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Abstract

Background: There is a growing enthusiasm for machine learning (ML) among academics and health care practitioners. Despite
the transformative potential of ML-based applications for patient care, their uptake and implementation in health care organizations
are sporadic. Numerous challenges currently impede or delay the widespread implementation of ML in clinical practice, and
limited knowledge is available regarding how these challenges have been addressed.

Objective: This work aimed to (1) examine the characteristics of ML-based applications and the implementation process in
clinical practice, using the Consolidated Framework for Implementation Research (CFIR) for theoretical guidance and (2)
synthesize the strategies adopted by health care organizations to foster successful implementation of ML.

Methods: A systematic literature review was conducted based on the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines. The search was conducted in PubMed, Scopus, and Web of Science over a 10-year
period (2013-2023). The search strategy was built around 4 blocks of keywords (artificial intelligence, implementation, health
care, and study type). Only empirical studies documenting the implementation of ML applications in clinical settings were
considered. The implementation process was investigated using a thematic analysis and coding procedure.

Results: Thirty-four studies were selected for data synthesis. Selected papers were relatively recent, with only 9% (3/34) of
records published before 2019. ML-based applications were implemented mostly within hospitals (29/34, 85%). In terms of
clinical workflow, ML-based applications supported mostly prognosis (20/34, 59%) and diagnosis (10/34, 29%). The implementation
efforts were analyzed using CFIR domains. As for the inner setting domain, access to knowledge and information (12/34, 35%),
information technology infrastructure (11/34, 32%), and organizational culture (9/34, 26%) were among the most observed
dimensions influencing the success of implementation. As for the ML innovation itself, factors deemed relevant were its design
(15/34, 44%), the relative advantage with respect to existing clinical practice (14/34, 41%), and perceived complexity (14/34,
41%). As for the other domains (ie, processes, roles, and outer setting), stakeholder engagement (12/34, 35%), reflecting and
evaluating practices (11/34, 32%), and the presence of implementation leaders (9/34, 26%) were the main factors identified as
important.

Conclusions: This review sheds some light on the factors that are relevant and that should be accounted for in the implementation
process of ML-based applications in health care. While the relevance of ML-specific dimensions, like trust, emerges clearly
across several implementation domains, the evidence from this review highlighted that relevant implementation factors are not
necessarily specific for ML but rather transversal for digital health technologies. More research is needed to further clarify the
factors that are relevant to implementing ML-based applications at the organizational level and to support their uptake within
health care organizations.

Trial Registration: PROSPERO 403873; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=403873

International Registered Report Identifier (IRRID): RR2-10.2196/47971
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Introduction

Background
Artificial intelligence (AI) has been unquestionably
acknowledged as a game changer in health care [1], even more
so after technological advances in the field of machine learning
(ML) have contributed to further expand the frontiers of its
possible applications [2]. Compared to knowledge- or rule-based
systems that automate established human clinical reasoning
methods through a series of “if-then” statements [3], ML
encompasses all nonknowledge-based models that automatically
(or semiautomatically) learn from the exposure to abundant
quantities of data and detect patterns through explicit or latent
recognition rather than conventional programming. ML is
expected to serve primarily as a decision support tool to enhance
human work rather than replace it [4], thereby providing health
care professionals (HCPs) with improved predictions and
rendering their decision-making process more accurate [5].
Although some AI systems have already been shown to be equal
or even superior in performance to HCPs [6], full automation
of a broad range of human tasks is expected to occur only at
later stages.

Irrespective of whether ML is intended to provide inputs to
human decision-making or to act autonomously, these
technological advancements do not automatically translate into
clinical practice. The road to implementing ML applications in
patient care has several challenges, creating an inevitable chasm
between ML and its clinical integration [7,8].

Challenges for the implementation of AI systems, without an
exclusive focus on ML, have been previously outlined, with
various interdependent factors at different stakeholder group
levels [9,10]. For HCPs, core considerations pertain to the need
for ML outputs to be meaningful inputs in their decision-making
and be explainable. ML algorithms are often associated with
the so-called “black box” effect [11,12]. The lack of
transparency in data and outputs can be a significant concern
for HCPs, as it hampers model interpretability (ie, the possibility
to understand or interpret how a given output has been produced)
and explainability (ie, the capacity of a model to be explained,
even if not totally interpretable) [13]. ML applications and
outputs are therefore likely to clash with the principles of
evidence-based medicine, which instead involve the highest
possible standards of interpretability and explainability.
Concerns about the potential implications for accountability
and personal responsibility regarding mistakes or computational
misdiagnosis by ML applications present additional
implementation challenges.

At the patient level, fair implementation of ML applications
necessitates continuous supply of standardized data to train,
validate, and incessantly improve performance and prevent
algorithmic bias [9]. Notions of patient confidentiality and
privacy should be reimagined entirely as data must be shared

across multiple institutions to maximize their value and allow
for improved algorithms [14].

Lastly, distinctive implementation challenges have been
identified at the level of health care organizations, which are
associated with financial challenges and funding mechanisms,
as well as issues related to the computational resources that are
necessary to support the implementation of ML.

Several implementation frameworks for health care technologies
are on hand, but no widely recognized model addresses all the
specific issues that are relevant to ML applications [15-17]. To
date, research on ML implementation has been predominantly
conceptual in nature, with an underreporting of empirical
investigations into the specifics and consequences of
implementation processes in real-life settings [18,19]. Available
studies have primarily focused on the quantitative impact of
ML algorithms on health outcomes or accuracy, without
examining the corresponding implementation processes [20].
Recently, Chomutare et al [21] conducted a scoping review to
identify barriers and facilitators to the implementation of ML
from empirical studies, while Tricco et al [22] focused on the
strategies adopted to implement ML tools in hospital settings.
However, additional inquiry is needed to determine whether
the literature on the implementation of ML applications in health
care adequately acknowledges the unique challenges
encountered along the implementation process, as well as the
strategies adopted to overcome them.

Research Objectives
This systematic literature review primarily aims to identify
studies on the real-life implementation of ML applications in
clinical practice and to synthesize insights about the features of
these innovations and the processes deployed to facilitate their
effective implementation. We set out to address the following
research questions:

1. What are the characteristics of ML applications
implemented in clinical practice as reported in the scientific
literature?

2. What processes and strategies do health care organizations
employ to foster the successful implementation of ML
applications in clinical practice? Which factors are
recognized as more relevant for the unsuccessful
implementation of ML applications?

Methods

Overview
This systematic review adopted the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
2020 guidelines (Multimedia Appendix 1) [23]. The review was
previously registered within the International Prospective
Register of Systematic Reviews (PROSPERO) with registration
number 403873. All methodological details are provided in the
published research protocol [24]. The most relevant aspects are
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summarized hereafter, with any deviations from the protocol
duly noted.

Positionality of the Research Team
Positionality refers to how individuals identify with and relate
to different social dimensions such as gender, race, and ethnicity
[25], and as such is a relevant aspect to consider in qualitative
research. To that end, the research team comprised 5 Italian
white researchers (LMP, VA, AC, FP, and GC). Broadly
speaking, the team as a whole included 60% females and 40%
males and shared a common background in management studies
with a focus on health care management. LMP is a PhD student
who is working in the areas of AI and ML under the perspective
of the organizational implementation of AI tools in health care
organizations. VA is a PhD student who has conducted prior
research at the intersection between digital health and
implementation science. AC has multi-annual experience in
organizational studies and qualitative research focusing on issues
related to innovations in health care and professional dynamics
in health care organizations. FP is a PhD student who is an
expert in digital health technologies, focusing on their regulation
and value assessment. GC has multi-annual experience in

organizational studies and qualitative research focusing on
institutional dynamics, novel technologies, and professions.

Eligibility Criteria
This review focused on empirical studies investigating aspects
related to the implementation of ML applications within health
care organizations. We adopted the definition of implementation
as an “active and planned effort to mainstream innovation within
an organization” [26], while health care organizations
encompassed all entities delivering health services, including
hospitals, outpatient centers, primary care facilities, and public
health institutions. Studies were selected based on the eligibility
criteria defined in the research protocol [24] and summarized
in Textbox 1. The recently updated version of the Consolidated
Framework for Implementation Research (CFIR), a commonly
used model to assess factors influencing implementation and
to explain barriers and facilitators to implementation
effectiveness [27,28], was used as a criterion for inclusion.
Specifically, only studies that explicitly reported factors related
to the CFIR domain of inner setting or process were considered
eligible for inclusion (Textbox 2).

Textbox 1. Eligibility criteria.

Inclusion criteria

Study design: Empirical studies illustrating the implementation of machine learning (ML)-based applications (eg, experimental/quasiexperimental,
observational, hybrid, or simulation study designs, qualitative designs, case studies, etc)

Intervention: Analysis of the implementation of ML-based applications by at least covering factors related to the inner setting or process domain based
on the Consolidated Framework on Implementation Research (CFIR)

Stakeholder groups: ML-based applications used at least by health care professionals (HCPs)

Setting: Hospitals, outpatients, and other community care settings

Timeframe: Studies published from 2013 until March 2023

Exclusion criteria

Study design: Effectiveness research study designs, literature reviews, commentaries, editorials, opinion articles, study protocols, studies collecting
perceptions on implementation, and studies unrelated to specific ML-based applications

Intervention: Analysis of the implementation of logic- or knowledge-based applications (eg, expert systems) or ML-based applications with no
considerations related to the inner setting or process domain

Stakeholder groups: ML-based applications targeting patients and other nonclinical stakeholders (eg, caregivers, policy makers, and regulators) only

Setting: All other settings, including home care

Timeframe: Studies published before 2013

Textbox 2. Domains of the Consolidated Framework for Implementation Research (CFIR).

Innovation: Domain that collects the characteristics of the implemented object from a multi-faceted point of view.

Outer setting: Domain designed to capture factors that are inherent in the context where the organization exists.

Inner setting: Domain that encompasses the characteristics of the organization in which the innovation is implemented. It includes both structural
attributes, which characterize the inner setting regardless of the implementation, and features, which are specific to the implementation.

Roles: Domain that refers to the individuals who have significantly contributed to the implementation and their characteristics.

Implementation process: Domain that collects all the information on the activities and strategies adopted to concretely implement the innovation.

Information Sources
Literature searches were conducted in MEDLINE (PubMed),
Scopus, and Web of Science and replicated in top-tier
management journal databases. In addition, the reference lists

of all included studies and of the reviews identified were
scanned to ensure comprehensive coverage of relevant literature.
Grey literature was not considered.
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Search Strategy
The search strategy was developed by the research team through
an iterative process and was based on 4 main concepts: (1) AI;
(2) implementation; (3) health care; and (4) study design.
Multimedia Appendix 2 presents the search strings used for
each database. The general term “artificial intelligence” was
used broadly to encompass studies that address AI and ML as
synonymous terms. The search was performed in April 2023.

Study Selection and Data Collection Process
Two researchers (VA and LMP) screened the first 100 retrieved
studies based on titles and abstracts. Once alignment over the
inclusion and exclusion criteria was reached, the remaining
records were independently screened by the 2 reviewers in equal
parts based on the title and abstract. Disagreements over final
inclusion were solved by a third researcher (FP). Studies deemed
eligible for full-text reading were assessed in-depth (VA, LMP,
and FP). Disagreements were resolved by dialogue with 2
additional researchers (GC and AC). The entire research team
read all the studies included in the analysis. The data collection
process was performed by 3 reviewers (VA, LMP, and FP) who
extracted data using an ad hoc Microsoft Excel sheet
preliminarily developed by the research team. To ensure
consistency across reviewers, the extraction sheet was tested
by each reviewer and recalibrated before starting the data
collection process. Any disagreements were resolved by
discussion with the research team, with final decisions reached
by consensus.

Data Items
Data items were extracted based on established classifications
or schemes, when applicable [24]. These encompassed
information on the paper (eg, journal of publication and
publication year), ML application (eg, name, brief description,
main practice of use, level of autonomy, and degree of
integration with other technologies), and implementation process
(eg, stage of implementation, geographical location, care setting,
and specific unit of implementation). Furthermore, factors
influencing the implementation process were assessed following
the 5 domains of the updated version of the CFIR.

Quality Assessment
Critical appraisal of the studies selected for data synthesis was
performed using the Mixed Method Appraisal Tool (MMAT
[29]), which has been designed specifically for systematic
reviews that include heterogeneous studies, as it allows to assess
the methodological quality of 5 types of study designs (ie,
qualitative studies, randomized controlled trials, nonrandomized
studies, quantitative descriptive studies, and mixed methods
studies). Quality appraisal was performed by 2 researchers (VA
and LMP), and disagreements were discussed and solved. The

quality assessment represents a deviation from the protocol,
which did not include this step.

Data Synthesis
Given the significant heterogeneity across study designs,
research objectives, and outcomes observed, as well as the
expected predominance of qualitative studies, we opted for a
thematic synthesis approach to capture and synthesize the salient
attributes of the implementation process based on the CFIR
constructs [30,31]. The analysis considered findings from the
data extraction process as qualitative data and included
summaries and interpretation of findings from the authors of
the reviewed studies. Hence, direct quotes from participants
were excluded in cases where the study employed qualitative
data collection methods (eg, interviews).

We used both an inductive and a deductive approach. Following
the 3 thematic synthesis steps, we initially reviewed each paper
and highlighted relevant aspects through line-by-line coding to
capture and collect key data. The coding process involved 3
reviewers (VA, LMP, and FP). To identify recurring topics,
primary codes were then compared, organized, and labeled to
derive descriptive themes reflecting their meaning. Descriptive
themes were used to develop higher-level analytical themes.
The formulation of descriptive themes and the following
assignation to analytical themes were initially proposed by a
researcher (LMP) and iteratively refined through discussions
with 2 other researchers (VA and FP).

The higher-level analytical themes were subsequently
deductively redefined by the entire research team within the
constructs of the CFIR, which served as the final theoretical
framework guiding our analysis.

Results

Study Selection
We retrieved 3520 unique records that were initially screened
based on the titles and abstracts. A total of 67 records were
deemed eligible for full-text screening (67/3520, 1.9%).
Additionally, we identified 36 eligible records from a manual
search of reference lists of excluded literature reviews and
full-text screened records. Out of the 103 papers analyzed in
full text, 69 were excluded and 34 were included in the review
(34/103, 33.0%). The primary reason for exclusion was the
focus of the intervention analyzed in the papers (53/69, 77%),
as they either had a clinical or technical purpose without
addressing factors related to implementation in an organizational
setting or involved non-ML–based applications. Figure 1
provides an overview of the selection process and the reasons
for exclusion.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram.

Study Characteristics
Most of the studies documenting the implementation of
ML-based applications were set in the United States (18/34,
53%). Other locations included China (4/34, 12%); Canada,
Brazil, and the Netherlands (each 2/34, 6%); and Italy, Spain,
Norway, Korea, India, and Austria (each 1/34, 3%). Papers
selected for data synthesis were relatively recent, with only 3
out of 34 (9%) published before 2019. Outlets were mostly
clinical or in the field of information technology (IT) (30/34,
88%), while the remaining (4/34, 12%) focused on managerial
or organizational studies. Most of the selected studies followed
qualitative or mixed methods designs (22/34, 65%), often relying
on methods such as interviews and case studies.

Quality Assessment in Studies
Quality appraisal of the selected studies was performed using
the MMAT. The studies were heterogeneous in terms of study
design, and different MMAT questions were used to assess their
quality. Overall, 18 studies leveraged the questions of qualitative

studies, 7 of quantitative nonrandomized studies, 5 of
quantitative descriptive studies, 3 of mixed methods studies,
and 1 of quantitative randomized studies. Overall, the quality
assessment suggested a medium-good quality of the studies,
with only 12.5% of the assessment questions uncertain or
unclear (“Can’t tell”). The detailed output of the quality
appraisal is provided in Multimedia Appendix 3.

Characteristics of ML Applications
Table 1 provides a general description of the ML-based
applications implemented in the selected studies [32-65], while
Multimedia Appendix 4 provides more detailed information on
the characteristics of these applications. The most recurrent
applications comprised predictive modeling algorithms,
visualization tools, and alert-delivering mechanisms. All the
applications identified by our search were clinical practice
applications, according to the definitions from the European
Parliamentary Research Service [66]. Moreover, none of the
applications had decisional autonomy; therefore, all systems
could be classified as clinical decision support systems (CDSSs).
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Table 1. Overview of machine learning applications.

Clinical workflow activityImplementation setting (unit)Application output descriptionApplication nameYearAuthors

PrognosisHospital (EDb)Prediction of patient characteristics,
complaint types, and admission and
readmission patterns

—a2015Lee et al
[32]

DiagnosisHospital (oncology)Building hypotheses and evidence
on cancer diagnosis

IBM Watson2016Hengstler et
al [33]

PrognosisCommunity hospital (ED, ICUc)Prediction of the risk of developing
severe sepsis

InSight2017McCoy &
Das [34]

DiagnosisHospital (radiology)Earlier detection of breast cancerNiramai Thermalytix
and iBreastExam
(iBE)

2019Bhattacharya
et al [35]

Clinical/organizational
workflow

Primary careRecommendations for improving
adherence to health care pathways

Savana2019Cruz et al
[36]

PrognosisTeaching hospital (non-ICU set-
ting)

Prediction of the risk of developing
sepsis

EWS 2.02019Ginestra et
al [37]

PrognosisHospital (several units)Prediction of the risk of developing
sepsis

Laura2020Gonçalves et
al [38]

TreatmentHospital (oncology)Decision-making support for person-
alized treatment planning

IBM Watson for On-
cology

2019Sun &
Medaglia
[39]

PrognosisTeaching and research hospital
(unspecified)

Prediction of unplanned readmission—2020Baxter et al
[40]

PrognosisHospital (cardiology)Prediction of in-hospital cardiac
events

DEWS (Deep-Learn-
ing-based Early
Warning System)

2020Cho et al
[41]

Clinical/organizational
workflow

Primary careProduction of indicators for quality-

of-care processes of T2Dd
—2020Frontoni et

al [42]

DiagnosisHospital (stroke unit)Detection of large vessel occlusionsViz.ai2020Hassan et al
[43]

Prognosis and treatmentHospital (all units)Prediction of hospital readmission
and formulation of targeted recom-
mendations

—2020Romero-Bru-
fau et al [44]

PrognosisTeaching hospital (ED)Prediction of the risk of developing
sepsis

Sepsis Watch2020Sandhu et al
[45]

PrognosisTeaching hospital (ED)Prediction of the risk of developing
sepsis

Sepsis Watch2020Sendak et al
[46]

Diagnosis and prognosisHospital (radiology)Assessment of child maturation and
bone age, and prediction of adult
height

BoneXpert2020Strohm et al
[47]

DiagnosisHospital (general and respiratory)Classification of sleep stage, detec-
tion of sleep apnea, and recognition

SensEcho2020Xu et al [48]

of abnormal ECGe signals from a
multi-sensor wearable device

PrognosisHospital (surgery, internal
medicine)

Prediction of the risk of developing
delirium

—2021Jauk et al
[49]

DiagnosisCommunityDetection of COVID-19 symptomsLaura Digital ER2021Morales et al
[50]

TreatmentHospital (all inpatient units)Treatment optimization and identifi-
cation of likely-to-benefit patients
for palliative care

—2021Murphree et
al [51]

DiagnosisHospital (unspecified)Detection of mild COVID-19 pneu-
monia

3D CSAC-Net2021Yao et al
[52]

PrognosisResearch hospital (radiology)Prediction of the risk of developing
intracranial hemorrhage

Aidoc2022Davis et al
[53]
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Clinical workflow activityImplementation setting (unit)Application output descriptionApplication nameYearAuthors

PrognosisAcute care hospital (inpatient
acute units and ED)

Prediction of the risk of developing
sepsis

TREWS2022Henry et al
[54]

PrognosisCommunity and teaching hospitals
(several units)

Prediction of the risk of developing
sepsis

—2022Joshi et al
[55]

DiagnosisTeaching hospital (radiology)Image processing, segmentation,
and classification for imaging diag-
nostics

—2022Lebovitz et
al [56]

PrognosisPrimary carePrediction of the risk of low left
ventricular ejection fraction

—2022Rushlow et
al [57]

PrognosisTeaching hospital (acute units and
ICU)

Prediction of the risk of in-hospital
deterioration

CONCERxN2022Schwartz et
al [58]

DiagnosisTeaching hospital (ED)Differential diagnosisIsabel2022Sibbald et al
[59]

Clinical/organizational
workflow and prognosis

Hospital (ICU, surgery, pediatrics)Prediction of reduced bed availabil-
ity and prediction of the risk of
readmission

Low Bed Tool and
Readmission Risk
Tool

2022Singer et al
[60]

PrognosisTeaching hospital (neonatology)Prediction of the risk of developing
sepsis

Sepsis Identification
Speed

2022Wijnhoven
[61]

Clinical/organizational
workflow

Teaching hospital (unspecified)Formulation of recommendations
for nurses’diagnoses, interventions,
and outcome evaluations

Nu-CDSS2022Zhai et al
[62]

PrognosisTeaching hospital (general internal
medicine)

Early warning system designed to
predict patient risk of clinical deteri-
oration

CHARTwatch2022Pou-Prom et
al [63]

PrognosisTeaching hospital (ED)Estimation of the short-term risk for
clinical deterioration in patients with
or under investigation for COVID-
19

—2022Hinson et al
[64]

DiagnosisHospital (anesthesia, ICU)Detection and classification of pa-
tient allergies

Information System
for Clinical Concept-
based Search

2023Berge et al
[65]

aNot applicable.
bED: emergency department.
cICU: intensive care unit.
dT2D: type 2 diabetes.
eECG: electrocardiogram.

In terms of settings, ML-based applications were mostly
implemented within hospitals (29/34, 85%), including general,
university, or teaching hospitals, academic medical centers, and
research centers. A few studies (4/34, 12%) were based in a
community or primary care setting. Within hospital settings,
the most recurring implementation units were emergency
departments (EDs) (11/34, 32%) and critical care units such as
intensive care units (ICUs) (4/34, 12%), while in some studies,
implementation occurred in multiple units or at the hospital
level (5/34, 15%).

The clusters identified by Rajkomar et al [67] were used as a
theoretical guide to classify the clinical workflow activities in
which the ML-based applications were used. In 20 studies
(59%), the ML tools supported prognosis. Many of these
applications were designed to predict the risk of developing
specific conditions such as sepsis (8/34, 24%), in-hospital
deterioration (3/34, 9%), intracranial hemorrhage (1/34, 3%),
or heart failure (1/34, 3%). Other applications predicted the risk

of unplanned hospital admission or readmission (4/34, 12%).
Ten papers (29%) illustrated applications for diagnosis, either
as standalone computer vision tools to detect diseases from
diagnostic imaging (eg, pneumonia from computed tomography
[CT] scans, large vessel occlusions from CT angiograms, and
child maturation from x-rays) or as diagnostic supports in
emergency physician triage. Three papers (9%) illustrated
applications for treatment optimization and personalization.

ML capabilities relate to clinical workflow activities, with
forecasting (ie, the ability to find complex patterns in data and
make predictions) being the most prevalent capability (19/34,
56%), as this function is typical of tools that predict the risk of
an adverse event (12 of 34 forecasting tools were for prognosis).
Computer vision was exclusively included in algorithms for
diagnostic purposes, with all 6 computer vision tools intended
for diagnosis.

As for the level of integration with existing technologies, 17
ML-based algorithms (50%) were embedded in electronic health
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records (EHRs) or similar platforms (ie, add-ons to the EHR
software in use). Fourteen algorithms (41%) were standalone
applications, fed either with internal or external data, including
images or text. One application (3%) was embedded in hospital
hardware technology, namely scanner machines [34]. Computer
vision applications were always standalone applications
provided as software to be installed within existing hardware
(ie, hospital computers) and integrated with local picture
archiving and communication systems (PACS).

The ownership of the algorithms was also assessed, revealing
a division between applications purchased from commercial
vendors (14/34, 41%) and those developed internally (12/34,
35%). The latter algorithms were often linked with the
organizational setting, as 6 of these studies were carried out in
teaching hospitals, academic medical centers, or research
centers. Externally purchased applications were more common
in other settings and exhibited greater diversity in terms of
purposes, while homegrown tools were generally intended for
prognostic purposes. In 8 studies, information on the name or
the development process of the application was irretrievable,
preventing the determination of algorithm ownership.

Details on the specific ML models employed were often missing,
although it was possible to infer that 20 of the analyzed studies
(59%) were based on supervised learning models such as random
forest, decision tree, and logistic regression.

Implementation Process Characteristics
This section presents the results of the thematic analysis,
discussed following the 5 domains of the CFIR, namely
innovation, outer setting, inner setting, roles, and implementation
process. From the 34 studies analyzed, 222 quotes were
extracted. Quotes were organized in 167 descriptive themes and
42 analytical themes. Analytical themes were finally embedded
into 23 CFIR constructs. The detailed results of the coding
process are presented in Multimedia Appendix 5. To provide a
simplified overview of the coding process, Table 2 summarizes
the analytical themes, their correspondence with CFIR
constructs, and relative frequencies. The results are reported
according to the frequency of information extracted on CFIR
domains. The relative importance of CFIR constructs is
presented in Figure 2.
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Table 2. Analytical themes, constructs, and domains of the Consolidated Framework for Implementation Research (CFIR).

ReferencesPapers, n (%)Analytical themesConstruct

Inner setting domain (n=25, 74%)

[33,36,38,39,47,48,50,57,58,60,61]11 (32)Integration with existing IT; Data governance;
System infrastructure

A. Structural characteristics (A.2 IT

infrastructure)

[32,37-40,45,47,59,62]9 (26)Professional habits; User perceptionsD. Culture

[40,44,47,49,62,63,65]7 (21)Local workflow adaptationF. Compatibility

[42,56]2 (6)Economic incentives; Organizational incentivesH. Incentive systems

[39,47,55,62]4 (12)Organizational strategy; Organizational supportI. Mission alignment

[32]1 (3)Resource reallocationJ. Available resources

[32,34,38-40,45,48,49,55,57,63,64]12 (35)SkillsK. Access to knowledge & information

Innovation domain (n=22, 65%)

[33,39,44]3 (9)Trust in the innovation sourceA. Innovation source

[47,49]2 (6)Empirical evidence on added valueB. Innovation evidence base

[37,39,40,43-45,47,55,56,58,59,61,62,65]14 (41)Performance trust; Perceived cons; Perceived
benefits

C. Innovation relative advantage

[63]1 (3)Testing periodE. Innovation trialability

[32,33,37,39,44,45,49,54-56,58,59,61,65]14 (41)ExplainabilityF. Innovation complexity

[32,33,39,45,49,52-56,58,59,62,64,65]15 (44)Complementarity; Ease of use; RisksG. Innovation design

Process domain (n=22, 65%)

[33,38,45-47,54,55,57,62]9 (26)Framing; TailoringE. Tailoring strategies

[33,38,45,46,51,55,57,58,60-63]12 (35)Early involvement of end-users; Professional
buy-in; Iterative development

F. Engaging

[34,36,38,45,46,48,49,60-62,65]11 (32)FeedbackH. Reflecting & evaluating

[36,39,41,44,51,58]6 (18)Local data; AdaptabilityI. Adapting

Individuals domain – Roles subdomain (n=11, 32%)

[34,40,45-47,55,61-63]9 (26)Implementation lead; Implementation teamE. Implementation leads

[45,46,51,55,61,62,64]7 (21)Interdisciplinary teamsF. Implementation team members

Outer setting domain (n=9, 26%)

[33,35,39,50]4 (12)Patient acceptance; Public attitudeB. Local attitudes

[42,47,50,61]4 (12)Interinstitutional partnerships; Public-private
partnerships

D. Partnership & connections

[33,39,46,47,50,61]6 (18)Medicolegal issues; Medical device regulation;
Guidelines; Data protection

E. Policies & laws

[54]1 (3)Peer influenceG. External pressure
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Figure 2. Relative importance of Consolidated Framework for Implementation Research (CFIR) constructs. The percentages represent the proportions
of papers in which each construct and domain appears out of the 34 included in the review. The size of the bubbles corresponds to the frequency of
occurrence of each construct.

Inner Setting
The inner setting domain was the most frequently described,
with 25 studies mentioning at least one construct from this
domain as relevant to explaining the implementation process
of the ML application. The most recurrent constructs were
access to knowledge and information (12/34, 35%), IT
infrastructure (11/34, 32%), and culture (9/34, 26%).

First, the access to knowledge construct aligned with the topic
of skills. Studies emphasized the importance of providing end
users with access to training programs on both hard and soft
skills before implementation [48,49,55,64], including computer
and technical literacy linked with the complexity of the
application’s functioning [57,63], and the medical domain that
the application addresses [45]. The latter referred to dimensions,
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such as communication, empathy, and ability to listen, especially
when different HCPs were involved in the implementation
process [38,39,45].

Second, the IT infrastructure construct encompassed 2
prominent themes. The first broadly concerned data management
and data governance. Themes, such as data collection and quality
[39,58,59], security [33], availability [36,38], and sharing
[39,61], were highly described as challenges for the adoption
of the application. There were also significant references to
building IT infrastructure [61] and to the need to integrate new
technologies with existing IT systems (eg, EHRs). While
integration promoted ease of use by reducing the need for
manual inputs [47,48,50], some argued for the ML application
not to directly populate EHRs in order to preserve HCP
autonomy and prevent medicolegal accountability [59].

Finally, the construct of culture was articulated into the themes
of professional habits and alignment of perceptions among
stakeholders. The impact of introducing ML applications on
professional habits was significant as this affected how
professionals work, interact, and make decisions [62]. For
instance, the habit of working without technological support
was considered a barrier to implementation [39,40]. The need
for gradual changes in professional habits was seen as a factor
that could hinder the adoption of ML applications in settings
with high job rotations (eg, teaching hospitals) [32].
Additionally, ML applications often are not tailored to local
workflows and do not consider the different approaches of
professionals in diverse contexts [39]. The other theme related
to culture was that of perceptions and expectations among
different internal stakeholders (eg, management, physicians,
nurses, and technical staff). Misalignments among these
stakeholders were common, particularly regarding trust in ML
in general [45,47] or the expected target users (eg, residents vs
expert physicians) [45,59].

Innovation
Innovation and its characteristics were among the most
frequently mentioned domains (22/34, 65%), with 3 constructs
absorbing a significant portion of relevant descriptive themes:
innovation design (15/34, 44%), relative advantage (14/34,
41%), and complexity (14/34, 41%).

First, innovation design encompassed themes related to the
applications’ design and functioning, including the types of
human-machine interactions, as well as the associated risks.
The most recurrent themes within this construct revolved around
ease of use and intuitive design [33,45,49,62]. The former was
often linked to minimizing manual interventions, such as data
input [49,52], and was also associated with dimensions of trust
in the applications, such as trust in the process and the cognitive
burden for HCPs, in the form of fatigue from overalerting
[33,62], which could be a barrier to professional buy-in [55].
Some studies explicitly cited the theme of human-centered
design as a development framework that starts with the
assessment of end users’ needs and the environment in which
the ML application will be used [54,64,68]. Another recurrent
theme was the human-machine complementarity. For HCPs, it
was often important to maintain a sense of control over the
application and not perceive it as an attempt at uncontrolled

substitution and automation [32,33,56,65]. Human-machine
complementarity was also associated with fewer disruptions to
established workflows, enhancing the overall benefits associated
with the use of ML applications [45,53]. Moreover,
complementarity could increase trust in the application from
both a micro-perspective (eg, its functioning) [33,54] and
macro-perspective (eg, the purpose of the application and the
reasons for choosing to integrate ML within a clinical context)
[56,58,65]. The risks of ML use in decision-making processes
also emerged. These included the risk of automation, in terms
of overreliance on ML recommendations [39], and the risk of
bias, tied to the underlying data and training model of the ML
application [59]. Moreover, the potential negative consequences
of automation risk on clinical ability were mentioned [54].

Second, the relative advantage revolved around the perception
of benefits and costs associated with the use of ML, as well as
factors influencing trust in its performance. The most frequently
perceived benefits were related to the organizational dimension,
in terms of optimization of the workflow resulting from the
elimination of unnecessary steps [43], increased attention from
end users to all cases managed by the application [45], and
enhanced interactions among physicians and other HCPs [62].
Conversely, references to the economic impact were ambiguous.
On the one hand, faster decision-making could be considered
a potential advantage [47], and on the other hand,
human-machine interaction could lead to a loss of efficiency
compared to human intervention only [40,56]. Another barrier
to professional buy-in is that the perceived poor ability of the
application to take contextual factors into account calls into
question its clinical relevance. Among the perceived advantages,
trust in the application’s performance and its determinants were
often commented on. For the analysis, we adopted the concept
of trust as defined by Hengstler et al [33] who distinguished
between trust in technology and trust in those who produce it
(ie, the source of innovation). This definition further divided
trust in technology into 3 dimensions: trust in performance,
focusing on the accuracy and consistency of the output; trust in
the process, concerning the understanding of the reasoning
behind a given output; and trust in the purpose of the innovation
to be implemented [16,44]. Concordance significantly influences
trust in performance, with a greater difference between human
judgment and machine recommendation associated with a lower
level of trust in the recommendation [44,47,58]. Similarly,
recommendations that did not arrive in a timely or adequate
manner negatively influenced trust in performance [37,44].
Additionally, trust in performance could be fueled by
experience, the application’s ability to identify cases missed by
humans, and the consistency over time of recommendations
[47].

Third, innovation complexity highlighted the concepts of
explainability and opacity as distinctive features of ML models.
Many studies were consistent in identifying algorithm
complexity as the primary barrier to trust in the process
underlying the generation of an ML output. This is even more
true when nonmedical professionals (eg, nurses) interact directly
with the ML application [45]. Facilitating interpretability,
explainability, or cognitive compatibility was mentioned as a
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way to promote transparency, trust among HCPs, and
professional buy-in [49,55,56,58,59,65].

Implementation Process
The reviewed articles often mentioned the characteristics of the
implementation process (22/34, 65%), with a particular emphasis
on the constructs of stakeholders engaging (12/34, 35%),
reflecting and evaluating (11/34, 32%), and tailoring strategies
(9/34, 26%).

Attracting and encouraging the participation of different
stakeholders in the implementation process emerged as a
recurring theme. The practice of early involvement of end users
was frequently cited not only during the implementation process
but also throughout the development phase
[33,38,45,46,58,61,63]. This was positively associated with
trust in the innovation’s purpose [46], the application’s
functioning [58,61,62], and the ease of use of its design [45].
During the implementation phase, stakeholder engagement was
linked to evident benefits, such as improvement in the
implementation climate [46], greater willingness to adopt the
role of implementation leader [38], greater professional buy-in
[51,55], and better iterative collection of information and
feedback [60]. Conversely, the absence of engagement was seen
as a barrier to successful implementation, potentially leading
to increased resistance toward the innovation among end users
[62].

In the construct of reflecting and evaluating, feedback and
feedback loops emerged as recurring topics, with many studies
underscoring the importance for both ML developers and
implementation teams to incorporate end users’ feedback on
either technical issues, system design, or clinical needs
[34,36,38,49,62,65]. Some studies noted that feedback collection
extended beyond implementation, with structured feedback loop
processes integrated into routine use [46,48]. Regardless,
feedback collection was described as an iterative activity
[46,48,60,61], which also positively influenced professional
buy-in [47]. However, a critical point raised was that end-users
may lack the necessary technical skills to provide feedback
conducive to improvement [62].

Two additional recurring constructs were tailoring strategies
and adapting. The former referred to actions addressing barriers
and leveraging facilitators, while the latter involved modifying
the innovation itself to best fit the context in which it was
inserted.

Among tailoring strategies, the importance of effectively
communicating the implementation efforts was often
highlighted. Some works referred to the need for clearly framing
communication around the expected benefits, positively
affecting trust in ML-based innovations [33,38,45-47,54] and
trust in the innovation source [33], and fostering greater
professional buy-in [55]. Another aspect of framing was related
to the terminology used, asserting that using terms supporting
concepts, such as “assistant” and “support” had a favorable
impact on end users’ trust toward ML-based innovations [46,47]
and the innovation source [33].

In terms of adapting, the first theme involved the need for
collected feedback to be effectively incorporated into the

application, adapting systems to the local context of
implementation [36,58]. The second involved the issue of data,
emphasizing the importance that the model is effectively trained
and adapted to the cases treated in the clinical context in which
the application will be used before deployment. The absence of
this aspect was perceived as a barrier to trust in the ML
application’s performance [39,41,44,51].

Individuals: Roles
The subdomain of roles was less frequently observed (11/34,
32%) and encompassed 2 constructs: implementation leads
(9/34, 26%) and implementation teams (7/34, 21%).

The former referred to the individual or group that guided and
oversaw the implementation process, and their presence was
generally considered a positive factor for implementation as it
contributed to establishing a favorable implementation climate
[47]. Individual implementation leaders were often referred to
as champions. Although it may theoretically involve figures
that emerge from bottom-up processes, all works referring to
this role mentioned a top-down identification [45,47,62,63].
Implementation teams were observed as well in the form of
quality improvement teams [34], AI governance committees
[40,46,63], or interdisciplinary teams of HCPs, software
engineers, developers, IT specialists, and other figures
[46,51,55,64].

Outer Setting
The outer setting domain emerged poorly in the reviewed studies
(9/34, 26%), particularly in the form of 3 constructs: policy and
laws (6/34, 18%), local attitudes (4/34, 12%), and partnership
and connections (4/34, 12%).

In the policy and laws construct, 3 main themes emerged. The
first concerned the medicolegal responsibility for decisions
made using an ML application [39,61]. The second pertained
to regulatory and certification aspects, with recognition of the
application as a medical device seen both as a factor positively
influencing trust in the application [33] and as a barrier to
utilization [46]. Regulations on personal data protection were
also considered implementation challenges [47]. Regarding
policies, the only theme mentioned was the relevance of national
policies and guidelines to create a common framework for the
implementation of ML applications [50].

Local attitudes were societal expectations and beliefs on the
use of ML applications. Cultural aspects, innovation attitudes,
and public expectations could influence the acceptability of ML
[35,39,50]. Equally relevant for acceptance was the visibility
of the application (ie, how noticeable and observable an
innovation is to the public), which influences how organizations
foster innovation trust [33,69].

Within the partnership and connections construct, building
partnerships with scientific societies and professional
communities was considered a facilitator for implementation,
as these can act as knowledge platforms or hubs [42,47].
Professional communities and peers could also trigger external
pressure that may positively impact the willingness to implement
ML applications [54]. Establishing development networks across
hospitals and health care facilities was a relevant factor for the
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increased reliability of the application, providing the opportunity
to leverage larger datasets, which are known to end users [61].
Moreover, forging public-private partnerships was deemed a
useful step for implementation, to leverage expertise not always
available within public health care organizations [50,61].

Discussion

Review of the Main Findings
This work aimed at synthetizing extant academic knowledge
on the implementation of ML-based applications in clinical
practice, focusing specifically on the characteristics of the
innovation and on the processes and strategies employed by
health care organizations to ensure their successful
implementation.

We identified 34 studies reporting on the implementation
process of ML applications, all of which were CDSSs frequently
based on supervised learning models in the form of predictive
algorithms, visualizations, and alert-delivering tools. Overall,
half of the observed applications were integrated into hospital
information systems as add-ons to the EHR infrastructure.
ML-based applications were mainly implemented in hospital
settings and supported prognostic activities, although a relevant
portion was intended for diagnosis. Among the diagnostic
applications, those based on computer vision were either
standalone software or embedded in the hospital hardware
technology. Algorithms could be clustered into 2 groups: those
internally developed, prevalently by university hospitals and
academic medical centers and typically with a prognostic
purpose, and those purchased from commercial vendors, which
are more heterogeneous in terms of purposes and functions.

Furthermore, our analysis enabled us to scrutinize the
characteristics of the implementation processes of ML-based
applications, gathering pertinent insights relevant to their
successful integration within health care organizations. Through
the theoretical lens of the CFIR, we identified a predominant
emphasis on 3 key domains: inner setting, innovation
characteristics, and process dimension. First, evidence from the
inner setting domain highlighted the importance of addressing
IT infrastructure and data management challenges, as well as
the necessity of fostering an organizational culture that favors
the implementation of ML-based applications. Second, in terms
of innovation design, the concept of human-machine
complementarity was recurrent, highlighting the importance of
integrating ML-based applications into existing workflows to
enhance overall benefits and foster trust by ensuring HCPs
maintain a sense of overall control. In the process domain,
studies emphasized the importance of fostering early stakeholder
engagement during the development and preimplementation
phases, adapting strategies to local contexts, and initiating
reflection and evaluation activities to support continuous
improvement based on feedback loops. Conversely, while the
complexity inherent in ML models in terms of algorithm opacity
was largely acknowledged, we found limited investigation into
effective mitigation strategies to tackle these challenges.

Comparison With Prior Work
Different from prior work encompassing logic-based and
rule-based applications [10,70,71], our study focused exclusively
on ML-based applications. While the frequency and relative
significance of various application types are not directly
comparable with those observed in the cited works, other recent
reviews have adopted a similar approach to ours. In their scoping
review, Chomutare et al [21] identified 19 studies on the
implementation of AI applications powered by ML, highlighting
a variety of solutions across medical fields and tasks within the
clinical workflow. Similarly, Tricco et al [22] explored how
implementation science strategies can facilitate the
implementation of ML tools, but their work also included studies
with effective research designs, thereby adopting a partially
different approach from that of this work. Our review expanded
the number of included studies, confirming the multitude of
diverse applications of ML in clinical practice. The only
condition for which we observed a conspicuous number of
studies was sepsis, a dysfunction accounting for around 20%
of deaths worldwide [72], for which ML-based applications are
proliferating [73], although no definitive causal link with
reduced mortality has been demonstrated to date [74]. Our
search identified 8 studies on sepsis, showcasing the potential
attributed to ML-based applications in supporting the timely
identification of hospital-acquired conditions. On a similar note,
a recent review encompassing over 10,000 ML applications in
health care settings corroborated the relevance of prognostic
algorithms among those in use [75].

Consistent with previous research [21,70], most of the included
papers presented cases of real-world implementation rather than
proper implementation studies on the later phases of rollout,
often covering only a few aspects of the implementation process.

While we hypothesized that distinct implementation strategies
would be prevalent based on the characteristics of ML-based
applications, we only observed limited distinctions based on
the types of clinical applications (prognostic, diagnostic, or
therapeutic purposes) or their development process (internal
development vis-à-vis external acquisition and adaptation).

For instance, the integration with existing IT infrastructure
introduced ambiguity in the context of diagnostic applications,
where such integration may be perceived as a risk with
medicolegal implications [50,59]. On the other hand, for
applications with nondiagnostic purposes, integration with
existing IT systems was viewed as a positive factor for ease of
use [47,62].

Other elements appeared relatively more pronounced in
applications provided by external providers. This included
perceived risks associated with application design (eg,
overreliance, automation, and bias) [39,54,59], considerations
regarding complementarity with HCPs [33,53,54,56], and
aspects related to explainability. As such, exploring whether
and how different application types entail different implications
for their effective integration into clinical practice might be a
valuable suggestion for future research.

Just like the report by Chomutare et al [21], our work confirmed
that the outer setting domain was largely overlooked, although
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prior studies have highlighted the importance of external factors,
such as data privacy and security laws, ethical issues, regulatory
frameworks, and medical liability, in implementing ML
applications in clinical practice [5,76-78]. The limited relevance
of such a domain in our sample may stem from 2 reasons. First,
due to the nature of the included studies, only a few frameworks
that were used accounted for elements beyond the organizational
setting in which the implementation occurred. Factors associated
with the outer setting may be more frequently highlighted in
implementation processes perceived as unsuccessful, which are
less often reported in the scientific literature. Second, since the
primary studies predominantly involved HCPs, they did not
incorporate managerial and policymaker perspectives. In fact,
when the outer domain perspective was explored, nonclinical
stakeholders were often involved [39,47,61]. Furthermore, Hogg
et al [10] suggested prioritizing the perspective of non-HCP
stakeholders in primary studies to enhance the understanding
of implementation processes at a broader level, which may serve
as a further valuable suggestion for future studies.

Implications for the Implementation of ML-Based
Applications: A Focus on Trust
The importance of trust, particularly within the physician-patient
relationship, has been heightened by the advent of digital health,
especially with innovations, such as ML applications that heavily
rely on data [79]. ML applications based on computational
models are often characterized as opaque (ie, black boxes),
introducing an extra layer of complexity to the trust relationship
between end users and technological innovations [80]. A recent
review by Adjekum et al [79] categorized factors influencing
trust in digital health systems into personal, technological, and
institutional elements. Building upon the concept of trust as
articulated by Hengstler et al [33], our work contributes to
understanding the determinants of trust in facilitating the
implementation of ML-based applications in health care
organizations.

We observed that the characteristics of the innovation itself
significantly challenged trust in the performance of ML-based
applications. The complexity and opacity of the underlying
models constitute primary barriers to trust, with trust in
performance further influenced by system design elements such
as ease of use, the nature of the HCP-machine interaction, and
the timeliness and consistency over time of recommendations.
Additionally, considerations regarding data governance for
internally developed applications and the reputation of the
technology provider for procured solutions further influence
trust in the performance of these applications. However, as trust
primarily remains a human-led process, factors beyond mere
technical and mechanical characteristics influence trust in ML.

While most of the observed implementation strategies were
essentially ML agnostic, addressing the issue of clinician trust
should theoretically require dedicated ML-specific processes.
Our review highlights potential ways to enhance the
application-perceived reliability of ML applications. On the one
hand, tailoring and adaptation strategies, early end-user
engagement, and appropriate framing of ML-based applications
as decision-support tools might favor HCP trust in both the
application’s performance and its purpose [21]. On the other

hand, specific tailoring strategies should be adopted to increase
the explainability of nontotally interpretable models [13]. For
instance, Jauk et al [49] enhanced clinical reasoning using a
web application presenting relevant features from ML modeling,
Davis et al [53] allowed radiologists to interact with the ML
system by showing the types and locations of the abnormalities
identified by the algorithm, and Henry et al [54] decided to
delay alerts until the first verifiable symptoms were present in
an attempt to increase acceptance.

However, these tailoring strategies may not be practicable when
ML systems reach opacity levels that render the interpretation
of their outputs impracticable. In such cases, other contributions
have emphasized the need to highlight the level of actionability
of ML models, in terms of their ability to enhance medical
decision-making compared to clinical judgment alone, to power
trust [81].

An additional contribution to enhancing trust may be achieved
through continuous HCP involvement. This involvement, which
generates engagement and professional buy-in, is equally
significant for the successful implementation of these
innovations. In the realm of digital health interventions, while
there is frequent emphasis on patient engagement in the design
of solutions, the empowerment of HCPs is often overlooked
[82,83]. Active involvement of HCPs and frequent
communications to raise awareness have been unambiguously
identified among the most common enablers of trust in previous
reviews on the implementation of ML applications
[21,22,74,84]. This may facilitate the implementation of
innovations by improving the implementation climate for
reducing resistance to change and mitigating specific barriers
associated with the complexity of ML models and the reliability
of the recommendations they produce.

Limitations
This study has some limitations that should be considered when
interpreting our findings. First, the rapidly evolving nature of
the field of ML and the exponential growth of newly published
studies posed challenges in managing the vast volume of
retrieved records. To address this, our search strategy
incorporated a supplementary block of keywords focused on
“study designs,” which may have excluded certain relevant
articles. Additionally, our emphasis on peer-reviewed studies
introduced a potential bias, as ML-based applications reported
in the scientific literature may only represent a subset of
implemented systems. This could impact the generalizability
of our findings, as acknowledged in similar studies such as the
study by Sharma et al [70]. Lastly, the decision to include only
papers published in English might have led to the exclusion of
valuable sources published in other languages, limiting the
comprehensiveness of our review.

Conclusions
Despite a relative dearth of primary studies on the
implementation of ML applications in health care organizations,
the available evidence reveals the abundance and heterogeneity
of factors involved when ML applications are introduced in
routine clinical practice. While certain elements, such as
complexity and trust, tend to emerge as distinctive factors for
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ML applications, many other aspects reflect what is already
known about the implementation of digital technologies,
particularly traditional CDSSs.

Further research is needed to bridge the gap between the
theoretical potential of ML and its actual use in health care

organizations. Identifying the distinctive factors that can
facilitate its implementation will build theoretical and practical
knowledge for health care practitioners, ultimately promoting
the uptake of ML in routine clinical practice.
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