction systems [5-7] and fall detection systems
(FDSs) [8-21].

Although fall prediction systems can assist users in proactively
preventing potential falls, the associated installation and
maintenance costs can be prohibitively high, thereby limiting
its widespread application. In contrast, FDSs can promptly issue
alerts upon detecting a fall event, ensuring swift assistance for
the individual who has experienced the fall. In recent years,
extensive research has been conducted on FDSs and related
solutions, categorized as follows: (1) vision-based FDSs [8,9],
which monitor and analyze a person’s movements and postures
using cameras or imaging devices to detect falls; (2) ambient
device–based FDSs [10-12], which use environmental sensors
such as Wi-Fi or radar signals to track an individual’s movement
data within their living space and detect falls; and (3) wearable
sensors–based FDSs [13-21], which use sensors attached to the
body to monitor a user’s movements and postures to detect falls.
Among these solutions, wearable sensor–based fall detection
technology has garnered significant attention because of its
affordability and nonintrusive characteristics [21]. Wearable
devices, such as inertial measurement units [13,14],
smartwatches [15-17], and smartphones [18-20], use
high-precision sensors to collect motion data seamlessly. These
devices have been widely applied in fall detection and safety
monitoring [22].

In wearable sensor–based FDSs, the design of fall detection
algorithms is essential. Presently, algorithms used for fall
detection can be classified into 3 categories: threshold-based
models, machine learning–based models, and deep learning
(DL) models. Threshold-based models and machine
learning–based models necessitate the extraction of distinctive
features from data sets containing fall incidents. In essence, it
primarily entails capturing features such as the intensity of
activities (eg, magnitude, energy) and variations in the intensity
of activities (eg, frequency and SD) from the input data.
Threshold-based models discern falls by comparing feature
values against predefined thresholds, while machine learning
models, such as k-nearest neighbors (KNN) [23], support vector
machines (SVM) [24], and decision trees (DT) [25], categorize
falls and activities of daily life (ADL) based on the handcrafted

features. In contrast, DL models, such as convolutional neural
networks (CNN) [26] and long short-term memory (LSTM)
[27,28], automatically extract high-level features and scrutinize
the temporal characteristics of the data for fall detection.

However, the aforementioned models solely use acceleration
data as the input for their algorithms. A previous work [29] has
demonstrated that relying exclusively on acceleration data is
inadequate for effectively distinguishing falls from ADL. This
insufficiency is primarily due to the sensitivity of acceleration
data to sensor placement and its inability to capture spatial
rotation information. Consequently, researchers advocate for
the integration of acceleration data with gyroscope data to
provide a more comprehensive understanding of body
movements, which can significantly enhance the accuracy of
fall detection [30,31].

In this case, Hussain et al [32], Son et al [33], Liu et al [34],
and Koo et al [35] use acceleration data with gyroscope data as
the input to the model. Hussain et al [32] and Son et al [33]
designed fall detection algorithms using KNN and SVM, both
of which require manual feature extraction. Additionally, Liu
et al [34] developed a CNN-LSTM–based FDS. However, using
CNN, LSTM, or their combination fails to evaluate the
significance of each component of the feature vector, thereby
hindering the differentiation between actual falls and fall-like
activities. Moreover, Koo et al [35] proposed a
dual-stream–based algorithm for human activity recognition.
While this model effectively differentiates between various
daily activities, it struggles with the classification of falls and
fall-like activities, which exhibit similar data trends.

To address the above challenges, we incorporate the
self-attention (SA) mechanism [36] after the CNN module and
propose a dual-stream CNN-SA (DSCS) model for fall detection.
The SA mechanism has been widely applied in classification
tasks such as sleep apnea [37] and skeleton point–based human
activity recognition [38]. However, it has not been applied in
FDSs. The SA mechanisms empower FDS models to allocate
varying weights to different segments of the input data or
extracted features.

Compared with existing methods that use manually generated
features, the proposed method can automatically extract features
using a dual-stream architecture. Specifically, the DSCS model
uses acceleration data along with gyroscope data as the input,
and then the 2-stream data will pass through a 3-layer CNN to
extract discriminable features. Unlike the models using CNN,
LSTM, or their combinations, CNN-SA excels at effectively
capturing long-term dependencies within input data, enabling
the assignment of diverse weights to features from different
phases of the fall process. This, in turn, aids the model in
achieving an enhanced understanding of the context and
pertinent information associated with fall behavior, thereby
elevating the model’s capability for contextual modeling.

J Med Internet Res 2024 | vol. 26 | e56750 | p. 2https://www.jmir.org/2024/1/e56750
(page number not for citation purposes)

Zhang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/56750
http://www.w3.org/Style/XSL
http://www.renderx.com/


In this paper, we introduce an accurate and embeddable DSCS
model for fall detection. Considering that the handcrafted
features rely on expert knowledge and may not yield satisfactory
generalization performance, we design a DL framework. In this
framework, both accelerometer and gyroscope data are used as
input for the model. Then, we introduce a feature-generating
method grounded in the CNN-SA architecture. Here, CNN is
used to extract features from dual-stream data and capture spatial
patterns, to preliminarily identify the pattern differences between
fall and ADLs. The feature vector extracted by CNN
subsequently passes through an SA layer, which assigns weights
to accelerometer and gyroscope features. Finally, the predicted
label (fall or ADL) is output by the classification module.

The main contributions of this study are as follows: first, we
introduce an accurate and embeddable dual-stream model,
DSCS, for fall detection using wearable sensors. The DSCS
model comprises a feature extraction module, an SA module,
and a classification module. Second, the SA mechanism is
applied in the task of fall detection, which assigns different
weights to the feature vectors, learning the contribution effect
of the sensor data, thereby effectively enhancing classification
accuracy. Third, we validate the performance of the DSCS
model using publicly available data sets and practical validation.
Our model outperforms state-of-the-art machine learning and
DL models and demonstrates excellent generalization
performance.

The rest of this paper is organized as follows: the Methods
section illustrates the proposed framework DSCS framework.
The Results section presents the performance comparison with
state-of-the-art algorithms and practical validation. The
Discussion section covers the results, performance gap,
limitations of this study, and conclusions.

Methods

Data Sets for Fall Detection

Overview
In this paper, we validated the performance of the DSCS model
using 2 publicly available data sets: SisFall [39] and MobiFall
[40]. The 2 data sets consist of the accelerometer and gyroscope
data recorded during fall and ADL trials of multiple participants.

SisFall Data Set
The SisFall data set collects accelerometer and gyroscope data
during human motion, with a sampling frequency of 200 Hz.
This data set comprises data on falls and ADLs collected from
38 volunteers, including 23 young individuals (younger than
30 years) and 15 older individuals (60 years and older). It
encompasses 15 falls (such as fall forward, fall backward, and
lateral fall) and 19 ADLs (eg, walking, jogging, and jumping).

MobiFall Data Set
The MobiFall data set collects accelerometer, gyroscope, and
orientation data from smartphones’built-in inertial measurement
units during human motion. The accelerometer has a sampling
frequency of 87 Hz, while the gyroscope and orientation sensor
have a sampling frequency of 100 Hz. This data set is
contributed by 24 volunteers and contains 4 distinct fall
activities: fall forward, fall forward with knees on the ground,
fall lateral, and fall backward onto a chair. Additionally, it
contains 9 various daily activities (eg, standing, walking, and
jogging).

Data Processing
The processing of accelerometer and gyroscope data consisted
of 2 steps: data filtering and data segmentation.

• Data filtering: Considering the susceptibility of sensor data
to external environmental noise when worn on the body,
we implemented the filtering on the accelerometer and
gyroscope data. The filtering process enhances the stability
and accuracy of the resulting signals. Since human
movements often occur at a frequency of around 20 Hz, a
low-pass filter with a cutoff frequency of 20 Hz was used
to filter the data [41].

• Data segmentation: A complete fall event typically lasts
8-12 seconds, encompassing 4 phases: prefall, falling,
impact, and postfall. To match the sample length in the
SisFall and MobiFall data sets, we used the time windows
of 12 and 8 seconds for the data segmentation of the SisFall
and MobiFall data sets, respectively. Then, we further
reduced the sampling rate to 50 Hz to alleviate
computational complexity.

DL Framework

Overview
After data processing, we obtained 1798 fall segments and 4117
ADL segments from the SisFall data set and 288 fall segments
and 1137 ADL segments from the MobiFall data set. As input
to the model, each segment from the SisFall data set has a length
of 12 seconds (600 sampling points), while each segment from
the MobiFall data set has a length of 8 seconds (400 sampling
points). After passing through a DL architecture, each segment
produces a predicted label (fall or ADL).

Network Architecture
The deep neural network architecture proposed in this paper is
illustrated in Figure 1, which mainly consists of 3 modules:
feature extraction module, SA module, and classification
module.
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Figure 1. The architecture of the proposed dual-stream convolutional neural network self-attention model. ADL: activities of daily life; BN: batch
normalization; BS: batch size; FC: fully connected; LoS: length of segment.

Feature Extraction Module
To extract features, we designed the same architecture for
acceleration and gyroscope data stream: a 3-layer CNN to
transform the 3-axis data into feature representations. The size
of the input data is N × LoS × 3, where N is the batch size and
LoS is the length of a segment. The first part of the 3-layer
comprises a 1D convolution with 64 filters, a kernel size of 3,
and a stride of 1. The outputs of the first 2 layers are activated
using a rectified linear unit (ReLU) and followed by a
max-pooling layer with a pooling size of 2. The output of the
third convolution layer is directly fed into a global pooling layer,
which generates a 64D global feature vector for each element
in the batch.

SA Module
The extracted feature representations from the acceleration and
gyroscope data are further refined using the SA module. This
module enables the acceleration or gyroscope stream network
to efficiently discover the local information highly relevant to
discriminating falls and ADL, by capturing the attention weights
of local feature information. Specifically, during each training
iteration, a total of N vectors is fed into the SA module. Within
the SA module, these vectors are processed using query, key,
and value matrices, each with dimensions of 64×64. Ultimately,
a weighted feature vector is generated for each sample in the
batch.

Classification Module
The weighted acceleration or gyroscope vectors, which have
been processed by the SA module, are concatenated to a 128D
vector and fed into the classification module. This module is
responsible for mapping the concatenated vector to the
corresponding prediction label. Specifically, the 128D vector
is first processed through a 128D batch normalization (BN)
layer, followed by a dropout layer with a dropout probability
of 0.5. Finally, the vector is input into a fully connected layer,
which comprises a 256D hidden layer and a softmax output
layer.

Next, we will provide an in-depth illustration of the architecture
and functionality of the 3 modules.

Feature Extraction Module
Following Koo et al [35], we design a feature extraction module
for accelerometer and gyroscope data streams. This module
comprises 3 consecutive encoders, with each encoder combining
CNNs and pooling layers.

For acceleration or gyroscope stream, the input data are initially
processed by the first encoder, where a 1D CNN extracts
shallow-level feature representations from the input data.
Subsequently, a max-pooling layer is applied to reduce data
dimensions and emphasize key features.

In the second encoder, a CNN further extracts features in a local
context, enabling the capture of more intricate patterns and
relationships within the time series data. Similarly, a
max-pooling layer is used to reduce feature map dimensions
and highlight critical features.

The third encoder is dedicated to global feature abstraction,
allowing it to capture overarching patterns and essential
information across the entire time series, rather than only local
features. A global pooling layer enables pooling across the entire
feature map, producing a global feature vector that encapsulates
summarized information from the entire data sequence.

Through the hierarchical processing by the 3 encoders, the
DSCS model can extract both local and global features from
the original 3D accelerometer or gyroscope data, thereby
enhancing the model’s prediction performance and
generalization capabilities.

SA Module
The feature vectors generated by the feature extraction module
pass through a SA module. This module uses an attention
mechanism to dynamically adjust the weights across different
positions of the 1D feature vectors, capturing the
interdependencies and correlations between different positions.

The detailed process of generating a weighted feature vector is
illustrated in Figure 2. Specifically, the SA module constructs
query, key, and value vectors by multiplying the input feature
vectors with respective weight matrices. The module calculates
the dot product between the query and key vectors and then
applies the softmax function to determine the relationships
between the feature values at each position and those at other
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positions. The result of the dot product represents the strength
of their relationships, commonly referred to as “attention”.
Finally, the weighted feature representations for each position
are obtained by applying the corresponding attention weights

to the value vectors. In the SA mechanism, this weighting
operation helps describe the correlations and associations
between each position and the others, enabling the model to
focus on different positions within the information.

Figure 2. The process of generating weighted feature vectors from original feature vectors.

Classification Module
The classification module is used to transform the
input-weighted feature vectors into the final prediction labels.
Specifically, each vector first passes through the BN module.
The main function of the BN module is to normalize input data,
accelerate model training, and improve the model’s adaptability
to different features. Next, the dropout layer is deployed, which
randomly sets the output of a portion of neurons to 0, to reduce
the risk of overfitting and improve the model’s generalization
ability. After BN and dropout, the feature vectors pass through
a fully connected layer. Finally, the output of the fully connected
layer passes through the softmax layer and generates the
probability distribution of fall or ADL labels. The final predicted
label generated by the model corresponds to the category with
the highest probability.

Training Parameters
For each data set, we divided the participants in the data set into
training and testing groups with a ratio of 0.8 and 0.2,
respectively. The proposed model was deployed in Python
(version 3.8.10; Python Software Foundation) using the DL
library of PyTorch (version 1.7.0). The training process was
carried out on a computer server equipped with an Intel Xeon
Gold 6330 CPU at 2.00 GHz and an NVIDIA GeForce RTX
3090. We used the cross-entropy loss function and used the
Adam optimizer for optimizing the network parameters. In the
training phase, we used a maximum of 300 iterations with an
initial learning rate set at 0.001, gradually decreasing as the
training progressed. The batch size was configured at 128 for
optimal model refinement. The hyperparameter selection method
for training the model is a random search. Parameters are
randomly selected from the hyperparameter space, such as batch
size values of 32, 64, and 128, and learning rate values of 0.001,
0.005, and 0.01. By exploring various combinations of batch

sizes and learning rates, the optimal hyperparameters are
identified based on the performance metrics. This approach
ensures that the most effective combination is chosen to achieve
the best model performance.

Performance Evaluation Metrics
To evaluate the fall detection performance of the proposed
DSCS model, we used accuracy, recall, precision, and F1-score
as the evaluation metrics. Accuracy is the ratio of the number
of segments that are correctly predicted (including falls and
ADL) to the total number of segments, which is used to measure
the overall performance of the model. Recall is the ratio of the
number of correctly predicted fall segments to the total number
of fall segments, and high recall means that the model has a
strong ability to detect falls. Precision is the ratio of the number
of correctly predicted fall segments to the total number of
predicted fall segments. High precision means that the model
can reduce the number of false alarms and accurately distinguish
falls from fall-like activities. F1-score is calculated based on
recall and precision: F1-score = 2 × precision × recall /
(precision + recall). In practical validation, we also used
specificity to evaluate the model’s performance in accurately
distinguishing falls from ADLs, including fall-like activities.
Specificity is defined as the ratio of correctly predicted ADL
segments to the total number of ADL segments.

Ethical Considerations
The studies involving human participants were reviewed and
approved by the Ethics Committee of the Capital University of
Physical Education and Sports, Beijing, China (approval number
2023A036). The participants provided their written informed
consent to participate in this study.

J Med Internet Res 2024 | vol. 26 | e56750 | p. 5https://www.jmir.org/2024/1/e56750
(page number not for citation purposes)

Zhang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Results

Detection Performance
The performance of the proposed DSCS model was evaluated
using the publicly available SisFall and MobiFall data sets. The
model demonstrated robust performance on both data sets,
achieving an accuracy of 99.32% (recall=99.15%;
precision=98.58%; F1-score=98.86%) on the testing sets of
SisFall and an accuracy of 99.65% (recall=100%;

precision=98.39%; F1-score=99.19%) on the testing sets of
MobiFall.

Figure 3 illustrates the confusion matrices for the DSCS model
across 2 test sets: SisFall and MobiFall. Notably, out of 1183
test samples from the SisFall data set, only 8 samples were
misclassified (5 false positives and 3 false negatives). Similarly,
among the 285 test samples from the MobiFall data set, only 1
sample was misclassified (1 false positive). The result shows
that the model can achieve high classification accuracy on both
data sets.

Figure 3. Detection performance of the proposed DSCS model: (A) confusion matrix of SisFall test set and (B) confusion matrix of MobiFall test set.
ADL: activities of daily life; DSCS: dual-stream convolutional neural network self-attention.

Cross-Validation
To further validate the generalization ability and reliability of
the proposed model, we conducted cross-validation to
thoroughly assess its performance. The results in Tables 1 and

2 indicate that the proposed model maintains stable performance
on both the SisFall and MobiFall data sets. Specifically, the
average F1-scores for 5-fold cross-validation were 99.09% and
98.69%, respectively, while for 10-fold cross-validation, the
average F1-scores were 99.03% and 98.67%, respectively.

Table 1. F1-score of the proposed dual-stream convolutional neural network self-attention model under 5-fold cross-validation.

Average (%)Fold 5 (%)Fold 4 (%)Fold 3 (%)Fold 2 (%)Fold 1 (%)Data set

99.0998.7298.8699.5799.0199.29SisFall

98.6999.1798.3998.3398.3699.19MobiFall

Table 2. F1-score of the proposed dual-stream convolutional neural network self-attention model under 10-fold cross-validation.

Average
(%)

Fold 10
(%)

Fold9
(%)

Fold 8
(%)

Fold 7
(%)

Fold 6
(%)

Fold5
(%)

Fold 4
(%)

Fold 3
(%)

Fold 2
(%)

Fold 1
(%)

Data set

99.0399.1598.5898.8699.4399.1599.7299.4499.4399.4399.15SisFall

98.6798.3198.3610096.6798.3610098.3198.3110098.36MobiFall

Comparison With State-of-the-Art Algorithms
We compared our proposed DSCS model with state-of-the-art
fall detection models. Specifically, machine learning
models—including KNN [32], SVM [33], DT [25]—and DL
models—such as CNN [26], LSTM [27], CNN-LSTM [34],
contrastive accelerometer-gyroscope embedding [35], few-shot
transfer learning [42], and deep convolutional LSTM

(DeepConvLSTM) [43]—were used as benchmark models. The
results in Table 3 demonstrate the superior performance of the
DSCS model. On the SisFall data set, the DSCS model achieved
the second-best performance, only slightly behind KNN, which,
however, required manual feature extraction. On the MobiFall
data set, the DSCS model outperformed all state-of-the-art
machine learning and DL models in terms of accuracy, recall,
precision, and F1-score.
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Table 3. Performance comparison of the proposed DSCSa model with state-of-the-art fall detection algorithms.

F1-score (%)Precision (%)Recall (%)Accuracy (%)Data set, algorithms, and corresponding models

SisFall

MLb

96.5796.8596.3097.97DTc [25]

99.0198.5999.4399.41KNNd [32]

98.7298.5898.8699.24SVMe [33]

DLf

96.6195.8097.4497.97CNNg [26]

96.2996.5696.0197.80LSTMh [27]

97.8598.5597.1598.73CNN-LSTM [34]

98.1598.0198.2998.90CAGEi [35]

97.7197.9997.4498.65FSTLj [42]

98.3098.0298.5898.99DeepConvLSTMk [43]

98.8698.5899.1599.32DSCS

MobiFall

ML

88.5582.8695.0894.74DT [25]

96.7296.7296.7298.60KNN [32]

90.9191.6790.1696.14SVM [33]

DL

90.0091.5388.5295.79CNN [26]

87.3989.6685.2594.74LSTM [27]

96.7296.7296.7298.60CNN-LSTM [34]

97.5696.7798.3698.95CAGE [35]

93.5592.0695.0897.19FSTL [42]

95.8796.6795.0898.25DeepConvLSTM [43]

99.1998.3910099.65DSCS

aDSCS: dual-stream convolutional neural network self-attention.
bML: machine learning.
cDT: decision tree.
dKNN: k-nearest neighbors.
eSVM: support vector machine.
fDL: deep learning.
gCNN: convolutional neural network.
hLSTM: long short-term memory.
iCAGE: contrastive accelerometer-gyroscope embedding.
jFSTL: few-shot transfer learning.
kDeepConvLSTM: deep convolutional LSTM.

Effect of Low Sampling Rate
To validate the performance of the DSCS model under low
sampling rates, we reduced the sampling rate of acceleration
and gyroscope data to 10 Hz and 5 Hz and tested the
performance of the DSCS model. Table 4 presents the overall

performance comparison of the DSCS model under the original
sampling rate of 50 Hz and the reduced sampling rates of 10
Hz and 5 Hz. The results show that the accuracy decreased under
a sampling rate of 10 Hz and further declined under a sampling
rate of 5 Hz. These findings indicate that the variation in
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sampling rates significantly impacts the accuracy of fall detection.

Table 4. Performance comparison of the proposed DSCSa model under different sampling rates.

F1-score (%)Precision (%)Recall (%)Accuracy (%)Data set and model

SisFall

98.8698.5899.1599.32DSCS

96.0395.4996.5897.63DSCS (10 Hz)

92.6192.3592.8895.60DSCS (5 Hz)

MobiFall

99.1998.3910099.65DSCS

92.0689.2395.0896.49DSCS (10 Hz)

86.1885.4886.8994.04DSCS (5 Hz)

aDSCS: dual-stream convolutional neural network self-attention.

Effect of SA Mechanism
To further explore the data distribution of feature vectors before
and after passing through the SA module, we used the
t-distributed stochastic neighbor embedding (t-SNE) algorithm
for visualizing the test sets from SisFall and MobiFall. The
t-SNE algorithm uses nonlinear dimensionality reduction to
map the original 64D feature vectors to a more intuitive 2D
space while preserving the similarity relationships among data

points. The resulting visualization of data distribution through
t-SNE allows us to assess the clustering and dispersion of
different data categories (fall or ADL) in the 2D space, providing
a better understanding and comparison of the separation between
fall and ADL. As shown in Figure 4, after passing through the
SA module, the feature vectors of different categories became
more dispersed. This illustrates why the proposed DSCS
algorithm performs better in fall detection and further confirms
the effectiveness of the introduced SA mechanism.

Figure 4. t-SNE plot of (A) SisFall: before SA, (B) SisFall: after SA, (C) MobiFall: before SA, and (D) MobiFall: after SA. ADL: activities of daily
life; SA: self-attention; t-SNE: t-distributed stochastic neighbor embedding.
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Practical Validation of DSCS
Beyond publicly available data sets, we conducted practical
validation on the DSCS model, to assess its generalizability to
new data and new users. Specifically, we embedded the DSCS
model onto a smartwatch (Huawei Watch 3, Huawei Tech Co,
Ltd) equipped with accelerometers and gyroscopes and

developed a fall detection alert application. The sensors in the
smartwatch operated at a sampling rate of 50 Hz. As depicted
in Figure 5A, participants wore smartwatches during
experiments. Every 0.5 seconds, the data from the past 8 seconds
(400 sampling points) was fed into the fall detection algorithm.
When the algorithm detected a fall, a fall alert page, as shown
in Figure 5B, was triggered.

Figure 5. Illustration of practical validation details. (A) Each participant wore a watch. (B) Watch alarm page: prompting detection of fall behavior.

We recruited 10 healthy students from the Capital University
of Physical Education and Sports, Beijing, China as participants.
The demographics of the participants are detailed in Table 5.
Each participant wore a smartwatch and performed 8 fall
activities and 9 fall-like activities. The eight fall activities were
as follows: (1) fall forward, (2) fall backward, (3) fall to the
left, (4) fall to the right, (5) fall from chairs, (6) fall while

walking, (7) fall while running, and (8) fall while riding. The
nine fall-like activities were as follows: (1) walking, (2) jogging,
(3) sprinting, (4) standing and then sitting heavily in a chair,
(5) bending down to tie shoelaces, (6) stretching and dropping
hands, (7) long jump, (8) descending stairs, and (9) free fall on
a trampoline. Figure 6 depicts participants wearing a smartwatch
while performing fall activities during the validation process.

Table 5. Basic information of the 10 participants.

ParticipantInformation

10987654321

35272625263525242524Age (years)

MaleMaleFemaleMaleMaleMaleFemaleMaleMaleFemaleSex

182178168179180177168183175170Height (cm)

80705575767570926553Weight (kg)
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Figure 6. The 4 typical fall activities performed by the participants.

Each activity was repeated in 100 trials, resulting in a total of
1700 trials (800 fall trials and 900 fall-like trials). The DSCS
model achieved satisfactory performance in practical validation,
with accuracy, recall, and specificity of 96.41%, 95.12%, and
97.55%, respectively. Table 6 illustrates the recall performance

for fall activities and the specificity performance for fall-like
activities. The experimental results indicate that the DSCS model
maintains a robust fall detection performance in practical
applications and possesses satisfactory generalization ability.
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Table 6. Performance validation of different falls and fall-like activities of daily life.

Specificity (%)Recall (%)Performance validation and activity

Recall performance

—a97Fall forward

—96Fall to the left

—96Fall to the right

—96Fall from chairs

—96Fall while running

—94Fall while walking

—93Fall while riding

—93Fall backward

Specificity performance

100—Descending stairs

100—Stand and then sit heavily in a chair

100—Jogging

100—Walking

99—Bend down to tie shoelaces

97—Stretch and drop hands

95—Long jump

95—Sprinting

92—Free fall on a trampoline

aNot applicable.

Discussion

Principal Findings
In this paper, we proposed a DSCS model for fall detection.
The proposed model not only performs well on public data sets:
SisFall and MobiFall, but also excels in practical validation. By
comparing the performance of fall recognition results, we found
that the dual-stream mechanism can effectively improve the
accuracy of classification. At the same time, from the
visualization results of data distribution, it can be observed that
after passing through the SA module, the distance between fall
data and ADL data becomes larger, which is beneficial for
accurately distinguishing falls and ADLs.

Comparison With Prior Work
Unlike previous studies, this paper integrates the dual-stream
data processing architecture and SA module for the first time.
Compared with other DL schemes, such as CNN, LSTM,
CNN-LSTM, contrastive accelerometer-gyroscope embedding,
few-shot transfer learning, and DeepConvLSTM, the proposed
scheme in this paper can automatically focus on the features
closely related to fall behavior, to achieve better classification
performance. In Wang et al [44], the attention mechanism is
introduced into the fall detection algorithm. However, in the
feature extraction stage, it still uses a machine learning algorithm
for manual extraction. Comparative research shows that on the
SisFall data set, the proposed model achieved the second-best
accuracy (only second to KNN); on the MobiFall data set, the

proposed model achieved the best accuracy, recall, and
precision.

Performance Gap Between Public Data Sets and
Practical Validation
Beyond public data sets, we embedded the proposed model into
smartwatches and developed fall detection and alarm software
to verify the fall detection algorithm proposed in this paper in
practical applications. According to experimental results, we
found that the performance of the model in practical validation
dropped, but it was still at a good level. Specifically, accuracy
degraded to 96.41%, with recall and specificity being 95.12%
and 97.55%, respectively. The main reasons for the performance
degradation are differences in sensor models and sampling
frequencies, differences in participant conditions, and variations
in participant movement norms.

Limitations
Our research has a few limitations. First, due to practical
constraints in data collection, the training and test data sets used
in this study may not encompass all possible fall poses,
introducing uncertainty regarding the model’s performance in
the presence of unique or novel fall scenarios. Second, for safety
considerations, the exclusion of older adult data from both public
data sets and actual validations during the training and testing
of fall detection may compromise the model’s accuracy in
handling falls among older adults, who constitute the most
vulnerable demographic.
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Conclusions
In this paper, we present the DSCS model, a DL framework
designed for fall detection. The DSCS uses a dual-stream
architecture incorporating both acceleration and gyroscope data,
followed by a 3-layer CNN, SA mechanism, and classification
modules. The DSCS model outperforms state-of-the-art
algorithms, achieving detection accuracies of 99.32% and

99.65% on the SisFall and MobiFall data sets, respectively.
Furthermore, the model maintains a high practical validation
accuracy of 96.41%. These results demonstrate the effectiveness
of the CNN-SA architecture for classification tasks. This study
also highlights how incorporating SA into FDSs can improve
classification accuracy by focusing on critical segments of data
that significantly contribute to distinguishing between falls and
fall-like activities.
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Abbreviations
ADL: activities of daily life
BN: batch normalization
CNN: convolutional neural network
DeepConvLSTM: deep convolutional LSTM
DL: deep learning
DSCS: dual-stream convolutional neural network self-attention
DT: decision tree
FDS: fall detection system
KNN: k-nearest neighbor
LSTM: long short-term memory
ReLU: rectified linear unit
SA: self-attention
SVM: support vector machine
t-SNE: t-distributed stochastic neighbor embedding
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