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Abstract

Background: Suicide is the second-leading cause of death among adolescents and is associated with clusters of suicides. Despite
numerous studies on this preventable cause of death, the focus has primarily been on single nations and traditional statistical
methods.

Objective: This study aims to develop a predictive model for adolescent suicidal thinking using multinational data sets and
machine learning (ML).

Methods: We used data from the Korea Youth Risk Behavior Web-based Survey with 566,875 adolescents aged between 13
and 18 years and conducted external validation using the Youth Risk Behavior Survey with 103,874 adolescents and Norway’s
University National General Survey with 19,574 adolescents. Several tree-based ML models were developed, and feature
importance and Shapley additive explanations values were analyzed to identify risk factors for adolescent suicidal thinking.

Results: When trained on the Korea Youth Risk Behavior Web-based Survey data from South Korea with a 95% CI, the XGBoost
model reported an area under the receiver operating characteristic (AUROC) curve of 90.06% (95% CI 89.97-90.16), displaying
superior performance compared to other models. For external validation using the Youth Risk Behavior Survey data from the
United States and the University National General Survey from Norway, the XGBoost model achieved AUROCs of 83.09% and
81.27%, respectively. Across all data sets, XGBoost consistently outperformed the other models with the highest AUROC score,
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and was selected as the optimal model. In terms of predictors of suicidal thinking, feelings of sadness and despair were the most
influential, accounting for 57.4% of the impact, followed by stress status at 19.8%. This was followed by age (5.7%), household
income (4%), academic achievement (3.4%), sex (2.1%), and others, which contributed less than 2% each.

Conclusions: This study used ML by integrating diverse data sets from 3 countries to address adolescent suicide. The findings
highlight the important role of emotional health indicators in predicting suicidal thinking among adolescents. Specifically, sadness
and despair were identified as the most significant predictors, followed by stressful conditions and age. These findings emphasize
the critical need for early diagnosis and prevention of mental health issues during adolescence.

(J Med Internet Res 2024;26:e55913) doi: 10.2196/55913
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Introduction

Adolescent suicide stands out as a prominent global public
health concern, with its rank as the second leading cause of
death among young populations underscoring its severity [1,2]
Notably, adolescence is a phase characterized by an amplified
suicide risk [3]. Concerningly, some geographic regions are
experiencing a surge in suicide clusters, where the instances of
suicide exceed the typical levels [4]. Research into these clusters
indicates that individuals younger than 25 years are up to 4
times more likely to be affected by suicide [5]. Since suicide is
preventable in the early stages, there is a pressing need for action
through rigorous mental health strategies and proactive
educational interventions [6].

While various methodologies have been proposed to prevent
suicidal thinking in adolescents, many lack empirical outcomes
and often fail to identify key determinants [7-9]. A significant
gap remains in accurately assessing the risk of suicidal thinking
for individual adolescents [2,10,11]. Recent advances in machine
learning (ML) methodologies have shown promise in addressing
the challenges of adolescent suicidal tendencies. Studies
leveraging boosted ML [12], daily data analysis through
classification and regression trees [13], and risk and protective
factor frameworks [14] have begun to unpack the complex
interplay of factors contributing to suicidal thinking among
adolescents. However, these studies have also highlighted
limitations, including a focus on specific socioeconomic or
short-term predictors and a lack of comprehensive risk profiles
integrating emotional, social, and psychological variables
[12-14].

Therefore, in this study, we developed a predictive model for
suicidal thinking among adolescents, using advanced ML
algorithms. Addressing the gaps identified in earlier research,
our model incorporates a broader array of factors, including
family dynamics, emotional well-being, academic performance,
and general health indicators. Across distinct adolescent cohorts
from South Korea, Norway, and the United States, we aimed
for a comprehensive multinational approach. By refining our
approach based on previous studies’ insights, this research aims
to highlight the preventability of suicide and influence mental
health clinicians and policy makers to develop more effective
preventive measures and supportive programs.

Methods

Study Design and Participants
This study aimed to develop an ML model to predict suicidal
thinking among Korean adolescents. Our approach used multiple
variables extracted from 3 distinct, large-scale international data
sources: the Korea Youth Risk Behavior Web-based Survey
(KYRBS) [15,16], the Youth Risk Behavior Survey (YRBS),
and Norway’s nationwide University National General Survey
(Ungdata).

Data Preparation and Harmonization
Initial data preprocessing involved adjusting the sample sizes
after the removal of missing values: KYRBS from 1,145,178
to 566,875, YRBS from 438,566 to 103,874, and Ungdata from
89,077 to 19,574. We analyzed data from adolescents aged
between 13 and 18 years who participated in the KYRBS from
2009 to 2021, the YRBS in 2021, and Ungdata from 2017 to
2019. The primary outcome, termed “current suicidal thinking,”
was derived from participants’ affirmative responses to the
question, “During the past 12 months, did you ever seriously
consider attempting suicide?” This outcome indicated that
participants had contemplated serious suicidal thinking at least
once in the preceding year. The analysis considered several

covariates: region, age, sex, BMI (kg/m2), academic
achievement, household income, smoking status, alcoholic
consumption, stress status, feelings of sadness and despair,
exercise habits, and screen time (Figure S1 in Multimedia
Appendix 1) [17].

We harmonized the data sets for XGBoost model compatibility,
addressing the challenge posed by different variable
configurations within the same questions. Our preprocessing
aligned each variable across the KYRBS, YRBS, and Ungdata
data sets, ensuring they matched in terms of content and format.
Recognizing the potential disparities in variable configurations
across these data sets, we standardized the variable names,
formats, and scales, focusing on key features such as
demographic information, behavioral factors, psychosocial
aspects, and environmental influences that could serve as
predictors for suicidal thinking. To ensure consistency, we
adopted the following strategic approach to cases where YRBS
and Ungdata were missing certain features: by calculating the
median of the missing variables in the KYRBS data set, we
were able to effectively impute the missing values to maintain
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the integrity and comparability of the data set compilations.
Through variable alignment and addressing missing data, we
successfully harnessed the diverse strengths of each data set,
facilitating the development of a comprehensive model designed
to address adolescent suicidal thinking effectively.

ML Model Development
Our ML model underwent training and validation to ensure its
predictive accuracy in identifying suicidal thinking. We used
the KYRBS data set to build a model tailored to predict suicidal
thinking among Korean adolescents aged between 13 and 18
years. Recognizing the intricate characteristics of the data, we
used a variety of tree-based ML techniques, including XGBoost,
adaptive boosting (AdaBoost), light gradient-boosting machine
(LightGBM), and random forest to train the data set for our
modeling process [18]. Before this, data preprocessing measures,
such as addressing missing values and encoding categorical
variables, were executed to maintain data integrity and optimize
the data for the modeling phase.

We adopted the 10-fold cross-validation method, dividing the
initial data set into 10 equal-sized subsets, to rigorously assess
the performance efficacy of the ML model. Of these, 9 are
designated for model training, while the remaining subset serves
as validation [19]. The process iterates 10 times, ensuring each
subset undergoes validation at least once. During each cycle,
we computed various performance metrics such as area under
the receiver operating characteristic (AUROC) curve, sensitivity,
specificity, accuracy, and balanced accuracy, along with their
respective 95% CIs [20-25]. The 95% CIs provide a range of
possible values for the model’s performance metrics, allowing
us to assess the stability and generalizability of the model. For
a visual representation of the model efficacy, we used
visualization methods, primarily the receiver operating
characteristic curve. After 10 iterations, the metrics from each
were averaged to determine the final performance evaluation.

We trained our model on the KYRBS data set using 10-fold
cross-validation. The model trained on the KYRBS data set was
then externally validated with YRBS and Ungdata data sets
preprocessed with the same column structure as KYRBS. This
rigorous process reinforced the reliability of our model’s
performance trained on the KYRBS data set [26]. Among the
4 models tested, XGBoost consistently yielded the highest
AUROC scores across all data sets, leading to its selection as
the primary model.

We performed hyperparameter tuning using GridSearchCV to
optimize the performance of the XGBoost model, prioritizing
the maximization of the AUROC score to determine the optimal
hyperparameter combination. Hyperparameters were carefully
selected for improved performance: the gbtree booster was used
for its effectiveness in classification tasks, and the logloss
evaluation metric was chosen to ensure accurate probability
estimations. We set the learning rate at 0.08 to balance training
speed with model accuracy, and the max depth was capped at

5 to prevent overfitting while allowing the model to capture
complex patterns. Additionally, 350 trees (n_estimators) were
used to construct a robust model, with further adjustments made
to parameters like “scale_pos_weight” and subsample to address
class imbalance and enhance model stability. These adjustments
were important in refining our model’s predictive capabilities
and are detailed in Table S1 in Multimedia Appendix 1. In order
to interpret and gain insights into the model predictions, we
used Shapley additive explanations (SHAP) values, a unified
measure derived from cooperative game theory. Data set
variables were analyzed with SAS software (version 9.3; SAS
Institute Inc), and ML analysis was performed using Python
(version 3.11.4; Python Software Foundation). The main Python
libraries used are as follows: NumPy (version 1.26.0; Python
Software Foundation) for data arrays and operations, and Pandas
(version 2.1.0; Python Software Foundation) for data
manipulation and analysis. All 3—scikit-learn (version 1.2.2;
scikit-learn development team), TensorFlow-gpu (version 2.6.0;
Tensor development team), and Keras (version 2.6.0; Keras
development team)—were used for constructing and training
ML models [27]. Additionally, the SHAP package (version
0.42.1) was used to interpret the ML models and for its
explanation capabilities [28].

Software and Libraries
All computations, model training, and evaluations were executed
using Python (version 3.11.4). Key libraries from our toolbox
included scikit-learn (version 1.2.2), NumPy (version 1.24.0),
and Pandas (version 2.1.0) for ML tasks and data wrangling.
Visualization was facilitated using Matplotlib (version 3.7.2)
and Seaborn (version 0.12.2).

Ethical Considerations
The study protocol was approved by the institutional review
board of the Korean Disease Control and Prevention Agency
(2014-06EXP-02-P-A), the US Centers for Disease Control and
Prevention (#1969.0), the Norwegian Centre for Research Data
and Data Protection Office of Inland Hospital Trust (18778329)
and by the local law of the Population Health Promotion Act
19 (117058) form of the Korean government. All participants
provided written informed consent. This research followed the
guidelines outlined in the TRIPOD (Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis or
Diagnosis) statement (Table S2 in Multimedia Appendix 1).

Results

Demographic Characteristics
This study was conducted to develop a ML-based predictive
model for suicidal thinking among adolescents aged between
13 and 18 years. After collecting independent data from 3
countries, covariates were standardized for the ML prediction
modeling process (Figures 1 and 2).
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Figure 1. Study architecture. AdaBoost: adaptive boosting; KYRBS: Korea Youth Risk Behavior Web-based Survey; LightGBM: light gradient-boosting
machine; Ungdata: Norwegian nationwide Ungdata surveys; YRBS: Youth Risk Behavior Survey.

Figure 2. Model architecture. The original Korea Youth Risk Behavior Web-based Survey (KYRBS) data set was partitioned into the original data set
for model development, with performance assessed using area under the receiver operating characteristic (AUROC) curve scores. Selected high-performing
models were further validated using an external Youth Risk Behavior Survey (YRBS) data set. The validation results were derived from the original
data set, external results from the additional YRBS data set, and the Norwegian nationwide Ungdata survey (Ungdata) data set. CV: cross validation.

The distribution of age in the initial training cohort for KYRBS
from South Korea, which was used to build the prediction
model, was as follows: aged 13 years (94,923/566,875, 16.74%),
aged 14 years (98,624/566,875, 17.4%), aged 15 years
(100,490/566,875, 17.73%), aged 16 years (90,057/566,875,
15.89%), aged 17 years (92,071/566,875, 16.24%), and aged
18 years (90,710/566,875, 16%). For the external validation
cohort using YRBS from the United States, the age distribution
was as follows: aged 13 years (351/103,874, 0.34%), aged 14

years (21,095/103,874, 20.31%), aged 15 years (28,016/103,874,
26.97%), aged 16 years (25,929/103,874, 24.96%), aged 17
years (22,405/103,874, 21.57%), and aged 18 years
(6078/103,874, 5.85%). Another external validation stage using
Ungdata from Norway had the following age distribution: aged
13 years (5039/19,574, 25.74%), aged 14 years (4874/19,574,
24.9%), aged 15 years (5034/19,574, 25.72%), aged 16 years
(3181/19,574, 16.25%), aged 17 years (845/19,574, 4.32%),
and aged 18 years (601/19,574, 3.07%) (Table 1).
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Table 1. Demographic characteristics of Korea Youth Risk Behavior Web-based Survey (KYRBS) data from South Korea (2009-2021), Youth Risk
Behavior Survey (YRBS) data from the United States (2021), and University National General Survey (Ungdata) from Norway (2017-2019).

Ungdata (n=19,574)YRBS (n=103,874)KYRBS (n=566,875)Characteristics

Region, n (%)

N/AN/Aa259,453 (45.77)Urban

N/AN/A307,422 (54.23)Rural

Age (years), n (%)

5039 (25.74)351 (0.34)94,923 (16.74)13

4874 (24.9)21,095 (20.31)98,624 (17.4)14

5034 (25.72)28,016 (26.97)100,490 (17.73)15

3181 (16.25)25,929 (24.96)90,057 (15.89)16

845 (4.32)22,405 (21.57)92,071 (16.24)17

601 (3.07)6078 (5.85)90,710 (16)18

Sex, n (%)

9812 (50.13)51,842 (49.91)289,311 (51.04)Male

9762 (49.87)52,032 (50.09)277,564 (48.96)Female

BMIb, n (%)

N/A12,541 (12.07)44,539 (7.86)Underweight

N/A47,592 (45.82)423,384 (74.69)Normal

N/A14,439 (13.9)48,951 (8.64)Overweight

N/A29,302 (28.21)50,001 (8.82)Obese

Academic achievement, n (%)

N/AN/A56,799 (10.02)Low (0-19th percentiles)

N/AN/A132,774 (23.42)Lower-middle (20th -39th percentiles)

N/AN/A162,447 (28.66)Middle (40th-59th percentiles)

N/AN/A146,401 (25.83)Upper-middle (60th-79th percentiles)

N/AN/A68,454 (12.08)High (80th-100th percentiles)

Household income, n (%)

8466 (43.25)N/A19,200 (3.39)Low (0-19th percentiles)

6557 (33.5)N/A82,314 (14.52)Lower-middle (20th -39th percentiles)

3523 (18)N/A274,093 (48.35)Middle (40th-59th percentiles)

818 (4.18)N/A148,848 (26.26)Upper-middle (60th-79th percentiles)

210 (1.07)N/A42,420 (7.48)High (80th-100th percentiles)

Smoking status, n (%)

16,594 (84.78)84,984 (81.81)467,707 (82.51)Nonsmoker

2980 (15.22)18,890 (18.19)99,168 (17.49)Smoker

Alcohol consumption, n (%)

9673 (49.42)76,571 (73.72)478,305 (84.38)Nondrinker

9901 (50.58)27,303 (26.28)88,570 (15.62)Drinker

Stress statusc, n (%)

N/A70,817 (68.18)337,938 (59.61)Low to moderate

N/A33,057 (31.82)228,937 (40.39)High to severe

Sadness and despair, n (%)

14,522 (74.19)64,190 (61.8)401,253 (70.78)Low to moderate
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Ungdata (n=19,574)YRBS (n=103,874)KYRBS (n=566,875)Characteristics

5052 (25.81)39,684 (38.2)165,622 (29.22)High to severe

Exercise status, n (%)

N/A87,510 (84.25)496,475 (87.58)Not enough

N/A16,364 (15.75)70,400 (12.42)Enough

Suicide thinking in the past year, n (%)

17,652 (90.18)80,561 (77.56)482,613 (85.14)No

1922 (9.82)23,313 (22.44)84,262 (14.86)Yes

Screentime status, n (%)

994 (5.08)27,569 (26.54)165,382 (29.17)Low to moderate

18,580 (94.92)76,305 (73.46)401,493 (70.83)High to severe

aN/A: not applicable.
bBMI was divided into 4 groups according to the National Growth Charts: underweight (0-4th percentiles), normal (5th-84th percentiles), overweight
(85th-94th percentiles), and obese (95th-100th percentiles).
cStress was defined by receipt of mental health counseling owing to stress.

Both the initial training cohort and the external validation
cohorts took into account socioeconomic backgrounds, such as
household income and academic achievement, as well as risk
behaviors such as alcohol consumption, smoking, and screen
time. Additionally, factors that could potentially influence
mental health, such as feelings of sadness and despair, were
also considered. Inconsistencies or missing values in validation
sets were addressed by implementing median imputation from
the primary training data. Such thorough demographic
incorporation bolsters our model performance, offering a
nuanced understanding of suicidal thinking in adolescents.

ML Model Results
Table S1 in Multimedia Appendix 1 and Table 2 present the
process of hyperparameter tuning the XGBoost model and the
evaluation of our models conducted on data sets from 3 distinct
countries using 5 performance metrics. Notably, XGBoost
emerged as the frontrunner among the 4 tested models by getting
hyperparameters of booster: gbtree, eval_metric: logloss,
learning_rate: 0.08, max_depth: 5, n_estimators: 350,

scale_pos_weight: 2, subsample: 0.09 (Table S1 in Multimedia
Appendix 1). When put to the training on the KYRBS data set
from South Korea, with a 95% CI, the XGBoost model reported
an AUROC of 90.06 (95% CI 89.97-90.16), sensitivity was
82.11 (95% CI 81.67-82.55), specificity was 82.16 (95% CI
81.68-82.63), accuracy was 82.13 (95% CI 82.01-82.26), and
balanced accuracy was 82.13 (95% CI 82.01-82.26), consistently
displaying superior results compared to the other 3 models.
During the external validation assessment, the model evaluation
was conducted without considering the 95% CI. For the external
model validation, using the YRBS from the United States, the
XGBoost model achieved an AUROC of 83.09%, sensitivity
of 80.26%, specificity of 75.52%, accuracy of 76.58%, and
balanced accuracy of 77.89%. For the external validation using
the Ungdata from Norway, the XGBoost model achieved an
AUROC of 81.27%, sensitivity of 79.19%, specificity of 80%,
accuracy of 79.92%, and balanced accuracy of 79.60%. Across
all data sets, XGBoost consistently outperformed all other
models with the highest AUROC score, which was selected as
the most optimal model (Figure 3).
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Table 2. Various performance metrics for 4 different machine learning algorithms in the Korea Youth Risk Behavior Web-based Survey (KYRBS)
data set for validation, the Youth Risk Behavior Survey (YRBS) data set for extra validation, and another external validation at the Norwegian nationwide
University National General Survey (Ungdata) surveys data set.

Balanced accuracyAccuracySpecificitySensitivityAUROCaData set and model

South Korea, % (95% CI)

82.13 (82.01-82.26)82.13 (82.01-82.26)82.16 (81.68-82.63)82.11 (81.67-82.55)90.06 (89.97-90.16)XGBoost

78.08 (77.95-78.21)78.08 (77.95-78.21)78.09 (77.96-78.22)78.08 (77.94-78.21)85.26 (85.14-85.38)AdaBoostb

78.96 (78.88-79.04)78.96 (78.88-79.04)78.96 (78.88-79.04)78.96 (78.88-79.04)84.64 (84.53-84.75)LightGBMc

76.99 (76.86-77.11)76.99 (76.86-77.11)77.06 (76.98-77.15)76.91 (76.73-77.10)84.10 (83.99-84.21)Random forest

United States, %

77.8976.5875.5280.2683.09XGBoost

76.9176.9977.0676.7582.13AdaBoost

77.8676.7675.8779.8583.93LightGBM

77.8677.6277.4378.2883.20Random forest

Norway, %

79.6079.9280.0079.1981.27XGBoost

79.6079.9280.0079.1979.14AdaBoost

79.9781.8781.9577.9884.14LightGBM

79.9779.5579.5079.5079.23Random forest

aAUROC: area under the receiver operating characteristic.
bAdaBoost: adaptive boosting.
cLightGBM: light gradient-boosting machine.

Figure 3. Receiver operating characteristic (ROC) curves with CIs for the Korea Youth Risk Behavior Web-based Survey (KYRBS), Youth Risk
Behavior Survey (YRBS), and University National General Survey (Ungdata) of the XGBoost model.

Feature Importance
Table 3 shows the feature importance derived from the XGBoost
model, illustrating the relative contributions of each feature to
predicting suicidal thinking. Notably, feelings of sadness and

despair emerge as the most dominant predictor, accounting for
57.4% of the influence, followed by stress status at 19.8%.
Subsequent factors include age (5.7%), household income (4%),
academic achievement (3.4%), sex (2.1%), and others
contributing less than 2% each.
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Table 3. Feature importance of XGBoost.

Importance, %Feature

57.4Sadness and despair

19.8Stress status

5.7Age

4Household income

3.4Academic achievement

2.1Sex

1.7Smoking status

1.6BMI

1.3Alcohol consumption

1.3Exercise status

1Screentime status

0.8Region

SHAP Value
We addressed a deeper visual interpretation of the SHAP values
within our ML model (Figure S2 in Multimedia Appendix 1)
[29]. Figure S3 in Multimedia Appendix 1 provides a waterfall
plot, distinctively showcasing the cumulative contribution of
each feature to a single prediction. We interpreted individual
predictions by starting from the initial estimate and sequentially
incorporating the influence of each feature to reach the final
prediction. E[f(x)] refers to the average predicted output of the
model across the entire data set, providing insights into the
model’s overall prediction tendency. The starting point of the
illustration, denoted as E[f(x)]=0.83, represents the model’s
average prediction for the given data set. Among the variables,
sadness and despair stood out, boosting the prediction by 1.17
and ranking as the most influential factor. Conversely, stress
status and sex reduced the prediction by 0.86 and 0.22,
respectively. This visualization offers a clear insight into the
profound influence each feature wields in predicting adolescent
suicidal thinking. Our ML model notably underscores a
substantial reliance on the sadness, despair, and stress status
features (Figure S3 in Multimedia Appendix 1).

Code Availability
Based on the results of the ML model, we established a
web-based app for policy implementation or health system
management to support in their decision-making process for
cases involving suicidal thinking prediction use in adolescents
[30]. An example of a web interface and the results are shown
in Figure S4 in Multimedia Appendix 1. Custom code for the
website is available on the web [31].

Discussion

Key Findings
Our research represents a pioneering machine-learning initiative
for predicting suicidal thinking among adolescents. We sourced
distinct data sets from South Korea (KYRBS), the United States
(YRBS), and Norway (Ungdata). This provided comprehensive
analysis related to socioeconomic indicators and key mental

health influencers such as alcohol consumption, smoking status,
and feelings of sadness and despair. Importantly, our findings
highlight XGBoost as the optimal predictive model, achieving
an AUROC of 88.6% with the KYRBS data set. External
validation with the data from the United States and Norway
yielded AUROCs of 82.9% and 83.6%, respectively. The most
significant predictor of suicidal thinking was sadness and
despair, with a feature influence of 61%, followed by stress
status at 19.6%. Using SHAP values, we further emphasized
the pivotal roles of sadness, despair, and stress in predicting
suicidal thinking in adolescents. To enhance the practical
application of our research, we have developed a web-based
platform to visualize the prediction model, accompanied by a
mobile interface, enhancing its accessibility and user experience.
This dual-platform system provides a more methodical and
analytical approach for the public to comprehend and manage
potential suicidal concerns.

Plausible Mechanism
The close relationship between feelings of sadness and despair
and suicidal thinking in adolescents can be understood from
various perspectives, encompassing biological and
environmental factors [32]. During adolescence, the brain
undergoes significant development, especially in the prefrontal
cortex, which controls impulses and emotions [33]. Persistent
sadness can interfere with adolescent brain development,
resulting in a perpetual state of negative emotions. This increases
their risk of suicidal thinking due to feelings of despair and
impulsive actions [34].

The influence of external portrayals, be it from peers or the
media, cannot be underestimated. When adolescents confront
additional adversities, such as bullying, social isolation, or
academic failures, these inherent stressors are amplified.
Adolescents exposed to narratives associating despair with
suicidal behaviors might inadvertently absorb these sentiments.
This phenomenon, known as “suicide contagion,” postulates
that exposure to others’ suicidal actions can reshape an
individual’s perspective [35]. The confluence of these
environmental stressors and limited emotional regulation
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capacities heightens their vulnerability, potentially leading them
to view suicide as a viable solution to their emotional turmoil
[36].

Furthermore, due to their developmental stage, many adolescents
have not yet acquired the necessary emotional coping strategies
[37]. When faced with intense stressors without these tools,
some may come to view suicide as their only way to escape
from increasingly desperate circumstances.

This emotional vulnerability is further compounded by
physiological changes. The stress response, regulated by the
hypothalamic-pituitary-adrenal axis, is intensified during
adolescence [38]. Heightened sensitivity of the
hypothalamic-pituitary-adrenal axis results in increased cortisol
production in response to stress [39]. Chronic exposure to these
elevated cortisol levels not only exacerbates feelings of sadness
and despair but also directly contributes to an increased
vulnerability to suicidal thoughts [40]. Understanding these
relationships makes it evident that both the emotional responses
induced by stress and the physiological effects of stress
significantly influence the increased propensity for suicidal
thinking during this critical phase of life.

Strengths and Limitations
The limitations of this study should be stated. One primary
concern pertains to the use of self-reported data, which exposes
our results to potential biases, such as recall and social
desirability. While this approach offers insights directly from
the participants, such susceptibilities might skew the data and
ultimately affect the model’s performance. It is also worth noting
that the foundational training data were sourced predominantly
from adolescents in South Korea [41,42]. This could amplify
specific cultural or racial attributes distinctive to Korean
adolescents. Equally important to note is that establishing a
direct cause-and-effect relationship between significant risk
factors and adolescent suicidal thinking remains elusive. This
study, while expansive, does not determine if suicidal thinking
is a cause or an effect of other risk factors. Further research is
needed to unravel these complex interconnections. The potential
for overfitting is another critical limitation to consider. Our
comprehensive model, regardless of its use of 10-fold
cross-validation, might inadvertently capture anomalies rather
than genuine patterns [43]. Furthermore, our method for
managing missing data, especially through median imputation,
poses the risk of introducing unintended biases, which could
impact the model’s performance [44]. Lastly, while predicting
suicide attempts rather than suicide ideation may be crucial in
suicide-related research, the low prevalence of suicide attempts
presents limitations in constructing ML models: thus, we have
developed predictive models for suicide ideation. With our
predictive model, policy researchers, physicians, and community
neighbors can develop individualized prevention strategies for
these adolescents.

Despite these limitations, the strengths of this study are
manifold. Notably, the SHAP value analysis highlights the
importance of diverse demographic and behavioral indicators

in understanding suicidal thinking among adolescents. This
study provides nuanced insight into each feature’s unique
influence and the model’s decision-making process [29]. The
robustness of the model is also noteworthy, as evidenced by its
uniform effectiveness across data sets spanning South Korea,
the United States, and Norway. Such wide-reaching efficacy
suggests the adaptability of the model to different cultural and
demographic landscapes. Another strength lies in the real-world
applicability of our research. The development of our advanced
web-based platform and mobile interface marks a notable
advancement in practical application. By offering a user-friendly
interface tailored for both desktop and mobile users, we enhance
accessibility and promote greater self-awareness about suicidal
risk. This can encourage individuals to seek timely professional
assistance or supportive resources, serving as a preventive
measure against severe mental health crises [45].

Clinical and Policy Implications
In light of the findings, several crucial policy implications
emerge. Foremost, the significant role of sadness and despair
as predictors underscores the necessity to prioritize mental health
support for adolescents [46]. This prominence not only
necessitates immediate interventions but also stresses the vital
role of education and awareness initiatives, targeting both risk
behaviors and associated mental health ramifications. Early
identification of suicidal thinking is paramount [47].
Recognizing these indications enables health care professionals
to initiate early intervention strategies. This preemptive approach
should include tailored counseling, support group engagements,
or intensive therapeutic interventions. This can prevent the
progression toward actual suicide attempts, which might be
driven by mixed emotions or even an intent just to signal distress
[48]. Moreover, there is a pressing need to bolster educational
and awareness campaigns concerning suicide. Such campaigns
serve to equip adolescents with the tools and knowledge
necessary, encouraging them to navigate challenges related to
risky behaviors and maintain positive mental health perspectives
[49].

Conclusion
In addressing the pressing global concern of adolescent suicide,
this study used ML to offer novel insights into preemptive
detection. By integrating diverse data sets across 3 nations, the
study highlighted the superiority of the XGBoost model in
predicting suicidal thinking, achieving remarkable AUROCs
of 90.06% (95% CI 89.97-90.16; KYRBS from South Korea;
discovery), 83.09% (YRBS from the United States; extra
validation), and 81.27% (Ungdata from Norway; extra
validation). Our findings emphasize the significant role of
emotional health indicators in predicting suicidal thinking among
adolescents. Specifically, sadness and despair proved to be the
most influential predictors, followed by stress status and age.
Through our robust, cross-culturally validated model and its
accessibility through web-based platforms, we underscore the
potential for timely interventions and offer a promising blueprint
for future mental health strategies and preventive measures for
at-risk adolescents.
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ML: machine learning
SHAP: Shapley additive explanations
TRIPOD: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
Ungdata: University National General Survey
YRBS: Youth Risk Behavior Survey
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