
Review

The Accuracy and Capability of Artificial Intelligence Solutions in
Health Care Examinations and Certificates: Systematic Review
and Meta-Analysis

William J Waldock1, MBA, MBBCHIR; Joe Zhang1, MBBS, PhD; Ahmad Guni1, MBBS; Ahmad Nabeel2, MBBS;

Ara Darzi1, MBBS; Hutan Ashrafian2, BSc, MBBS, MBA, PhD
1Imperial College London, London, United Kingdom
2Institute of Global Health Innovation, Imperial College London, London, United Kingdom

Corresponding Author:
Hutan Ashrafian, BSc, MBBS, MBA, PhD
Institute of Global Health Innovation
Imperial College London
10th Floor, Queen Elizabeth Queen Mother Building, Praed Street
London
United Kingdom
Phone: 44 07799871597
Email: h.ashrafian@imperial.ac.uk

Abstract

Background: Large language models (LLMs) have dominated public interest due to their apparent capability to accurately
replicate learned knowledge in narrative text. However, there is a lack of clarity about the accuracy and capability standards of
LLMs in health care examinations.

Objective: We conducted a systematic review of LLM accuracy, as tested under health care examination conditions, as compared
to known human performance standards.

Methods: We quantified the accuracy of LLMs in responding to health care examination questions and evaluated the consistency
and quality of study reporting. The search included all papers up until September 10, 2023, with all LLMs published in English
journals that report clear LLM accuracy standards. The exclusion criteria were as follows: the assessment was not a health care
exam, there was no LLM, there was no evaluation of comparable success accuracy, and the literature was not original research.The
literature search included the following Medical Subject Headings (MeSH) terms used in all possible combinations: “artificial
intelligence,” “ChatGPT,” “GPT,” “LLM,” “large language model,” “machine learning,” “neural network,” “Generative Pre-trained
Transformer,” “Generative Transformer,” “Generative Language Model,” “Generative Model,” “medical exam,” “healthcare
exam,” and “clinical exam.” Sensitivity, accuracy, and precision data were extracted, including relevant CIs.

Results: The search identified 1673 relevant citations. After removing duplicate results, 1268 (75.8%) papers were screened
for titles and abstracts, and 32 (2.5%) studies were included for full-text review. Our meta-analysis suggested that LLMs are able
to perform with an overall medical examination accuracy of 0.61 (CI 0.58-0.64) and a United States Medical Licensing Examination
(USMLE) accuracy of 0.51 (CI 0.46-0.56), while Chat Generative Pretrained Transformer (ChatGPT) can perform with an overall
medical examination accuracy of 0.64 (CI 0.6-0.67).

Conclusions: LLMs offer promise to remediate health care demand and staffing challenges by providing accurate and efficient
context-specific information to critical decision makers. For policy and deployment decisions about LLMs to advance health
care, we proposed a new framework called RUBRICC (Regulatory, Usability, Bias, Reliability [Evidence and Safety],
Interoperability, Cost, and Codesign–Patient and Public Involvement and Engagement [PPIE]). This presents a valuable opportunity
to direct the clinical commissioning of new LLM capabilities into health services, while respecting patient safety considerations.

Trial Registration: OSF Registries osf.io/xqzkw; https://osf.io/xqzkw
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Introduction

The advent of large language models (LLMs), such as Chat
Generative Pretrained Transformer (ChatGPT; OpenAI), has
generated extraordinary interest worldwide and transformed the
landscape of artificial intelligence (AI). This foremost
positioning of transformer models in the public and academic
consciousness has been achieved by the remarkable ability of
generative artificial intelligence (genAI) models to create new
content with human-like semantics and syntax, alongside the
capability to accurately replicate learned knowledge in narrative
text. Numerous applications in medical research [1], medical
education [1], clinical communication or consultation [2], and
even diagnosis and risk prediction tasks [2] have been
demonstrated to date. There is great positive potential for genAI
across all of these pathways and great promise to relieve the
increasing pressures and shortage of clinical expertise in health
care systems worldwide [2].

The ability of genAI to answer medical examination questions
is of particular interest. First, such examinations serve as the
gateway for professional qualification. Written examination
questions replicate complex clinical scenarios in narrative form
and may include the possibility of multiple reasonable
differential diagnoses (multiple choice) or require ranking of
medically appropriate responses (single-best answer) according
to not just clinical knowledge but also contextual
decision-making and medical ethics. For decades, this type of
examination has been the ultimate test of human clinical
judgment and depth of knowledge. The performance of LLMs
in this context has far-reaching implications for how medical
education is delivered. Second, these expert-developed and
expert-validated question-answer pairs are a coherent substitute
for real-world training data written in narrative form and may
serve to tune genAI models with a clinical consultation,
communication, or diagnostic function. This is exemplified by
Google’s use of medical examination questions to train and test
Medical Patient Language Model 2 (Med-PaLM 2) [3]. Finally,
these same validated questions are a ready-made benchmark
for assessing LLM capabilities in future clinical or medical
education–related tasks.

However, the use of LLMs is not without risk. They have a
propensity to “hallucinate” false information and produce
potentially dangerous inaccuracies [4]. In addition, LLMs are
created through a process of pretraining on vast existing text
corpuses to enable a general understanding of syntax and
semantics. Although models may undergo fine-tuning for
particular tasks or domains, this process does not modify the
underlying “learned” knowledge but adjusts weights to adapt
the model’s outputs for a required context. As such, the
underlying embedding of our current societal state means that
models will also encode societal biases, which will certainly
include biases seen in health care provision and outcomes [5].
An understanding of how these problems manifest in real-world

tasks is key to developing mitigations and to establish risks and
benefits of the use of LLMs in different medical areas.

We conducted a systematic review of LLM accuracy, as tested
under health care examination conditions, as compared to known
human performance standards. We assessed the reporting quality
and risk of bias within existing studies and synthesized a
discussion of pitfalls and performance concerns, as reported by
study investigators. We discussed how the observed LLM
performance impacts medical education and genAI-enabled
clinical consultation and recommended a framework for the
conduct of future research in this area. In response to this rapidly
progressing field, we aimed to establish a baseline performance
and quality standard for the current generation of LLMs in
narrative medical response tasks.

Methods

Study Design
The systematic review was conducted according to a registered
protocol and was reported according to the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
statement [6]. The protocol was registered with the Open
Science Framework (OSF) [7], under the title “How Accurate
are Artificial Intelligence LLMs When Applied to Healthcare
Exams and Certificates?”, with the secondary research questions
“What is the performance of LLM in comparison to required
examination standards for humans?” and “What are the primary
discovered weaknesses of LLM in addressing narrative health
care examination scenarios that may be pertinent to real-world
performance in clinical scenarios?”

Eligibility Criteria
The inclusion criteria were all papers up until September 10,
2023, published in English language journals that describe the
use of AI solutions in health care examinations and certificates.
As reflected in the Medical Subject Headings (MeSH) terms
used, the authors screened the manuscripts for “artificial
intelligence,” which could be described in the following possible
ways: “ChatGPT,” “GPT,” “LLM,” “large language model,”
“machine learning,” “neural network,” “Generative Pretrained
Transformer,” “Generative Transformer,” “Generative Language
Model,” or “Generative Model.” The exclusion criteria were as
follows: the assessment was not a health care examination, there
was no LLM, there was no evaluation of comparable success
accuracy, and the literature was not original research (ie,
commentary, editorials, reviews). We assessed LLMs, first, as
applied to health care examinations and, by extension, as applied
to clinical problems, including those encountered by individual
patients and clinicians, and the likely impact on future medical
education. We assessed the outcome of the accuracy of
examination response performance and an intervention of the
use of LLMs to answer narrative health care examination
questions. The additional variable(s)/covariate(s) to consider
were the name and country of medical examination; the “pass
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mark” and other score boundaries for each medical examination;
the average and intervals of human performance for each
medical examination that included benchmarks; the identity of
LLMs; LLM characteristics, including parameter size; and any
fine-tuning for the LLMs prior to testing.

Information Sources
The search included all papers up until September 10, 2023, at
which point a preliminary search was conducted and piloting
of the study selection process was commenced using
MEDLINE/PubMed, CINAHL, ClinicalTrials.gov, Embase,
and Google Scholar.

Search Strategy
The literature search included the following MeSH terms used
in all possible combinations: “artificial intelligence,”
“ChatGPT,” “GPT,” “LLM,” “large language model,” “machine
learning”, “neural network”, “Generative Pre-trained
Transformer”, “Generative Transformer,” “Generative Language
Model,” “Generative Model,” “medical exam,” “healthcare
exam,” and “clinical exam.” Two authors (WJW and AG)
independently identified relevant studies, and any discrepancies
were resolved by consensus with the help of a third author (HA)

Selection Process
Screening reliability and duplicate removal were maintained
by 2 independent screeners reviewing abstracts (WJW and AG),
with divergent screener decisions reconciled by a third master
screener (HA). Abstracts were downloaded and screened in
Covidence software [8] using .rsi and .csv files. Two
independent authors (WJW and AG) performed full-text
manuscript screening following abstract screening, with
discrepancies resolved by consultation with the lead author
(HA).

Data Collection, Data Items, and Data Synthesis
Two reviewers (WJW and AG) extracted and synthesized
comparative accuracy data from the reviews on Covidence. No
automation tools were used. The 2 authors independently
extracted data from relevant studies, and any discrepancies were
resolved by consensus with the help of a third author (HA)
Sensitivity, accuracy, and precision data were extracted,
including relevant CIs. The meta-analysis pooling of aggregate
data used the random-effects inverse-variance model with

DerSimonian-Laird estimate of tau2. The software used to
conduct the meta-analysis was Stata Statistical Software Release
15 (StataCorp).

Risk-of-Bias Assessment and Reporting Bias
Assessment
The QUADAS-2 tool [9] was used for the systematic evaluation
and assessment of the risk of bias and concerns regarding answer
accuracy for clinical examination questions. The evaluation
enabled adjudication of the applicability and bias concerns
regarding reference standards and training data selection. Two
independent authors performed the risk-of-bias assessment,
with discrepancies resolved by consultation with the lead author
(HA).Results

Results

Study Screening
Based on PRISMA guidelines, the search identified 1673
relevant citations. After removing duplicate results, 1268
(75.8%) papers were screened for titles and abstracts, and 32
(2.5%) [3,10-40] studies were included for full-text review (see
Figure 1 and Table S1 in Multimedia Appendix 1).

The LLMs represented in this systematic literature review were
Flan-PaLM 2 [3], Generative Pretrained Transformer (GPT)-Neo
[10], ChatGPT [11-35], Google Bard [13], Bing Chat [13],
PubMedGPT (Stanford University) [36], BioLinkBERT [37]
(BERT stands for Bidirectional Encoder Representations from
Transformers), PubMedBERT [38], Galactica [39], and
DRAGON (Deep Bidirectional Language-Knowledge Graph
Pretraining) [40]. All these models are commercial, except
BioLinkBERT, GPT-Neo, and DRAGON. The majority of
LLMs used in medical examination tasks were pretrained, closed
source models, developed and released by commercial
organizations, such as ChatGPT. There was no prompt
engineering described by the majority of the studies
[11,13,15-35] when using ChatGPT, but Kung et al [12] and
Gilson et al [14] specifically introduced prompt engineering to
mitigate concerns about model “hallucinations” [41]. Stanford
University’s PubMedGPT 2.7B [36] is an LLM trained on
PubMed abstracts and Pile. Flan-PaLM 2 [3], PubMedGPT [36],
DRAGON [40], BioLinkBERT [37], Galactica [39],
PubMedBERT [38], and GPT-Neo [10] were all evaluated using
the same 12,723 United States Medical Licensing Examination
(USMLE) open source question dataset [42]. BioLinkBERT
[37] is a self-supervised pretraining bidirectional system that
leverages graph structures in PubMed. PubMedBERT [38] is a
BERT-style model trained on PubMed, while Galactica [39] is
a GPT-style model trained on scientific literature that is 44 times
the size of PubMedGPT 2.7B [36].
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Figure 1. Study selection based on PRISMA guidelines. PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Precision, Sensitivity, and Accuracy

Precision
When assessing the precision of LLMs in all examinations, 2
(6.3%) studies had an overall precision of 0.61 (CI 0.55-0.67)

across 189 questions, with a tau2 heterogeneity of 0.0018 and

an I2 variation attributable to a heterogeneity of 99.6%.

Sensitivity
When assessing the sensitivity of LLMs in all examinations, 2
(6.3%) studies had an overall sensitivity of 1.00 (CI 1.00-1.00)

across 189 questions, with a tau2 heterogeneity of 0.0000 and

an I2 variation attributable to a heterogeneity of 0%.

Accuracy
The overall LLM examination performance, USMLE accuracy,
and ChatGPT accuracy were all evaluated by substudy
meta-analysis, with question counts moderated for
double-counting across multiple substudies. When assessing
the accuracy of LLMs in all examinations, 47 substudies had
an overall accuracy of 0.61 (CI 0.58-0.64) across 22,347

questions, with a tau2 heterogeneity of 0.0088 and an I2 variation
attributable to a heterogeneity of 100% (Table 1 and Figure 2).
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Table 1. LLMa meta-analysis substudies.

AccuracyQuestions, nStudy and substudies

0.87140Alessandri Bonetti et al [26]; IRANE (Italian Residency Admission National Exam)

Angel et al [20]

0.461000Bard American Board of Anesthesiology (ABA)

0.501000GPTb-3 ABA

0.801000GPT-4 ABA

Beaulieu-Jones et al [30]

0.68112Data-B

0.71167SCORE (Surgical Council on Resident Education)

Bolton et al [36]

0.5012,723PubMedGPT

0.761217ChatGPTc

0.86180Flores-Cohaila et al [29]; Peruvian National Licensing Medical Examination (PNLME)

0.91105Gencer et al [23]; Turkish ChatGPT

0.73509Giannos et al [18]; BioMedical Admissions Test (BMAT)

Gilson et al [14]

0.44100ChatGPT A

0.42100ChatGPT B

0.6487ChatGPT C

0.58102ChatGPT D

0.3812,723Gu et al [38]; PubMedBERTd

0.77643Guerra et al [24]; ChatGPT Self-Assessment Neurosurgery (SANS)

Huang et al [21]

0.62300GPT-3 Radiation Oncology in-Training (TXIT)

0.79300GPT-4 TXIT

0.82108Huang et al [28]; University of Toronto Family Medicine Residency Progress Test (UTFMRPT)

0.561129Humar et al [17]; ChatGPT plastic surgery

0.28135Huynh et al [32]; GPT urology

0.52120Kufel et al [31]; ChatGPT Polish radiology examination

0.60376Kung et al [12]; ChatGPT

0.67427Mannam et al [35]; ChatGPT SANS

0.5047Morreel et al [16]; ChatGPT Dutch

0.76280Oh et al [19]; ChatGPT Korean

0.711177Oztermeli et al [22]; GPT-3.5 medical specialty examination (MSE)

Raimondi et al [13]

0.6348Bard Fellowship of the Royal College of Physicians and Surgeons (Ophthalmology), or
FRCOphth, part 1

0.5243Bard FRCOphth part 2

0.7948Bing Chat FRCOphth part 1

0.8343Bing Chat FRCOphth part 2

0.5548ChatGPT-3.5 FRCOphth part 1

0.5043ChatGPT-3.5 FRCOphth part 2
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AccuracyQuestions, nStudy and substudies

0.6648LLM chatbot FRCOphth part 1

0.6843LLM chatbot FRCOphth part 2

0.58119Sharma et al [11]; ChatGPT

0.6012,723Singhal et al [3]; Med-PaLM 2e

0.59340Skalidid et al [34]; ChatGPT cardiology

0.6928Strong et al [15]; ChatGPT

0.4412,723Taylor et al [39]; Galactica

0.3312,723Venigalla et al [10]; GPT-Neo

0.47360Wang et al [25]; Chinese National Medical Licensing Examination (CNMLE)

0.42125Weng et al [27]; Taiwan Family Medicine Board Exam (TFMBE)

0.4512,723Yasunaga et al [37]; BioLinkBERT

0.4812,723Yasunaga et al [40]; DRAGONf

aLLM: large language model.
bGPT: Generative Pretrained Transformer.
cChatGPT: Chat Generative Pretrained Transformer.
dBERT: Bidirectional Encoder Representations from Transformers.
eMed-PaLM 2: Medical Patient Language Model 2.
fDRAGON: Deep Bidirectional Language-Knowledge Graph Pretraining.
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Figure 2. Forest plot of the accuracy of LLM performance on all medical examinations. ABA: American Board of Anesthesiology; BERT: Bidirectional
Encoder Representations from Transformers; ChatGPT: Chat Generative Pretrained Transformer; CNMLE: Chinese National Medical Licensing
Examination; DRAGON: Deep Bidirectional Language-Knowledge Graph Pretraining; FRCOphth: Fellowship of the Royal College of Physicians and
Surgeons (Ophthalmology); GPT: Generative Pretrained Transformer; IRANE: Italian Residency Admission National Exam; LLM: large language
model; MSE: medical specialty examination; PaLM: Patient Language Model 2; PNLME: Peruvian National Licensing Medical Examination; PRE:
Polish radiology examination; SANS: Self-Assessment Neurosurgery; SCORE: Surgical Council on Resident Education; TFMBE: Taiwan Family
Medicine Board Exam; TXIT: Radiation Oncology in-Training; UTFMRPT: University of Toronto Family Medicine Residency Progress Test.

USMLE Accuracy
When assessing the accuracy of LLMs in the USMLE, 14
substudies had an overall accuracy of 0.51 (CI 0.46-0.56) across

13,535 questions, with a tau2 heterogeneity of 0.0080 and an I2

variation attributable to a heterogeneity of 100%.

ChatGPT Accuracy
When assessing the accuracy of ChatGPT on medical
examinations, 32 substudies had an overall accuracy of 0.64

(CI 0.6-0.67) across 9824 questions, with a tau2 heterogeneity

of 0.0128 and an I2 variation attributable to a heterogeneity of
100%.

Bias and Narrative Reporting
Among the 32 studies that underwent QUADAS-2 [9,43]
risk-of-bias evaluation (Figure 3), only 11 (24.4%) were eligible
for meta-analysis. Overall, 10 (31.3%) studies were found to
have high bias, 15 (46.9%) studies were found to have some
concerns of bias, and 7 (21.9%) studies were found to have low
bias. In addition, 3 (9.4%) studies referred to concerns about
“hallucinations,” but none described the effect nor referred to
softer themes, such as empathy. No studies evaluated bias
systematically. None of the reviewed literature was systematic
reviews, so a TRIPOD (Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis)
adherence to reporting standards analysis [44] was not
conducted.
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Figure 3. Risk-of-bias. ABA: American Board of Anesthesiology; BERT: Bidirectional Encoder Representations from Transformers; ChatGPT: Chat
Generative Pretrained Transformer; CNMLE: Chinese National Medical Licensing Examination; DRAGON: Deep Bidirectional Language-Knowledge
Graph Pretraining; FRCOphth: Fellowship of the Royal College of Physicians and Surgeons (Ophthalmology); GPT: Generative Pretrained Transformer;
IRANE: Italian Residency Admission National Exam; LLM: large language model; MSE: medical specialty examination; PaLM: Patient Language
Model 2; PNLME: Peruvian National Licensing Medical Examination; PRE: Polish radiology examination; SANS: Self-Assessment Neurosurgery;
SCORE: Surgical Council on Resident Education; TFMBE: Taiwan Family Medicine Board Exam; TFMR: Toronto Family Medicine Residency; TXIT:
Radiation Oncology in-Training.
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Discussion

Principal Findings
Our meta-analysis suggests that LLMs are able to perform with
an overall medical examination accuracy of 0.61 (CI 0.58-0.64)
and a USMLE accuracy of 0.51 (CI 0.46-0.56), while ChatGPT
can perform with an overall medical examination accuracy of
0.64 (CI 0.6-0.67). We quantified the accuracy of LLMs in
responding to health care examination questions and evaluated
the consistency and quality of study reporting. The majority of
LLMs used in medical examination tasks were pretrained, closed
source models, developed and released by commercial
organizations, such as ChatGPT. However, we found that
minimal research has explored bias, “hallucination,” and holistic
evaluation of the LLMs themselves. Moreover, neither the risk
of bias nor holistic evaluation frameworks exist for LLMs
themselves.

There are inherent challenges to integrating LLMs into the
education and clinical decision support of human doctors. Use
cases for LLMs include grading, detection, prediction, and
content generation [45], but the application of these capabilities
to the sociocultural elements of medicine are complex. Doctors
offer empathetic relationships and formulate clinical reasoning
in a more transparent way than current LLMs, raising concerns
that the introduction of LLMs will undermine doctor-patient
rapport [46] and trust in the ethical compliance of the health
care system. LLMs can automate the generation of text content,
which offers opportunities to enhance student answer marking
and provide responsive learning assistant chat features [45].
However, these features lack transparency, prompting distrust
in decision-making [47], and a lack of evidence generation
around student engagement [48]. Although these training and
infrastructure hurdles must be overcome, there is immense
potential for personalized learning experiences with augmented
and virtual reality, alongside enhanced curriculum
implementation [49].

Medical examinations are not the same as medical practice [50].
The tests that are designed to confirm a human’s suitability to
practice medicine independently may not be appropriate for an
LLM; real-world practice involves greater pathophysiological
complexity, diverse holistic care considerations, and important
ethical accountability frameworks to ensure empathetic
patient-centered health services. Here, we demonstrated LLM
capabilities in question-and-answer tasks according to
established international benchmarks. Single-best answer
questions are designed to simulate clinical decision-making,
but there is a lack of relevance of examination questions to
real-world tasks [5]. Current models are trained on an
unregulated range of both narrow and broad data sets to perform
tasks with translational evidence, which currently have unclear
significance in clinical practice [5]. LLMs are not yet ready to
be a proxy for human education, as questions simplify and
isolate scenarios in an imperfect representation of real situations
encountered by clinicians. However, the success of LLMs may
justify a reconfiguration or even a disruption of medical training.
This might involve an initial move toward formative assessments
in view of the limitations of summative assessments exposed

by the success of LLMs in the USMLE [3]; rather, when offered
access to a hitherto untapped wealth of medical information,
the role of the doctor may be able to provide judicious medical
decisions when presented with intelligent and superintelligent
LLM-generated treatment strategies.

Virtual and remote learning opportunities will be enhanced by
LLMs [49], but bias, cost, and “hallucination” are the major
obstacles to their application in health care. The definition of
the threshold for acceptable clinical deployment varies across
clinical scenarios and disease states due to the variation in the
acceptable tolerance of error. LLMs are developed with
parameters that reflect the established sociocultural inequalities
in our society and can be perpetuated in LLMs without further
intervention. Solutions such as LLM-focused data governance
strategies within current and future guidelines and novel
approaches, including the use of synthetic data, will likely be
needed to ensure those underserved by current data collection
pools are not discriminated against in the behavior of the LLMs
[51]. With estimates suggesting that US $5 million of graphical
processing units (GPUs) [52] are needed at minimum for 1
LLM, their impressive capabilities are unlikely to be ubiquitous
across health systems, such as the UK National Health Service
(NHS), and may exacerbate inequalities. Finally, there is an
inherent danger of “hallucination” with LLMs, undermining
the protection of patient data and accurate contributions to live
clinical scenarios [53].

Study Limitations
The studies failed to explore the main barriers to LLM
implementation in clinical practice, including bias,
“hallucinations,” usability, cost, and privacy. The extensive
variation between studies in the terminology, methodology,
outcome measures, and data interpretability could be explained
by a lack of consensus on how to conduct and report LLM
studies. We have concerns over the reliability of these studies
and the small volume of eligible studies for comparison. The
lack of consistency in accuracy reporting between studies
obstructed evaluation of the relative strengths of each method.
There is an inherent challenge in evaluating technology with
substantial commercial potential due to producers’
understandable reluctance about publishing sensitive details
that may enable reproducibility but undermine commercial
advantage. Our review concentrated on health care examination
LLM performance and so did not account for LLM capability
in more generalist evaluations that may still have valuable
insights for optimizing health care capabilities.

Future Work
For policy and deployment decisions of LLMs to advance health
care, we propose a new framework called RUBRICC
(Regulatory, Usability, Bias, Reliability [Evidence and Safety],
Interoperability, Cost, Codesign–Patient and Public Involvement
and Engagement [PPIE]). See Multimedia Appendix 2.

Regulatory
LLMs have unique evaluation requirements. Medicines and
Healthcare products Regulatory Agency (MHRA) device
standards may categorize some clinical LLMs as type 2b devices
[54], although medical knowledge progression (eg, National
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Institute for Health and Care Excellence [NICE] guidelines)
may require the recall of LLMs due to their capabilities being
contained by period updates. Moreover, specific LLM standards
for clinical commissioning are yet to be defined. It is important
to forecast probable applications of LLMs, such as medical
chatbots, clinical documentation, obtaining insurance
preauthorization [55], and reviewing research papers [56].
Therefore, the regulatory responsibilities to patient safety and
privacy will demand scrutiny on the grounds of LLMs’
complexity, hardware, privacy, and real-time adaptation [55].
Developing rigorous and robust regulatory standards will require
the commitment and input of key stakeholders, including
clinicians, engineers, researchers, ethicists, health policymakers,
and patients. Importantly, standards must be regularly adapted
and revised to meet the rapidly advancing and evolving nature
of LLMs.

Usability
Early adopter contexts will also likely be when the LLM is a
clinical decision support tool integrated into various clinical
contexts ranging from triage and differential diagnoses to
imaging and medication decisions. Different geographies may
apply these technologies differently, from the United States’
insurance-based federated health landscape, which will likely
apply LLMs to local health systems, in contrast to national data
connectivity, which offers en masse precision LLM use across
specialties, systems, and care tiers, such as in Estonia or the
United Kingdom’s NHS [57]. Academia will also be impacted,
with publication assistance accelerating the role of
LLM-coauthored literature [56].

Bias
The systematic review literature deals in terms of bias, which
represents the content and function of an AI. The bias
discussions in the included papers focused on the following
variables: within-item anchoring bias, grounding bias,
chain-of-thought bias, and demographic bias. By contrast, risk
characterizes the contextual impact of an LLM in conversations
that inform commissioning of generative medical AI and aligns
with current regulatory frameworks for current and future AI
tools [56]. Singhal et al [3] evaluated Med-PaLM 2 using the
following LLM answer risk framework: more
inaccurate/irrelevant information, omits more information,
more evidence of demographic bias, greater extent of harm,
greater likelihood of harm. A key consideration is the risk matrix
of LLM errors. There are unique requirements for LLM
reporting that do not easily map onto established criteria, such
as the Standards for Reporting of Diagnostic Accuracy Study
(STARD) 2015 checklist [58], and can be incorporated into the
upcoming STARD-AI [59]. Associated challenges related to
bias include “hallucination” and privacy, threatening the
reliability of these LLM services.

Reliability

Evidence

Differences in reference standards and thresholds for diagnostic
accuracy make comparison of LLM studies difficult in this
nascent field, undermining the pathway to integration into health
systems. These problems can only be addressed by specific

reporting standards for AI studies [59,60], with design accuracy
to address issues of reproducibility, transparency, and efficacy
[61]. Further evidence is needed to develop reliable guidelines
[62]. We therefore await guidelines that accommodate LLM
utility to enable higher-quality and more consistent reporting,
which in turn will empower the MHRA and the Food and Drug
Administration (FDA) to be able to evaluate LLM risk.
Specifically, the development of AI-specific risk-of-bias tools,
such as QUADAS-AI, will aid in establishing the risk of bias
for evidence synthesis of clinical LLM studies, allowing
clinically relevant conclusions to be drawn more confidently
[43].

Safety

Multidisciplinary secure data environments (SDEs) [63] must
be established with cybersecurity standards to assuage
recognized concerns about AI manipulation and displacement
of human welfare priorities [64]. There remain established
concerns about the regulated integration of LLMs into
established clinical workstreams in view of “hallucination”
concerns, which will require a quality management system to
ensure compliance with best practices to mitigate risk to patients.

Interoperability
Although data flows in the NHS have been mapped [65], there
is a growing demand for infrastructural transformation to reduce
data inequalities and avoid the digital exclusion of unrepresented
and underprivileged groups. A particular challenge includes
multimodal data linkages and interoperability with integration
of LLM tools in multiple different scenarios across the health
service. One must be careful to consider how secondary or
primary care data might be used differently to inform population
health tools.

Cost
The economic considerations for LLMs can be organized into
procurement, data processing, housing and cloud storage,
management, and usability costs. Training costs have declined
around 80% on models similar to ChatGPT-3 over the past 3
years [62]. The input cost is the number of tokens passed as
prompts to the application programming interface (API), and
the output cost is dependent on the number of tokens returned
[63]. Therefore, for medical free-text record summarization,
there is a large input cost dominated by the high quantity of
tokens for each prompt. Self-hosted LLMs incur cloud service
costs to run the models; it is notable that ChatGPT-4 (32 context
length) is priced at US $60 input cost (per million tokens) and
US $120 output cost (per million tokens) [66]. Further costs to
consider include fine-tuning, which is most effective in
improving performance on low-parameter models [67]; the
clinical commissioning decisions related to these costs will be
linked to the quality-adjusted life years (QALYs) associated
with incremental performance improvements.

Codesign-PPIE
Public trust in LLMs can be built through a codesign process,
adhering to INVOLVE [68] values, through respect, support,
transparency, responsiveness, fairness of opportunity, and
accountability. AI raises challenges for the codesign processes
due to the disproportionate emphasis on procedures, patients
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lacking genuine understanding, and concerns AI may exacerbate
inequalities; this is best resolved by a focus on sociotechnical
values and design humility to acknowledge to patients what the
proposed technology cannot achieve for them [69]. Meanwhile,
doctor-patient rapport will likely be enhanced due to LLMs
alleviating administrative tasks and helping clinicians answer
patient questions [70]. RUBRICC is a nascent area of work that
will undergo further development to enable utility and impact
in the field.

Conclusion
LLMs offer promise to remediate health care demand and
staffing challenges by providing accurate and efficient

context-specific information to critical decision makers.
However, progress is obstructed by inconsistent reporting and
an imbalance of resources between commercial interests and
public sector regulators to independently evaluate potential
LLM services. The ability of LLMs to pass the USMLE does
not mean that the models answer useful questions to practicing
clinicians [71]. Although initial results show impressive
accuracy in isolated studies, there is an immediate need for a
framework, such as RUBRICC, to evaluate this emergent
technology and facilitate robust clinical commissioning
decisions to benefit patients.
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BERT: Bidirectional Encoder Representations from Transformers
ChatGPT: Chat Generative Pretrained Transformer
DRAGON: Deep Bidirectional Language-Knowledge Graph Pretraining
genAI: generative artificial intelligence
GPT: Generative Pretrained Transformer
LLM: large language model
Med-PaLM 2: Medical Patient Language Model 2
MeSH: Medical Subject Headings
NHS: National Health Service
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RUBRICC: Regulatory, Usability, Bias, Reliability [Evidence and Safety], Interoperability, Cost, Codesign–Patient
and Public Involvement and Engagement (PPIE)
STARD: Standards for Reporting of Diagnostic Accuracy Study
USMLE: United States Medical Licensing Examination
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