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Abstract

Background: Efficient data exchange and health care interoperability are impeded by medical records often being in
nonstandardized or unstructured natural language format. Advanced language models, such as large language models (LLMs),
may help overcome current challenges in information exchange.

Objective: This study aims to evaluate the capability of LLMs in transforming and transferring health care data to support
interoperability.

Methods: Using data from the Medical Information Mart for Intensive Care III and UK Biobank, the study conducted 3
experiments. Experiment 1 assessed the accuracy of transforming structured laboratory results into unstructured format. Experiment
2 explored the conversion of diagnostic codes between the coding frameworks of the ICD-9-CM (International Classification of
Diseases, Ninth Revision, Clinical Modification), and Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT)
using a traditional mapping table and a text-based approach facilitated by the LLM ChatGPT. Experiment 3 focused on extracting
targeted information from unstructured records that included comprehensive clinical information (discharge notes).

Results: The text-based approach showed a high conversion accuracy in transforming laboratory results (experiment 1) and an
enhanced consistency in diagnostic code conversion, particularly for frequently used diagnostic names, compared with the
traditional mapping approach (experiment 2). In experiment 3, the LLM showed a positive predictive value of 87.2% in extracting
generic drug names.

Conclusions: This study highlighted the potential role of LLMs in significantly improving health care data interoperability,
demonstrated by their high accuracy and efficiency in data transformation and exchange. The LLMs hold vast potential for
enhancing medical data exchange without complex standardization for medical terms and data structure.

(J Med Internet Res 2024;26:e56614) doi: 10.2196/56614
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Introduction

Efficient health care data exchange is essential in medicine,
particularly in facilitating continuous care [1]. Such data

exchange becomes crucial when a patient uses multiple health
care facilities or receives concurrent care, significantly
influencing accurate treatment strategies. The emergence of
personalized health care, becoming a cornerstone of modern
medicine, necessitates the use of personal health records. This
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shift complicates data exchange processes as it demands the
integration of data from multiple health care institutions, thereby
posing substantial challenges [2,3]. Additionally, health care is
increasingly including patient-generated health data (PGHD)
from a diverse range of devices, including wearable technology,
given the heterogeneity of products from different vendors [4-6].

Globally, health care systems contend with varying medical
record formats and disparate coding systems. In the globalized
health care paradigm, the mobility of patients across
international boundaries introduces an added layer of
complexity. The necessity for efficiently leveraging consolidated
information from multiple nations escalates as international
collaborative research broadens [7,8]. The International
Classification of Diseases (ICD) has served as a global standard
for diagnostic nomenclature, whereas the Systematized
Nomenclature of Medicine Clinical Terms (SNOMED-CT)
presents a detailed, structured, and multiaxial medical
terminology system, gaining adoption worldwide, including in
the United States and Europe. Divergent drug coding systems
also continue to exist between the United States and Europe,
with the RxNorm system adopted in the United States and the
ATC system used across Europe. These discrepancies
underscore the urgent need for robust and effective health care
data exchange pipelines.

Over the years, significant attempts have been made toward the
standardization of health care data amid notable challenges and
limitations. Protocols, such as Health Level Seven International
and Fast Healthcare Interoperability Resources (FHIR), have
been introduced to enhance data exchange between medical
devices and electronic health records [9]. However, despite their
use, these standards often meet with noncompliance or
suboptimal implementation. Specifically, FHIR has received
criticism for its inherent complexity, obstructing its widespread
adoption [10]. Moreover, a key obstacle in the exchange of
health care data lies in the initial state of medical records, many
of which are not stored following a universal standard. This
inconsistency creates a significant challenge even before
leveraging exchange protocols like Health Level Seven
International and FHIR, designed to facilitate data sharing. The
presence of standards does not automatically solve the issue of
initiating the exchange when the starting point involves aligning
diverse data formats.

The Observational Health Data Sciences and Informatics
initiative represents one of the most robust efforts toward data
standardization for research purposes. This initiative has
developed a common data model and promoted data
standardization across various institutions in accordance with
this format, significantly accelerating data analysis across
institutions [8,11]. Nonetheless, the standardization process has
its limitations. One is a notable risk of information loss from
the original data during standardization [12,13]. Despite
sustained global efforts to transition data into standardized
formats, the inherent challenges of standardization inhibit
complete conversion and representation of the finer details in
the original data. Therefore, effective data standardization
remains a pervasive challenge in health care data exchange.

To address the challenges associated with data standardization,
we attempted to explore alternatives beyond traditional
approaches. A potential solution might be a system that supports
flexible communication of raw data, for example, in natural
language, permitting the end user to process and interpret data
as required, thereby reducing the necessity for strict
standardization. Large language models (LLMs), such as
ChatGPT, which are designed to produce contextually relevant
and coherent natural language responses based on input data,
might be promising tools in this regard. Leveraging the
capabilities of LLMs can enhance natural human interaction
and streamline the management and summarization of extensive
language-based data sets. Multiple studies have reported these
potential applications of LLMs in the medical field; for example,
mining medical text data for relevant clinical information,
summarizing patient records and research findings, inferring
medical outcomes from complex case histories, and reviewing
medical literature to identify trends and validate clinical
practices [14-17]. Consequently, if LLMs can proficiently
transcribe patient data into text format and the receiving end
can efficiently structure the resultant text data, then the intricate
stages of data standardization may become redundant. This
paradigm shift could significantly alter health care data
exchange, heralding a future of seamless and universal data
interoperability.

This study tests the hypothesis that text-based conversion and
integration of hospital data in different databases would be more
effective than current methods. To prove this, we focused on 3
aspects: accuracy of numerical data transformation into text and
back, fidelity of text-based transformation for semantic data
using ICD codes (ie, ICD-9-CM [International Classification
of Diseases, Ninth Revision, Clinical Modification]), and
effectiveness of extracting specific information, such as
intensive care unit (ICU) medication details, during the transfer
of text-format data. This study aims to demonstrate the potential
of natural language–based systems for future health care data
exchange.

Methods

Ethical Considerations
This study was approved by the institutional review board of
Yongin Severance Hospital (9-2023-0037), and conducted in
accordance with the Declaration of Helsinki, and the requirement
for written informed consent was waived due to its retrospective
nature.

Data Sources
This study used 2 comprehensive public health care data sets,
namely, the UK Biobank and the Medical Information Mart for
Intensive Care III (MIMIC-III). The UK Biobank serves as a
notable national and international health resource, monitoring
the lives of 500,000 voluntary participants aged between 40 and
69 years across the United Kingdom from 2006 to 2010. This
resource aims to bolster the prevention, diagnosis, and treatment
of a wide range of serious and life-threatening diseases. The
data set includes genotypic and phenotypic data, covering
medical, lifestyle, and environmental aspects. The UK Biobank
contains structured data from diverse diagnostic tests, medical
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and family histories, and various physical measures. The
MIMIC-III database, crafted by the Lab for Computational
Physiology at MIT, is a broad, publicly available resource
containing the deidentified health data of approximately 40,000
critical care patients [18]. This data set includes demographic
information, vital signs, laboratory tests, and medications,
among other features. It is valued for its over 2 million free-text
clinical notes, presenting a rich source of natural language
medical data.

This study used ChatGPT (version 3.5; OpenAI), an artificial
intelligence model recognized for its exceptional performance
among universally applicable models [19-21]. Given that our
primary aim was to assess the ability of LLMs to facilitate health
care data exchange in general scenarios, we opted against
fine-tuning the model to prevent overspecialization to specific
data sets. As a result, we used ChatGPT (version 3.5) in its

original form, without any modifications. Furthermore, our
focus was on testing the accuracy of information extraction and
transformation rather than the creativity of the language model.
Therefore, in all experiments, we set the temperature to 0 to
ensure a deterministic output from the model.

The objectives of our study required the conduct of multiple
trials featuring a range of prompts, a process termed prompt
engineering. This process carries the potential risk of introducing
an overfitting bias, which could boost the performance on
specific data sets. Hence, we differentiated between the data
used for prompt engineering experiments and those used to
assess the performance of our experiments (Figure 1). Given
the absence of a standardized methodology for prompt
engineering, researchers often carry out this process manually,
relying on trial-and-error approaches based on experience.

Figure 1. Comparison of traditional standardization-based and proposed text–based flexible data exchange processes. This figure illustrates the difference
between the conventional process of data exchange, which relies on standardization, and our suggested method of flexible data exchange leveraging
unstructured, text-based data. The traditional approach necessitates standardization, potentially leading to the loss or distortion of original information,
diminished adaptability in new settings, and an increase in the cost and effort required for data exchange. Our proposed text-based, flexible data exchange
process avoids these issues by reducing the loss of original information and boosting adaptability. This method is expected to cut down both the cost
and effort involved in data exchange. At the bottom, we have delineated the 3 stages that our experiments aimed to validate. ETL: Extract, Transform,
Load; FHIR: Fast Healthcare Interoperability Resources; HL7: Health Level Seven International; LLM: large language model.

Overview of the Experimental Design
We hypothesized that converting a hospital’s data into text
format and then integrating such data in another hospital’s
database can be more accurate and comprehensive compared
with other data transformation methods. To prove this, we tested
3 key aspects (Figure 2). First, we investigated whether the
original data could be accurately conveyed when transformed
into text (experiment 1). This involved converting numerical
data into text and back into numerical form to check for any
deviations from the original data. Second, we sought to validate
that text-based transformation of information with numerical
and semantic meaning would result in less distortion compared

with rule-based transformations (experiment 2). To this end,
we experimented with converting ICD-based diagnostic codes
into text and back, comparing this with the results of converting
them to and from the SNOMED-CT coding system. Finally, we
evaluated whether the receiving institution could accurately
extract specific desired information during the transmission of
complex medical information in text form to another institution
(experiment 3). In this experiment, we assumed that the content
would resemble a discharge summary when all aspects of a
patient’s hospital stay were compiled into a text format.
Therefore, we aimed to test whether specific data, such as
medication information prescribed in the ICU, could be
accurately extracted from these summaries. In this experiment,
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we specifically worked under the assumption that the
information to be extracted would be medication information
prescribed in the ICU. From the 3 experiments, we aimed to
evaluate the possibility of our hypothesis: a potential solution
for health care data exchange in the future might be a system

that supports flexible communication of raw data for example,
in natural language (experiments 1 and 2), permitting the end
user to process and interpret such data as required (experiment
3).

Figure 2. Overview of experimental approaches to evaluate LLM performance in data extraction and transformation. This figure outlines the methodologies
used in experiments 1, 2, and 3. (A) In experiment 1, lab data from the UK Biobank data set was presented in natural language format and then restructured
back into the MIMIC-III format using the LLM. The restructured data were then compared with the original laboratory data. (B) Experiment 2 evaluated
the hypothesis that expressing diagnosis names in natural language might be more efficient than mapping them between varying coding systems.
Diagnoses recorded in ICD-9-CM were rendered into natural language or SNOMED-CT, and then reverted into ICD-9-CM codes to examine the degree
of information distortion. (C) In experiment 3, the LLM was assigned to extract targeted information concerning medications prescribed in the ICU
from discharge summaries in the MIMIC-III database. The extracted information was then compared with the actual prescription records to assess the
LLM’s accuracy in identifying and extracting details from unstructured text. ICD-9-CM: International Classification of Diseases, Ninth Revision,
Clinical Modification; LLM: large language model; MIMIC-III: Medical Information Mart for Intensive Care III; SNOMED-CT: Systematized
Nomenclature of Medicine Clinical Terms.

Experiment 1: Evaluating Accuracy in Data Exchange
via an LLM
To evaluate the feasibility of data exchange using an LLM, we
randomly selected laboratory test result data from 1000

individuals from the UK Biobank data set. For each individual,
we gathered laboratory test results and converted them into an
unstructured format. Subsequently, the data were restructured
to comply with the MIMIC-III data architecture. The prompts
used throughout this process are detailed in Textbox 1.
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Textbox 1. Summary of prompts used in experiments 1, 2, and 3.

Experiment 1

Step 1: Translating laboratory test results into free text

“I have the following patient. Based on this information, summarize the patient’s condition in natural language. Make sure to include all the information
presented. The values of the lab results should remain numerical. (For the Sex variable, 0 = female and 1 = male.)”

{List of lab results}

Step 2: Transforming free text data into the structured format

“I have the following patient.”

{Generated text from the above step}

“Extract and organize information on the following items.”

(Add the value next to the variable name with no further explanation.)

{Defined result extraction format}

Experiment 2

Step 1: Translating diagnosis codes to natural language text

“I have a diagnosis called {Diagnosis code}.

Describe it in natural language used by doctors and other health care professionals.

Write it as a single phrase of only a few words (less than 15 words but do not use abbreviations).

All semantics must be included.”

Step 2: Translating natural language text to diagnosis codes

“Where does {Descriptions on diagnosis} fit in the following categories?

{Categories according to International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)}

Provide the most appropriate ICD-9-CM code directly or choose one of the categories above.

Choose only one answer that seems the most relevant and answer in the following format.

The corresponding code: [Code (without periods): a description of the code].”

Experiment 3

Step 1: Extracting medication list from discharge summary

role: “system,” “content:” Your role is to interpret medical records.

role: “assistant,” “content:” I only need prescriptions from the ICU, not from the general ward or not from outside our hospital.

Organize by ingredient name, not generic name.

Never include medications on admission and discharge medications.

Exclude information before ICU admission or after ICU discharge, even if it is for a hospital stay.

In other words, exclude prescriptions that were written in a regular ward or emergency room.

Exclude any medications that may not have been prescribed in the ICU.

Finally, exclude all prescriptions for procedures, and tests. that are not prescriptions for medication.

role: “user,” “content:” Observing the following patient record, organize a list of medications prescribed during the ICU visit.

Organize them in the following format (Provide only the name, not the dose)

drug name 1

drug name 2

If any information on the medications prescribed in the ICU is unavailable, simply answer “None.”

Step 2: Converting drug names to ingredient names

{extracted drug list from the above step}

Organize the above medications by ingredient name.

If the drug is recorded by trade name, replace it with the ingredient name.

In the case of multiple ingredient names, record a representative one.
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The format should be a single line of ingredient names with no further explanation, like this

List: Ingredient 1, Ingredient 2,...

Step 3: Comparing extracted drug information with actual prescription records

Here is the medication information extracted from the discharge summary.

{extracted drug list from the above step}

These are the medication details actually recorded in the prescription record.

{Ingredient list from the above step}

Organize the medication information extracted from the discharge summary by its actual inclusion in the prescription record.

Medications not mentioned in the discharge summary should not be listed.

The exact name of the medication may not be recorded, or a synonym may be used.

In these cases, mark the medication as actually prescribed.

For example, warfarin might be described as coumadin.

Record the same medication under different names as the one that was prescribed.

Match the same ingredient even if the added bases differ.

For example, the ingredient name of Lopressor is Metoprolol tartrate, but the ingredient must be confirmed as “true” even if it is Metoprolol.

Ingredient names may be written as abbreviations. For example, acetaminophen may be written as APAP.

Exclude P.R.N. prescriptions.

Exclude simple fluid prescriptions.

Provide only “true” or “false” information for each drug.

Do not provide Python code. Provide only the results in an array.

Fill in the blanks with a “true” or “false” result in the following format

{Defined result extraction format}

After the conversion to MIMIC-III data format via the LLM,
we checked for potential omissions of information and any
discrepancies in numerical values. We assessed the absence or
presence of data omissions using sensitivity, specificity, and
positive and negative predictive values. To assess the accuracy
of the conversion, we used values transformed manually as the
reference standard. Sensitivity indicated whether information
from the original data set also existed in the transformed data.
Conversely, specificity pertained to whether data absent in the
original were also absent in the transformed data. The positive
predictive value (PPV) referred to whether data present in the
transformed data also existed in the original, whereas the
negative predictive value determined whether data absent in the
transformed data were also absent in the original. Numerical
discrepancies were calculated only for test results presented in
numerical format. They were assessed via the computation of
the mean squared error between the original and transformed
values.

Experiment 2: Evaluating Possible Information
Distortion During Conversion of Diagnosis Codes
In this experiment, we explored a scenario of diagnostic codes
from the primary data set undergoing transformation for sharing
across different institutions or to diverse end users. We aimed
to clarify potential discrepancies emerging from transitions
between the original and an alternate coding framework.
Initially, we used a code-mapping table to facilitate the transition
from one coding system to another. Subsequently, we reverted

the transformed codes to the original coding framework, and
then quantified discrepancies by comparing the reverted data
against the primary data set. Using the MIMIC-III database, we
converted diagnoses encoded in ICD-9-CM to SNOMED-CT,
and subsequently reverted the same to ICD-9-CM. This
conversion was based on a mapping table from a previous study
[22]. Our proposed approach primarily leveraged the capabilities
of the LLM, converting the primary coding structure into a
natural text format. For a comparative analysis with the
traditional approach, we recoded the text-converted diagnoses
into the primary coding system (ICD-9-CM) using the LLM,
as illustrated in Figure 2B. However, for this experiment, we
excluded E and V codes (supplementary classifications for
external causes of injury).

In assessing the accuracy of the restoration of diagnostic codes,
we conducted evaluations based on the depth of the ICD-9-CM
coding system. The highest level was labeled level 1, with each
subsequent, more specific layer labeled level 2, level 3, and so
forth. For instance, if the original data had been coded as “401.1
Hypertension, benign” but the restored data were denoted as
“401.9 Hypertension, unspecified,” then the evaluation would
be a mismatch at level 3. However, at level 2 granularity (ie,
“401. Hypertension”), the codes were considered matching.
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Experiment 3: Assessing the Efficacy of LLMs in
Extracting Targeted Information From Unstructured
Medical Records
To evaluate the capability of our model in extracting targeted
medical information from unstructured text, we selected
narrative-style discharge summaries from the EVENTNOTES
section of the MIMIC-III database, based on the assumption
that they would reflect the comprehensive format typical of
patient summaries transmitted between hospitals. These
summaries provide a comprehensive account of a patient’s stay
in the ICU, including clinicians’ assessments, patient medical
history, laboratory results, interpretations of medical imaging,
prescriptions, and ensuing care plans. This data set presents a
detailed array of narrative insights that illustrate the complexities
of patient care, diagnostics, and therapeutic strategies within
the ICU context.

For this experiment, we specifically extracted discharge
summaries documented by clinicians. These summaries
encapsulated patient diagnoses, vital sign readings, current
medication regimens, and other relevant status updates, all
expressed in natural language. The prompts used in this process
are presented in Textbox 1.

To evaluate the performance, we compared the information
extracted from natural language with the information stored in
structured tables. For this assessment, we made a random
selection of 1000 discharge summaries, and we used structured
data—prescription records—to verify the accuracy of the
information retrieved through the LLM. Our focus was on
assessing the PPV, representing the precision of the information

extracted by the LLM. The extracted information was considered
correct if it was also present within the structured data;
otherwise, it was classified as incorrect. Notably, not all
prescriptions are routinely documented in natural language by
clinicians. Generally, only therapeutics significantly influencing
the patient’s clinical status would be transcribed in the notes.
As such, calculating the negative predictive value (ie, the
number of medications not mentioned in the narrative notes that
were actually not administered) was deemed impracticable.
Similarly, sensitivity (ie, the degree to which prescribed
medications are documented in narrative notes) and specificity
(ie, the extent to which nonprescribed medications are not
mentioned in narrative notes) could not be reliably estimated.

Used Software
We accessed ChatGPT (version 3.5) via its API interface. We
used Google BigQuery to manage and deploy the MIMIC-III
and UK Biobank data sets. We used Python for certain tasks,
such as assessing model performance.

Results

Features of the Extracted Data
In experiment 1, we used the lab test results of 1000 individuals
randomly selected from the UK Biobank data set. For
experiment 2, we used all diagnosis codes recorded within the
MIMIC-III database. Finally, we used 1000 discharge summaries
extracted randomly from the MIMIC-III database for experiment
3. Table 1 presents a detailed summary of the data used across
all experiments.

Table 1. Summary of data used in each experiment.

Experiment 3Experiment 2Experiment 1

MIMIC-IIIMIMIC-IIIaUK BiobankDatabase

Discharge summaryDiagnosis code (ICD-9-CMb)Laboratory test resultsData type

59,652651,047502,396Number of records

41,12746,520502,396Number of patients

58.35 (53.63)64.43 (57.20)56.53 (8.09)Age (years), mean (SD)

23,199 (56.4)26,121 (56.2)229,079 (45.6)Sex (male), n (%)

9618.92 (5539.64)N/AN/AcLength of text (number. of characters), mean (SD)

N/AN/A11,973Number of tests

N/A6984N/ANumber of diagnosis codes

aMIMIC-III: Medical Information Mart for Intensive Care III.
bICD-9-CM: International Classification of Diseases, Ninth Revision, Clinical Modification.
cN/A: not applicable.

Results of Experiment 1: Efficiency of the LLM in
Data Transformation and Retrieval
In experiment 1, our objective was to assess the capability of
the LLM in transforming and extracting laboratory results. We
randomly selected the laboratory results of 1000 individuals
from an initial data set of 502,396 individuals. This resulted in
11,996 data points spanning 13 distinct test items (excluding

tests with null results). These data points were subsequently
translated into natural language. Remarkably, only 23 items
were lost during the transformation process, with 11,973 (99.8%)
being successfully converted. Among the transformed data, 24
items did not match their original values perfectly. However,
upon closer examination of these discrepancies, all
inconsistencies were found to stem from the rounding off of
decimal values. For instance, an original BMI value of 24.4383
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was translated as 24.44. Consequently, the calculated mean
squared error was a minimal 1.76e-07. Table 2 provides a

comprehensive summary of errors for each laboratory test.

Table 2. Summary of experimental results from data transformation and extraction using LLM in experiment 1.

MSEa

Number of data with
changed values during the
transformation process

Number of data not trans-
ferred during the transfor-
mation processAfter transformationRaw dataVariable

Mean (SD)n, (%)Mean (SD)n, (%)

00056.94 (8.03)1000
(100)

56.94
(8.03)

1000
(100)

Age

0000.47 (0.5)1000
(100)

0.47 (0.5)1000
(100)

Sex

2.12×10–624027.04 (4.78)994 (100)27.04
(4.78)

994 (100)BMI

00023.55 (15.32)919 (100)23.55
(15.32)

919 (100)ALTb

00026.13 (11.21)918 (100)26.13
(11.21)

918 (100)ASTc

0001.84 (0.81)772 (100)1.84 (0.81)772 (100)Bilirubin

001372.85 (18.69)907
(98.6)

72.94
(18.65)

920 (100)Creatinine

00039.06 (46.96)920 (100)39.06
(46.96)

920 (100)GGTd

00035.88 (5.66)930 (100)35.88
(5.66)

930 (100)HbA1c
e

0001.46 (0.38)846 (100)1.46 (0.38)846 (100)HDLf

0003.54 (0.88)915 (100)3.54 (0.88)915 (100)LDLg

000255.39 (59.79)943 (100)255.39
(59.79)

943 (100)Platelet count

00101.74 (1.05)909
(98.9)

1.73 (1.04)919 (100)Triglycerides

1.76×10–7242342.9 (69.71)11973
(99.8)

42.9
(69.66)

11996
(100)

Total

aMSE: mean squared error.
bALT: alanine transaminase.
cAST: aspartate transaminase.
dGGT: gamma-glutamyl transferase.
eHbA1c: hemoglobin A1c.
fHDL: high-density lipoprotein.
gLDL: low-density lipoprotein.

Results of Experiment 2: Analysis of Diagnostic Code
Conversion (Mapping Table vs Text-Based Methods)
In the conversion, diagnostic codes were adapted based on a
mapping table. Specifically, the original ICD-9-CM codes
transitioned through SNOMED-CT before being remapped to
ICD-9-CM. During this procedure, 5748 diagnostic codes
expanded to 218,088 codes. This expansion may be attributed
to the fact that specific mapping codes do not always allow for
a direct 1:1 representation, leading to a 1:n relationship owing
to challenges in semantic translation. As an illustration, the
ICD-9-CM code for “Malignant pleural effusion: Malignant
pleural effusion (51181)” was mapped as 2 distinct codes in

SNOMED-CT: “Malignant pleural effusion (363346000)” and
“Pleural effusion owing to malignant neoplastic disease
(disorder) (860792009).” However, when converting through
text, the mapping was nearly direct with a 1:1 ratio, ensuring
that the 5748 original codes corresponded to 5748 records.

Assessing the results before and after the conversion, we found
that the mapping table achieved the following consistency
values: 0.096 (21,000/218,088), 0.248 (54,068/218,088), and
0.626 (136,431/218,088) at levels 3, 2, and 1, respectively.
Conversely, when relying on text-based methods, the
consistency was higher, with corresponding values of 0.597
(3430/5748), 0.844 (4850/5,748), and 0.904 (5197/5748) for
the same levels. An important observation pertained to the
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accuracy of conversion in relation to frequency use is that as
the frequency increased, accuracy followed suit. Specifically,
the top 1000 diagnostic names, based on their frequency,
achieved values of 0.733, 0.896, and 0.918 at levels 3, 2, and
1, respectively, outperforming less common names. This

observed relation was linear, as demonstrated in Figure 3. These
results suggested that the frequent use of diagnostic names may
provide better precision when shared between different
databases.

Figure 3. Results of converting diagnoses from ICD-9-CM (International Classification of Diseases, Ninth Revision, Clinical Modification) coding to
natural language and back to ICD-9-CM. At the highest level, Level 1, most information aligned closely with the original data. However, accuracy
decreased as the categories became more specific at levels 2 and 3. Notably, more frequently used diagnoses (toward the left on the x-axis) showed
higher conversion accuracy.

During a review of the misclassified instances, we identified
several cases as errors based on our evaluation standards.
Notably, the semantic core of the original and converted phrases
remained largely consistent. For example, we observed a
transformation from “51881: Acute respiratory failure” to
“78609: Respiratory abnorm NEC: Other respiratory
abnormalities.” A comprehensive list of these misclassifications
is provided in Table S1 in Multimedia Appendix 1.

Results of Experiment 3: Effectiveness of the LLM in
Extracting Relevant Information From Medical
Records
In reviewing 1000 discharge summaries, the LLM identified a
total of 5604 instances of medication prescriptions within the
ICU setting. Of these, 2483 perfectly matched the entries in the
prescription table, resulting in a PPV of 44.3%. When evaluated

based on the shared active ingredient, we found a higher level
of agreement, with 5055 out of the 5604 (90.2%) prescriptions
showing alignment (Table 3). These findings, as exemplified
by instances where “Acetaminophen” in the prescription
information was referred to as “Paracetamol” in the discharge
summaries and cases where “Metoprolol Tartrate” was simply
documented as “Metoprolol,” underscore the tendency of
physicians to note down familiar medication names. This
behavior occurs instead of strictly adhering to the terminology
prescribed in the prescription database. These examples
highlight a preference for more universally recognized or
familiar terms over the precise terminology listed in medical
records. Despite this inherent variability in naming conventions,
the LLM showed significant effectiveness in identifying and
extracting the necessary information.

Table 3. Comparison of drug information extracted from natural language discharge summaries with prescription records.

Number of medications, n (%)

5604 (100)Medications in the intensive care unit extracted from the discharge summary

2483 (44.3)Medications that exactly matched the prescription name

5055 (90.2)aMedications semantically matched by large language model, including synonyms

aA total of 2572 medications were described using different terminology than the prescription.

Discussion

Our research highlighted a new direction in health care by
demonstrating the effective use of LLMs in medical data

exchange. We aimed to overcome the current challenges related
to data sharing among health care institutions, particularly owing
to the unstructured nature of several medical records. We
successfully validated all the key aspects we aimed to
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investigate, demonstrating the efficacy of our approach in
enhancing health care data interoperability. The experiments
revealed that converting hospital data into text format and
subsequently integrating the converted data into another
hospital’s database was not only feasible but also more accurate
and comprehensive compared with traditional data
transformation methods. Notably, our findings confirmed that
the original data retained their accuracy and integrity when
transformed into and back from the text format, a crucial factor
in health care where precision is paramount. Moreover, our
results indicated that text-based transformation, particularly for
semantically rich information such as ICD-based diagnostic
codes, resulted in significantly less distortion compared with
rule-based methods. Finally, our method effectively enhanced
medical data exchange by enabling precise extraction of specific
information, such as ICU medication details, from
text-transmitted data, thus, bolstering health care systems’
efficiency in integrating such data.

Our study highlights the significant role of LLMs in the field
of health care informatics, demonstrating their transformative
ability to manage, interpret, and share large volumes of medical
data. Traditional data standardization methods, while important,
have often been slow and challenging, creating barriers to fast
and efficient data exchange. Our results showed that LLMs can
not only interpret unstructured data but also convert it into easily
understandable formats, greatly reducing the need for
time-consuming standardization and allowing for faster data
transfer.

Furthermore, the impact of our research extends beyond the
clinical or institutional settings, affecting the broader area of
personal health records. Integrating data from multiple providers
into a single, unified record has always been a complex task.
Different institutions often use varied formats, terminologies,
and standards. Our work with LLMs suggested that these models
can simplify this integration process. By understanding,
transforming, and combining different data sources, LLMs can
improve data sharing and enrich the information available.

LLMs’ adaptability in processing and interpreting structured
and unstructured data hints at their potential to significantly
enhance the handling of PGHD. Given the variety and
unstructured nature of PGHD, from health diaries to wearable
technology outputs, our findings suggest a promising avenue
for applying LLMs to integrate and understand these diverse
data sources more effectively. This capability aligns with our
current results. Moreover, it opens up new pathways for creating
more personalized and comprehensive approaches to patient
care, leveraging the vast and untapped resources of PGHD.

Our study also provided significant insights into the process of
converting diagnostic codes between standard coding systems,
such as ICD-9-CM and SNOMED-CT. The higher number of
diagnostic codes produced through this conversion process
highlights the detailed and comprehensive nature of code capture
enabled by the LLM. However, the approximate 1:1 ratio
achieved in text-based conversions points to a more accurate
and straightforward method. Importantly, these text-based
conversions emphasize the major advantage of keeping the
accuracy of the original data. For frequently used diagnostic

terms, this method ensured that the core information from the
original data remained consistent. Our examination of
misclassifications revealed that, although identified as errors
based on our criteria, several converted codes maintained
similarity in their underlying meaning. Thus, despite “errors”
in conversion, the core medical information is typically retained.
Moreover, the direct relationship between the accuracy of
conversion and frequency of diagnostic names hints at a possible
inherent alignment of standard coding systems with commonly
used terms. Our findings highlighted the critical importance of
preserving data accuracy when moving between detailed medical
coding systems. This aligns with the findings of previous studies,
which suggest that using LLMs can lead to more accurate
phenotype extraction from medical data [23,24].

Our findings have implications beyond individual health care
systems and emphasize the potential for a significant change in
the global health care landscape. Our data revealed that using
LLMs can enhance international health information exchanges.
Such improved communication can lead to better collaboration
between countries, potentially benefiting patient care worldwide
by ensuring that medical knowledge and practices are more
consistently applied. Furthermore, our research points to a new
direction in the design and operation of electronic medical record
systems. The ability of LLMs to efficiently process and structure
natural language data can make extracting, analyzing, and
presenting medical data more straightforward. This not only
allows for immediate analyses using the latest data but also
promotes a more adaptable environment within electronic
medical record systems to meet the dynamic needs of the health
care sector, as illustrated in Figure 3.

While our study demonstrates the promising capabilities of
LLMs in medical data processing, it is not without limitations.
In this study, we used the GPT-3.5 model. Notably, using the
newer GPT-4 might lead to better results, given that the
efficiency of LLMs is continually improving. Comparative
studies have demonstrated that GPT-4 performs better than its
predecessors in various domains [25,26]. This progress in
language model capabilities indicates the ongoing advancements
we can expect. In addition to technological considerations, our
reliance on specific data sets such as MIMIC-III and the UK
Biobank, while providing valuable insights, introduces
limitations regarding representativeness across diverse health
care environments and languages. These data sets, representing
particular health care settings and populations, may not fully
encapsulate the complexity and diversity of global medical
practices, especially in non–English speaking countries. This
aspect underscores the necessity for broader research in applying
LLMs across more varied data sets to ensure generalizability
and applicability to different health care contexts. Regarding
technological improvements, on-premise solutions can be
expected to continue to improve in capabilities. Hence, our
research serves as a foundation, showing the feasibility of data
exchange based on LLMs. The accuracy and use of these
transformations will be enhanced further in future versions. For
institutions concerned with security implications, transitioning
from externally provided models, such as ChatGPT, to an
on-premise, self-built language model is a recommended
strategy. Custom-built models can match the performance of
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GPT-3.5 for specific tasks [27,28]. Our choice to evaluate
performance using the 3.5 version in this research provides a
reference point and offers guidance for users considering the
use of their custom language models.

Our research focused on specific data sets, and more extensive
studies involving a wider range of data would be needed to
confirm our initial observations. Moreover, the ability of LLMs
to handle different types of unstructured data, each with its
unique challenges, requires thorough assessment. Nevertheless,
with ongoing advancements in artificial intelligence and machine
learning, we expect that these challenges will be addressed, and
the efficiency of LLMs in managing medical data will continue
to improve. Future versions of LLMs, combined with careful
validation, can bring significant improvements to health care
informatics.

Conclusions
In conclusion, our in-depth study provides important insights
into the potential transformation of health care data exchange
in the near future. The LLMs have a significant role in
enhancing medical data sharing, ensuring both precision and
efficiency. As technology advances and these language models
become more refined, their role in health care data management
and communication is anticipated to expand. Their potential
goes beyond merely simplifying processes; they might also play
a key role in minimizing errors, guaranteeing that medical
professionals worldwide can access accurate and timely data.
Ultimately, our findings suggest that with the incorporation of
LLMs, the global health care landscape could become more
unified, facilitating seamless knowledge transfer and
collaboration among health care providers everywhere.
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MIMIC-III: Medical Information Mart for Intensive Care III
PGHD: patient-generated health data
PPV: positive predictive value
SNOMED-CT: Systematized Nomenclature of Medicine Clinical Terms
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