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Abstract

Background: Real-time monitoring of pediatric epileptic seizures poses a significant challenge in clinical practice. In recent
years, machine learning (ML) has attracted substantial attention from researchers for diagnosing and treating neurological diseases,
leading to its application for detecting pediatric epileptic seizures. However, systematic evidence substantiating its feasibility
remains limited.

Objective: This systematic review aimed to consolidate the existing evidence regarding the effectiveness of ML in monitoring
pediatric epileptic seizures with an effort to provide an evidence-based foundation for the development and enhancement of
intelligent tools in the future.

Methods: We conducted a systematic search of the PubMed, Cochrane, Embase, and Web of Science databases for original
studies focused on the detection of pediatric epileptic seizures using ML, with a cutoff date of August 27, 2023. The risk of bias
in eligible studies was assessed using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies–2). Meta-analyses
were performed to evaluate the C-index and the diagnostic 4-grid table, using a bivariate mixed-effects model for the latter. We
also examined publication bias for the C-index by using funnel plots and the Egger test.

Results: This systematic review included 28 original studies, with 15 studies on ML and 13 on deep learning (DL). All these
models were based on electroencephalography data of children. The pooled C-index, sensitivity, specificity, and accuracy of ML
in the training set were 0.76 (95% CI 0.69-0.82), 0.77 (95% CI 0.73-0.80), 0.74 (95% CI 0.70-0.77), and 0.75 (95% CI 0.72-0.77),
respectively. In the validation set, the pooled C-index, sensitivity, specificity, and accuracy of ML were 0.73 (95% CI 0.67-0.79),
0.88 (95% CI 0.83-0.91), 0.83 (95% CI 0.71-0.90), and 0.78 (95% CI 0.73-0.82), respectively. Meanwhile, the pooled C-index
of DL in the validation set was 0.91 (95% CI 0.88-0.94), with sensitivity, specificity, and accuracy being 0.89 (95% CI 0.85-0.91),
0.91 (95% CI 0.88-0.93), and 0.89 (95% CI 0.86-0.92), respectively.

Conclusions: Our systematic review demonstrates promising accuracy of artificial intelligence methods in epilepsy detection.
DL appears to offer higher detection accuracy than ML. These findings support the development of DL-based early-warning tools
in future research.
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Introduction

Epilepsy is defined as a transient sign or symptom arising from
abnormal, excessive, or synchronous neuronal activity in the
brain [1]. It is the second most common neurological disorder
[2]. Over 65 million people worldwide suffer from this mental
disorder, equating to 1 in every 26 individuals [3]. In pediatric
intensive care units, the prevalence of epileptic seizures among
all hospitalized children is estimated to be 0.8% [4]. Hence,
research into the prediction of epileptic seizures is particularly
imperative.

Electroencephalography (EEG) has been established as an
electrographic recording technique of brain activity, capable of
timely predicting the occurrence of epileptic seizures from scalp
EEG signals. This allows for more proactive and effective
intervention for patients, making it an effective tool for the
evaluation and diagnosis of epilepsy [5]. EEG is currently the
gold standard for diagnosing neonatal epilepsy [6]. However,
the interpretation of EEG primarily relies on the clinician’s
previous experience, which can impact the interpretation of
some critical signals. Therefore, monitoring epilepsy, especially
in real time, remains a challenging task [7].

In the current epileptic seizure research, there is a lack of
in-depth understanding of the mechanisms of epileptic seizures
and accurate predictive models. Current research is still
exploring the biological and neurological mechanisms of
epileptic seizures, and there is a lack of models that can
accurately predict and assess individual risk. In this study, most
of the data came from publicly available datasets, including but
not limited to the Children’s Hospital Boston-Massachusetts
Institute of Technology (CHB-MIT) [8] and the University of
Helsinki [9], which used the international 10-20 system
configuration for the 19-channel EEG systems with a sampling
rate of 256 Hz. With the rapid development of computer systems
and ongoing advancements in statistical theories, artificial
intelligence (AI) has gradually demonstrated a significant
applicative value in clinical practice. This is particularly evident
in the diagnosis and risk stratification of prognosis for some
refractory diseases. In recent years, deep learning (DL) with its
advantage of automatic feature extraction from images, has been
extensively applied in image processing to assist in the auxiliary
diagnosis of a wide variety of diseases.

For instance, Wei et al [10] conducted a study using machine
learning (ML) to predict depression and anxiety of epilepsy
patients in China, and Yossofzai et al [11] developed and
validated an ML model to predict the outcome of epilepsy
surgery in children. ML encompasses conventional ML and DL
methods. In the past decade, DL has been used as a promising
alternative to traditional ML and has been widely applied in
various research fields. Truong et al [12] applied convolutional
neural networks (CNNs) to different EEG datasets and
demonstrated the effectiveness of DL. Daoud and Bayoumi [13]
used cellular neural networks to extract meaningful features
and then used recursive neural networks to classify them. Ozcan
and Erturk [14] constructed 3D patterns based on the electrode
positions and applied an image-based 3D CNN to predict
epileptic seizures. Using directed transfer functions to explore
the special information exchange between brain electrical
channels, and then using cellular neural networks to predict
epilepsy seizures, achieving satisfactory performance [15]. Yang
et al [16] proposed a dual self-attention residual network to
classify the short-time Fourier transform features of brain
electrical signals.

In this context, multiple studies have also attempted to construct
ML models for forecasting epileptic seizures based on different
modeling variables, even DL models based on EEG to
differentiate epileptic seizures. To date, both ML and DL lack
a systematic understanding of their predictive accuracy. As
such, this study aims to discern the accuracy of ML methods,
including classical ML and DL models, in detecting seizures in
children, and provide evidence-based recommendations for the
development of AI in this field.

Methods

Study Registration
Our systematic review was implemented following the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) 2020 guidelines [17] in Multimedia Appendix
1 and prospectively registered with PROSPERO (ID
CRD42023467260).

Eligibility Criteria
We developed detailed inclusion and exclusion criteria for our
systematic review based on population, modeling, study type,
language, and outcome measures, as detailed in Textbox 1.
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Textbox 1. The inclusion and exclusion criteria.

Inclusion criteria

• Population

• Minor

• Modeling

• Comprehensive construction of machine learning (ML) models for predicting epileptic seizures, including both traditional ML and deep
learning approaches

• Study type

• Case-control, cohort, nested case-control, cross-sectional studies

• Language

• Studies published in English

• Outcome measures

• Receiver operating characteristic, C-index, sensitivity, specificity, accuracy, recall, precision, confusion matrix,F1-score

Exclusion criteria

• Population

• Studies that did not strictly distinguish between adults and minors

• Modeling

• Studies focused solely on risk factors for epileptic seizures;

• Studies that only assessed the predictive accuracy of single factors for seizures;

• Studies focused solely on seizure image segmentation

• Study type

• Reviews, guidelines, expert opinions, and non–peer-reviewed conference abstracts

• Language

• Studies published in non-English languages

• Outcome measures

• Studies missing any outcome measures assessing ML accuracy

Data Sources and Search Strategy
PubMed, Cochrane, Embase, and Web of Science databases
were thoroughly retrieved as of August 27, 2023. Both MeSH
(Medical Subject Headings) terms and free-text keywords were
used, without restrictions on publication region or year. Details
of the search strategy are available in Table S1 in Multimedia
Appendix 2.

Study Selection and Data Extraction
All identified articles were imported into EndNote software
(Clarivate). After deleting duplicates, titles and abstracts were
screened to rule out irrelevant studies. The remaining articles
were reviewed in full for inclusion. A spreadsheet was used to
extract data, including title, first author, year of publication,
type of study, patient origin, dataset source, number of epileptic
seizure cases, total number of epileptic seizure cases in the
training set, overfitting methods, number of cases in the

validation set, missing value handling methods, variable
selection, types of models used, and modeling variables.

In total, 2 independent investigators (ZZ and BC) implemented
the literature screening and data extraction, followed by
cross-checking. In case of any disagreements, a third investigator
(DX) was consulted for resolution.

Risk of Bias Assessment
The QUADAS-2 tool (Quality Assessment of Diagnostic
Accuracy Studies–2) [18] was leveraged to appraise the risk of
bias and applicability of the included studies. This tool evaluates
4 aspects, such as patient selection, index test, reference
standard, and flow and timing. Each domain contains specific
questions answered as “yes,” “no,” or “uncertain,”
corresponding to a bias risk of “low,” “high,” or “uncertain,”
respectively. Studies were considered at low risk of bias if all
key questions in each domain were answered with “yes.” Any
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“no” response indicated potential bias, requiring evaluators to
assess the risk level according to established guidelines. An
“uncertain” rating signified insufficient information for a
definitive judgment.

Outcomes
This systematic review assessed diagnostic accuracy through
sensitivity, specificity, positive likelihood ratio, negative
likelihood ratio, diagnostic odds ratio, and the summary receiver
operating characteristic curve. Calculating these estimates
required diagnostic 4-fold tables. For ML, given the risk of
overfitting, the diagnostic 4-fold tables in both training and
validation sets were extracted from studies on ML. Funnel plots
were used to analyze the publication bias of the C-index and
then Egger test was performed for statistical evaluation of the
publication bias. For DL, only the results of validation or test
sets were considered.

Statistical Analysis
Data analysis was executed using Stata 15.0 (StataCorp LLC).
A bivariate mixed-effects model was used for the meta-analysis
of sensitivity and specificity. However, if original studies lacked
diagnostic 4-fold tables, they were calculated using two
methods: (1) one based on sensitivity, specificity, precision,
and case numbers, and (2) the other based on sensitivity and
specificity calculated using the optimal Youden index and case
numbers. Pooled estimates of sensitivity, specificity, likelihood

ratios, diagnostic odds ratio, and their 95% CIs were calculated.
The summary receiver operating characteristic curve area was
also estimated. Publication bias assessment was conducted using
funnel plots. Statistical significance was determined at P<.05.
The studies included were all based on EEG-based ML methods,
and we know that traditional ML and DL have certain
differences in their image-processing capabilities and modeling
efficiency. Therefore, to reduce heterogeneity, we conducted a
subgroup analysis by model type for traditional ML and DL.

Ethical Considerations and Consent to Participate
All analyses were based on previously published studies; thus,
no ethical approval and patient consent are required.

Results

Study Selection
Our systematic search identified 15,389 related articles, of which
3130 duplicates (2975 identified by software and 155 manually)
were excluded. After title and abstract screening, we excluded
12,014 additional articles. Of the remaining 44 articles, 6
unpublished conference abstracts and 2 articles without full-text
access were excluded. Among the remaining 36 articles, we
excluded 5 for missing outcome measures, 1 for data overlap,
and 2 for including adult participants. After these exclusions,
28 studies met the eligibility criteria [19-46]. Figure 1 illustrates
the literature screening process.

Figure 1. Literature selection flow chart.
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Study Characteristics
Table 1 presents the detailed characteristics of the 28 included
studies, with 15 on ML [32-46] and 13 on DL [19-31]. Of these,
6 were multicenter studies [23,26,27,32,34,39], while the
remaining 22 were single-center investigations. Furthermore,
5 studies were prospective [37,40,41,43,44], with the remaining
23 being retrospective. A total of 6 studies incorporated
prospective external validations [26,27,30,40,43,44], 2
implemented multicenter external validations [26,27], and the
remaining 22 used internal validations. Among studies with
internal validation, 3 used 10-fold cross-validation [25,32,34],
4 used 5-fold cross-validation [21,35,37,41], 3 used the
leave-one-out method [22,32,45], 1 used the Bootstrap method
[ 3 3 ] ,  a n d  1 0  u s e d  r a n d o m  s a m p l i n g
[19,20,23,28,31,36,38,39,42,46]. Of the total, 1 study did not
specify the generation method of validation set [24]. Across the
28 studies, 5742 participants were included, with 1814
confirmed patients with epilepsy, ranging from 9 to 1117
patients per individual study. Furthermore, 10 studies were
carried out in Asian countries, while 18 were conducted in
Western countries. Out of total, 8 studies used EEG signals
from the CHB-MIT dataset [19,22,24,31,34-36,39], another 8
used signals from The University of Helsinki dataset
[20,21,23,25,28,29,38,42], and 3 used data from Cork University
Maternity Hospital [26,27,45]. In addition, 1 ML study used 3
distinct models, each with separate training and validation sets
[38]. All participants in the included studies were children, with
19 studies focusing specifically on neonates
[19-21,23,25-30,32,33,36,38,42-46]. Studies on DL

predominantly used CNN models. Of the 13 studies on DL
detection of pediatric epileptic seizures included in this paper,
7 studies mainly applied the CNN model [21-23,25,27,29,30].
The DL models also included adaptive grey wolf optimizer
(AGWO) [19], graph convolutional neural network [20],
convolutional gated recurrent neural network [31], cross-feature
fusion stream convolutional neural network [24], and pretrained
deep convolution neural networks [28], and these models are
mostly evolved from the CNN. ML studies used models
including random forest (RF), k-nearest neighbors (KNN),
support vector machine (SVM), extreme gradient boosting,
adaptive boosting, and decision tree (DT). RF is an ensemble
learning algorithm used for classification and regression [47],
and 1 of its primary advantages is its robustness to noise. In our
study, 4 original studies using this model were included
[32,33,37,39]. KNN is the simplest ML tool with supervision
for classification [48], and it depends on the predefined nearest
number or the K value. One of the included original studies
used this model [36]. DT predicts the correct classification by
recursively partitioning the real space, and it consists of 2 types
of multiple nodes, that is, leaf nodes and decision nodes. Of the
total, 2 included original studies used this model [33,36]. SVM
is an advanced algorithm mainly used for pattern recognition
and feature reduction, using discriminative techniques to classify
the input, and is best suited for binary classification [49]. Up
to 5 original studies on ML in this study applied this model
[34,38,42,44,45]. With the exception of 1 study that used
electrocardiography as a variable [35], all other studies used
EEG data. Clinical characteristics of patients were included as
modeling variables in 6 studies [32,37,40,41,43,46].
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Table 1. The detailed characteristics of the included studies.
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aML: machine learning.
bDL: deep learning.
cRF: random forest.
dGBDT: gradient boosting decision tree.
eEEG: electroencephalography.
fLR: logistic regression.
gDT: decision tree.
hCHB-MIT: Children’s Hospital Boston-Massachusetts Institute of Technology.
iMETA: metadata.
jHRV: heart rate variability.
kMOR: morphological features.
lECG: electrocardiography.
mSVM: support vector machine.
nANN: artificial neural network.
oCNN: convolutional neural networks.
pKNN: k-nearest neighbors.
qMLP: multilayer perceptron.
rAdaBoost: adaptive boosting.
sXGBoost: extreme gradient boosting.
tLDA: linear discriminant analysis.
uNB: naive Bayes.
vQNNs: Quantum Neural Net.
wFFNN: feedforward neural network.
xAGWO: adaptive grey wolf optimizer.
yGCNN: graph convolutional neural network.
zCFS-CNN: the cross-feature fusion stream convolutional neural network.
aaCUMH: Cork University Maternity Hospital.
abp-DCNN: pretrained deep convolution neural networks.
acCGRNN: convolutional gated recurrent neural network.

Risk of Bias in Studies
In the 28 included studies, all cases were consecutive case series,
eliminating concerns of case selection bias. Notably, the type
of study design had minimal influence on the results of
image-based DL studies [21,26,27], leading to a low risk of bias
for this category. Conversely, conventional ML methods often
involve manual segmenting regions of interest segmentation

and extracting texture features, potentially introducing
significant bias in case-control studies. Consequently, this study
was categorized as having an unclear risk of bias [35]. There
was a study [32] in which we doubted its results were interpreted
without the outcome of the gold standard trial of epileptic
seizures, the risk of bias of the study was classified as unclear.
Further details are shown in Figure 2.
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Figure 2. Risk of bias (A) graph and (B) summary.

Meta-Analysis

Machine Learning
The 15 studies on ML used multi-arm predictive diagnostic
experiments, generating 25 training sets and 13 independent
validation sets. A total of 18 training sets and 6 validation sets
provided C-index values. A random-effects model revealed
pooled C-indexes of 0.76 (95% CI 0.69-0.82) and 0.73 (95%
CI 0.67-0.79) in training and validation sets, respectively
(Figures 3A and 3B). The funnel plots of the pooled training
and pooled validation sets of ML were analyzed, respectively.
The funnel plot generated from the training set suggested an
uneven but symmetric distribution of the C-indexes of the
included studies, and Egger test indicated a possible publication
bias (P=.001 and P<.05). On the other hand, the funnel plot

from the validation set showed that distribution of the C-indexes
tended to be symmetrical, and Egger test suggested no
significant publication bias (P=.47 and P>.05; Figures 3C and
3D).

In addition, 12 training sets and 11 validation sets provided
sensitivity, specificity, and accuracy. A random-effects model
was leveraged. The analysis showed a pooled sensitivity of 0.77
(95% CI 0.73-0.80) and specificity of 0.74 (95% CI 0.70-0.77)
for training sets (Figure 4A). For validation sets, the pooled
sensitivity was 0.88 (95% CI 0.83-0.91) and specificity was
0.83 (95% CI 0.71-0.90; Figure 4B). The accuracy for the pooled
training set and validation set in ML were 0.75 (95% CI
0.72-0.77) and 0.78 (95% CI 0.73-0.82), respectively (Figure
4C). No significant publication bias was detected in these results.
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Figure 3. Forest and funnel plots of machine learning models for detecting seizures in children. The presence of repeated authors in the literature arises
from the development of multiple machine learning models. (A) Forest plot illustrating the C-index summarization for the training set. (B) Forest plot
illustrating the C-index summarization for the validation set. (C) Funnel plot illustrating the C-index for training set. (D) Funnel plot illustrating the
C-index for the validation set. AdaBoost: adaptive boosting; ANN: artificial neural network; GBDT: gradient boosting decision tree; LDA: linear
discriminant analysis; LR: logistic regression; NB: naive Bayes; RF: random forest; SVM: support vector machine; XGBoost: extreme gradient boosting.

Figure 4. The forest plot shows the sensitivity, specificity, and accuracy of machine learning models in detecting seizures in children. The presence
of repeated authors in the literature arises from the development of multiple machine learning models. (A) Sensitivity and specificity of the training set,
(B) Sensitivity and specificity of the validation set, and (C) Accuracy of the machine learning models for both the training set and the validation set
post summarization. AdaBoost: adaptive boosting; ANN: artificial neural network; DT: decision tree; GBDT: gradient boosting decision tree; KNN:
k-nearest neighbors; LR: logistic regression; SVM: support vector machine; RF: random forest; XGBoost: extreme gradient boosting.
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Deep Learning
In total, 13 DL studies focused on DL for diagnosing pediatric
epileptic seizures. Since DL is less susceptible to overfitting,
only 26 validation sets were analyzed. Among the validation
sets, 4 provided only the C-index, 10 provided only sensitivity,
specificity, and accuracy without the C-index value, and the
remaining 11 validation sets provided both the C-index as well
as sensitivity, specificity, and accuracy. Therefore, a total of 15

validation sets were included in the C-index analysis for DL,
while 21 validation sets were included in the analysis of
sensitivity, specificity, and accuracy for DL. Of these, 15
validation sets provided C-index values. A random-effects model
revealed a pooled C-index of 0.91 (95% CI 0.88-0.94; Figure
5A). The funnel plot of the C-indexes in the DL validation set
also showed a generally symmetric distribution, and Egger test
suggested no significant publication bias (P=.75 and P>.05;
Figure 5B).

Figure 5. Forest and funnel plots of the C-index for the validation set for deep learning models for detecting seizures in children. The presence of
repeated authors in the literature arises from the development of multiple deep learning models. (A) Forest plot illustrating the C-index summarization
for the validation set. (B) Funnel plot illustrating the C-index for the validation set.

Furthermore, 21 validation sets provided sensitivity, specificity,
or precision values. A random-effects model was leveraged for
data analysis. The analysis showed a pooled sensitivity of 0.89
(95% CI 0.85-0.91), specificity of 0.91 (95% CI 0.88-0.93;

Figure 6A), and an accuracy rate of 0.89 (95% CI 0.86-0.92;
Figure 6B). Similarly, no significant publication bias was
observed in these results.
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Figure 6. The forest plot shows the sensitivity, specificity, and accuracy of deep learning models in detecting seizures in children. The presence of
repeated authors in the literature arises from the development of multiple deep learning models. (A) The application of deep learning for seizure detection
in children demonstrates the sensitivity and specificity of ensemble methods and forest plots; (B) Accuracy of the deep learning validation set post
summarization.

Discussion

Summary of Main Findings
Real-time detection of epileptic seizures has profound clinical
significance. Studies have shown that if a child, who has a
normal nervous system without a history of neurological

diseases, experienced unprovoked epileptic seizures without
obvious acute causes, then the risk of recurrence is about 25%
within the following 1 year, and 45%-50% within the following
3 years [50-52]. In this study, the results showed that AI-based
methods have high sensitivity, specificity, and accuracy in
detecting epileptic seizures. The overall C-index, sensitivity,
and specificity of ML are 0.73 (95% CI 0.67-0.79), 0.88 (95%
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CI 0.83-0.91), and 0.83 (95% CI 0.71-0.90) in the validation
set, respectively. DL exhibited even higher accuracy, with an
overall C-index, sensitivity, and specificity of 0.91 (95% CI
0.88-0.94), 0.89 (95% CI 0.85-0.91), and 0.91 (95% CI
0.88-0.93) in the validation set. It was also found that
EEG-based DL appears capable of detecting SE in a timely
manner. This suggests that this study has the potential to be
used in the development of portable devices for real-time
monitoring in future research. Such devices could enhance the
timely detection of epileptic seizures, enabling prompt clinical
intervention and thereby reducing the risk of recurrence.

Comparison With Other Reviews
Several noninvasive methods for epilepsy detection are actively
investigated. In recent years, researchers have also explored
other noninvasive means for detecting epileptic seizures besides
EEG, such as magnetoencephalography (MEG). MEG measures
the magnetic fields generated by the brain to provide information
about neural activity during epileptic seizures. Similar to EEG,
MEG can also be used to detect signal changes before epileptic
seizures. Some studies have shown that MEG has specific
advantages in detecting extratemporal epileptic spikes, especially
those from epileptic lesions located on the surface of the brain
[53-55]. A meta-analysis by Brændholt and Jensen [56] showed
that the sensitivity and specificity of MEG for detecting epileptic
seizures were 0.77 (95% CI 0.60-0.90) and 0.75 (95% CI
0.53-0.90), respectively. While this finding supports MEG as
an accurate method for detecting SE, compared with the results
of this study, it suggested that both EEG-based ML and DL
may offer superior performance in detecting SE. Another method
is electrical source imaging (ESI), which is a model-based
imaging technique that integrates the spatial and temporal
components of EEG to identify the sources of abnormal
electrical activity related to epileptic seizures [57]. In a study
by Ricci et al [58], the application of ESI in pediatric patients
with refractory epilepsy was evaluated. The results showed that
the sensitivity, specificity, and accuracy of ESI in predicting
seizures in children were 0.57 (95% CI 0.34-0.78), 0.86 (95%
CI 0.57-0.98), and 0.69 (95% CI 0.51-0.84), respectively
(P=.01). Furthermore, 1 study showed that the diagnostic
performance of ESI is comparable with that of magnetic
resonance imaging and positron emission computed tomography.
The sensitivity of these 3 methods for predicting epileptic
seizures was 0.88, 0.71, and 0.66, respectively, while their
specificity was 0.47, 0.71, and 0.59, respectively [59]. While
these detection methods have shown promise, real-time
monitoring of epileptic seizures remains a challenge, requiring
further attention in clinical practice. Our study demonstrates
that DL-based approaches offer promising results with a
sensitivity of 0.89 (95% CI 0.85-0.91) and a specificity of 0.91
(95% CI 0.88-0.93) for pediatric epileptic seizure detection.
Integrating DL based on EEG or electrocardiography into
portable smart devices could significantly enhance real-time
monitoring capabilities.

We have also noticed that there are permanent differences
between DL and ML, and both have their own advantages. For
ML, interpretable clinical features and corresponding ML
models can be developed. For example, one of the original
studies we included based on ML showed that the RF, SVM,

and KNN models had a sensitivity of 0.93, 0.76, and 0.90, a
specificity of 0.89, 0.76, and 0.90, and an accuracy of 0.91,
0.81, and 0.91 in predicting epileptic seizures, respectively [39].
Interpretable models in the clinical setting are still a direction
that we are very interested in. However, for certain imaging
applications, ML requires manual preprocessing, like
segmenting regions of interest and extracting features. During
this process, it is difficult to avoid any heterogeneity or bias
due to manual experience, therefore, for image analysis, we
prefer to use the DL to intelligently train the differences between
them to develop intelligent detection tools. The primary
advantage of CNN is that it can automatically detect important
robust features without any manual intervention. The point is
to estimate and determine the number of layers and the size of
the filters in each layer, and the depth of the structure is the key
to deep CNN. The network depth change will affect the
convolutional receptive field and the corresponding learning
feature complexity [60]. For instance, one of the original studies
based on DL showed that the model had a sensitivity of 0.96,
a specificity of 0.97, and an accuracy of 0.97 in predicting
epileptic seizures, and was compared with common ML
methods, such as RF, DT, and SVM [19].

In clinical practice, we need real-time monitoring for some
diseases, such as epileptic seizures. However, ML still faces
serious challenges in real-time disease monitoring, as the ML
modeling is based on manual encoding, making it difficult to
process images intelligently. Compared with ML, DL has
significant advantages in real-time monitoring. We also found
that researchers have done further work in other fields,
developing wearable devices for real-time disease monitoring
based on DL methods, such as monitoring heart-related diseases
[61,62] or automatically assessing the severity of knee
osteoarthritis [63].

Advantages and Limitations
We found that current meta-analyses related to epilepsy
detection are usually based on the direct diagnosis by clinical
neurologists through the reading of EEG signals [64,65]. This
study is the first study to discuss the use of AI-based methods,
including ML and DL, for the prediction and diagnosis of
epileptic seizures. Particularly, DL has shown very desirable
accuracy in the diagnosis of SE, which may provide some
theoretical support for the subsequent development of intelligent
reading tools or wearable devices. However, several limitations
should be considered. First, the number of cases used for model
construction is limited, whereas ML algorithms require a larger
sample size to build robust models. This may influence the
generalizability of these results. Second, some included studies
lack independent validation. Third, the detection performance
of DL across different age groups remains uncertain. Third, we
only searched for literature published in English in this study.
For this, there are 2 primary reasons, one is there are certain
search barriers in this study and the other is that considering
most readers would need to review the relevant original studies
while reading this article, we developed this search strategy to
improve the readability for the readers. Of course, it is also a
limitation of this study, and we hope that future research can
cover more detection tools developed by diverse populations
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from different countries and ethnicities to validate the results
of this study.

Conclusions
Our systematic review demonstrates promising accuracy of AI
methods in epilepsy detection. DL appears to offer higher

detection performance compared with ML, this finding supports
our initiative to further research and develop early warning tools
using DL.
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