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Abstract

Background: Early detection of adverse events and their management are crucial to improving anticancer treatment outcomes,
and listening to patients’ subjective opinions (patients’ voices) can make a major contribution to improving safety management.
Recent progress in deep learning technologies has enabled various new approaches for the evaluation of safety-related events
based on patient-generated text data, but few studies have focused on the improvement of real-time safety monitoring for individual
patients. In addition, no study has yet been performed to validate deep learning models for screening patients’ narratives for
clinically important adverse event signals that require medical intervention. In our previous work, novel deep learning models
have been developed to detect adverse event signals for hand-foot syndrome or adverse events limiting patients’ daily lives from
the authored narratives of patients with cancer, aiming ultimately to use them as safety monitoring support tools for individual
patients.

Objective: This study was designed to evaluate whether our deep learning models can screen clinically important adverse event
signals that require intervention by health care professionals. The applicability of our deep learning models to data on patients’
concerns at pharmacies was also assessed.

Methods: Pharmaceutical care records at community pharmacies were used for the evaluation of our deep learning models.
The records followed the SOAP format, consisting of subjective (S), objective (O), assessment (A), and plan (P) columns. Because
of the unique combination of patients’concerns in the S column and the professional records of the pharmacists, this was considered
a suitable data for the present purpose. Our deep learning models were applied to the S records of patients with cancer, and the
extracted adverse event signals were assessed in relation to medical actions and prescribed drugs.

Results: From 30,784 S records of 2479 patients with at least 1 prescription of anticancer drugs, our deep learning models
extracted true adverse event signals with more than 80% accuracy for both hand-foot syndrome (n=152, 91%) and adverse events
limiting patients’ daily lives (n=157, 80.1%). The deep learning models were also able to screen adverse event signals that require
medical intervention by health care providers. The extracted adverse event signals could reflect the side effects of anticancer
drugs used by the patients based on analysis of prescribed anticancer drugs. “Pain or numbness” (n=57, 36.3%), “fever” (n=46,
29.3%), and “nausea” (n=40, 25.5%) were common symptoms out of the true adverse event signals identified by the model for
adverse events limiting patients’ daily lives.
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Conclusions: Our deep learning models were able to screen clinically important adverse event signals that require intervention
for symptoms. It was also confirmed that these deep learning models could be applied to patients’ subjective information recorded
in pharmaceutical care records accumulated during pharmacists’ daily work.

(J Med Internet Res 2024;26:e55794) doi: 10.2196/55794
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Introduction

Increasing numbers of people are expected to develop cancers
in our aging society [1-3]. Thus, there is increasing interest in
how to detect and manage the side effects of anticancer therapies
in order to improve treatment regimens and patients’ quality of
life [4-8]. The primary approaches for side effect management
are “early signal detection and early intervention” [9-11]. Thus,
more efficient approaches for this purpose are needed.

It has been recognized that patients’ voices concerning adverse
events represent an important source of information. Several
studies have indicated that the number, severity, and time of
occurrence of adverse events might be underevaluated by
physicians [12-15]. Thus, patient-reported outcomes (PROs)
have recently received more attention in the drug evaluation
process, reflecting patients’ real voices. Various kinds of PRO
measures have been developed and investigated in different
disease populations [16,17]. Health care authorities have also
encouraged the pharmaceutical industry to use PROs for drug
evaluation [18,19], and it is becoming more common to take
PRO assessment results into consideration for drug marketing
approval [20,21]. Similar trends can be seen in the clinical
management of individual patients. Thus, health care
professionals have an interest in understanding how to
appropriately gather patients’ concerns in order to improve
safety management and clinical decisions [22-24].

The applications of deep learning for natural language
processing have expanded dramatically in recent years [25].
Since the development of a high-performance deep learning
model in 2018 [26], attempts to apply cutting-edge deep learning
models to various kinds of patient-generated text data for the
evaluation of safety events or the analysis of unscalable
subjective information from patients have been accelerating
[27-31]. Most studies have been conducted to use patients’
narrative data for pharmacovigilance [27,32-35], while few have
been aimed at improvement of real-time safety monitoring for
individual patients. In addition, there have been some studies
on adverse event severity grading based on health care records
[36-39], but none has yet aimed to extract clinically important
adverse event signals that require medical intervention from
patients’ narratives. It is important to know whether deep
learning models could contribute to the detection of such
important adverse event signals from concern texts generated
by individual patients.

To address this question, we have developed deep learning
models to detect adverse event signals from individual patients
with cancer based on patients’ blog articles in online

communities, following other types of natural language
processing–related previous work [40,41]. One deep learning
model focused on the specific symptom of hand-foot syndrome
(HFS), which is one of the typical side effects of anticancer
treatments [42], and another focused on a broad range of adverse
events that impact patients’ activities of daily living [43]. We
showed that our models can provide good performance scores
in targeting adverse event signals. However, the evaluation
relied on patients’ narratives from the patients’ blog data used
for deep learning model training, so further evaluation is needed
to ensure the validity and applicability of the models to other
texts regarding patients’ concerns. In addition, the blog data
source did not contain medical information, so it was not feasible
to assess whether the models could contribute to the extraction
of clinically important adverse event signals.

To address these challenges, we focused on pharmaceutical care
records written by pharmacists at community pharmacies. The
gold standard format for pharmaceutical care records in Japan
is the SOAP (subjective, objective, assessment, plan)-based
document that follows the “problem-oriented system” concept
proposed by Weed [44] in 1968. Pharmacists track patients’
subjective concerns in the S column, provide objective
information or observations in the O column, give their
assessment from the pharmacist perspective in the A column,
and suggest a plan for moving forward in the P column [45,46].
We considered that SOAP-based pharmaceutical care records
could be a unique data source suitable for further evaluation of
our deep learning models because they contain both patients’
concerns and professional health care records by pharmacists,
including the medication prescription history with time stamps.
Therefore, this study was designed to assess whether our deep
learning models could extract clinically important adverse event
signals that require intervention by medical professionals from
these records. We also aimed to evaluate the characteristics of
the models when applied to patients’ subjective information
noted in the pharmaceutical care records, as there have been
only a few studies on the application of deep learning models
to patients’ concerns recorded during pharmacists’ daily work
[47-49].

Here, we report the results of applying our deep learning models
to patients’ concern text data in pharmaceutical care records,
focusing on patients receiving anticancer treatment.

Methods

Data Source
The original data source was 2,276,494 pharmaceutical care
records for 303,179 patients, created from April 2020 to
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December 2021 at community pharmacies belonging to the
Nakajima Pharmacy Group in Japan [50]. To focus on patients
with cancer, records of patients with at least 1 prescription for
an anticancer drug were retrieved by sorting individual drug
codes (YJ codes) used in Japan (YJ codes starting with 42 refer
to anticancer drugs). Records in the S column (ie, S records)
were collected from the patients with cancer as the text data of
patients’ concerns for deep learning model analysis.

Deep Learning Models
The deep learning models used for this research were those that
we constructed based on patients’ narratives in blog articles
posted in an online community and that showed the best
performance score in each task in our previous work (ie, a
Bidirectional Encoder Representations From Transformers
[BERT]–based model for HFS signal extraction [42] and a
T5-based model for adverse event signal extraction [43]). BERT
[26] and T5 [51] both belong to a type of deep learning model
that has recently shown high performance in several studies
[29,52]. Hereafter, we refer to the deep learning model for HFS
signals as the HFS model, the model for any adverse event
signals as All AE (ie, all or any adverse events) model, and the
model for adverse event signals limited to patients’ activities
of daily living as the AE-L (adverse events limiting patients’
daily lives) model. It was also confirmed that these deep learning
models showed similar or higher performance scores for the
HFS, All AE, or AE-L identification tasks using 1000 S records
randomly extracted from the data source of this study compared
to the values obtained in our previous work [42,43] (the
performance scores of sentence-level tasks from our previous
work are comparable, as the mean number of words in the
sentences in the data source in our previous work was 32.7 [SD
33.9], which is close to that of the S records used in this study,
38.8 [SD 29.4]). The method and results of the
performance-level check are described in detail in Multimedia
Appendix 1 [42,43]. We applied the deep learning models to
all text data in this study without any adjustment in setting
parameters from those used in constructing them based on
patient-authored texts in our previous work [42,43].

Evaluation of Extracted S Records by the Deep
Learning Models
In this study, we focused on the evaluation of S records that our
deep learning models extracted as HFS or AE-L positive. Each
positive S record was assessed as if it was a true adverse event
signal, a sort of adverse event symptom, whether or not an
intervention was made by health care professionals. We also
investigated the kind of anticancer treatment prescription in
connection with each adverse event signal identified in S
records.

To assess whether an extracted positive S record was a true
adverse event signal, we used the same annotation guidelines
as in our previous work [43]. In brief, each S record was treated
as an “adverse event signal” if any untoward medical occurrence
happened to the patient, regardless of the cause. For the AE-L
model only, if a positive S record was confirmed as an adverse
event signal, it was further categorized into 1 or more of the
following adverse event symptoms: “fatigue,” “nausea,”
“vomiting,” “diarrhea,” “constipation,” “appetite loss,” “pain

or numbness,” “rash or itchy,” “hair loss,” “menstrual
irregularity,” “fever,” “taste disorder,” “dizziness,” “sleep
disorder,” “edema,” or “others.”

For the assessment of interventions by health care professionals
and anticancer treatment prescriptions, information from the O,
A, and P columns and drug prescription history in the data
source were investigated for the extracted positive S records.
The interventions by health care professionals were categorized
in any of the following: “adding symptomatic treatment for the
adverse event signal,” “dose reduction or discontinuation of
causative anticancer treatment,” “consultation with physician,”
“others,” or “no intervention (ie, just following up the adverse
event signal).” The actions categorized in “others” were further
evaluated individually. For this assessment, we also randomly
extracted 200 S records and evaluated them in the same way
for comparison with the results from the deep learning model.
Prescription history of anticancer treatment was analyzed by
primary category of mechanism of action (MoA) with
subcategories if applicable (eg, target molecule for kinase
inhibitors).

Applicability Check to Other Text Data Including
Patients’ Concerns
To check the applicability of our deep learning models to data
from a different source, interview transcripts from patients with
cancer were also evaluated. The interview transcripts were
created by the Database of Individual Patient Experiences-Japan
(DIPEx-Japan) [53]. DIPEx-Japan divides the interview
transcripts into sections for each topic, such as “onset of disease”
and “treatment,” and posts the processed texts on its website.
Processing is conducted by accredited researchers based on
qualitative research methods established by the University of
Oxford [54]. In this study, interview text data created from
interviews with 52 patients with breast cancer conducted from
January 2008 to October 2018 were used to assess whether our
deep learning models can extract adverse event signals from
this source. In total, 508 interview transcripts were included
with the approval of DIPEx-Japan.

Ethical Considerations
This study was conducted with anonymized data following
approval by the ethics committee of the Keio University Faculty
of Pharmacy (210914-1 and 230217-1) and in accordance with
relevant guidelines and regulations and the Declaration of
Helsinki. Informed consent specific to this study was waived
due to the retrospective observational design of the study with
the approval of the ethics committee of the Keio University
Faculty of Pharmacy. To respect the will of each individual
stakeholder, however, we provided patients and pharmacists of
the pharmacy group with an opportunity to refuse the sharing
of their pharmaceutical care records by posting an overview of
this study at each pharmacy store or on their web page regarding
the analysis using pharmaceutical care records. Interview
transcripts from DIPEx-Japan were provided through a data
sharing arrangement for using narrative data for research and
education. Consent for interview transcription and its sharing
from DIPEx-Japan was obtained from the participants when the
interviews were recorded.
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Results

Data Set
From the original data source of 2,180,902 pharmaceutical care
records for 291,150 patients, S records written by pharmacists
for patients with a history of at least 1 prescription of an
anticancer drug were extracted. This yielded 30,784 S records
for 2479 patients with cancer (Table 1). The mean and median

number of words in the S records were 38.8 (SD 29.4) and 32
(IQR 20-50), respectively. We applied our deep learning models,
HFS, All AE, and AE-L, to these 30,784 S records for the
evaluation of the deep learning models for adverse event signal
detection.

For interview transcripts created by DIPEx-Japan, the mean and
median number of words were 428.9 (SD 160.9) and 416 (IQR
308-526), respectively, in the 508 transcripts for 52 patients
with breast cancer.

Table 1. Characteristics of the pharmaceutical care records.

ValuesItem

April 2020 to December 2021 (1 year and 9 months)Duration

Patients

291,150Total, n

2479 (0.9)At least 1 anticancer drug prescription, n (%)

Pharmaceutical care records

2,180,902SOAPa records for all patients, n

30,784 (1.4)S records for patients with at least 1 anticancer drug prescription, n (%)

Words in Sb records for patients with at least 1 anticancer drug prescription

38.8 (29.4)Mean (SD)

32 (20-50)Median (IQR)

aSOAP: subjective, objective, assessment, plan.
bS: subjective.

Application of the HFS Model

Overview
First, we applied the HFS model to the S records for patients
with cancer. The BERT-based model was used for this research
as it showed the best performance score in our previous work
[42].

S Records Extracted as HFS Positive
The S records extracted as HFS positive by the HFS model
(Table 2) amounted to 167 (0.5%) records for 119 (4.8%)
patients. A majority of the patients had 1 HFS-positive record
in their S records (n=91, 76.5%), while 2 patients had as many
as 6 (1.7%) HFS-positive records. When we examined whether

the extracted S records were true adverse event signals or not,
152 records were confirmed to be adverse event signals, while
the other 15 records were false-positives. All the false-positive
S records were descriptions about the absence of symptoms or
confirmation of improving condition (eg, “no diarrhea, mouth
ulcers, or limb pain so far” or “the skin on the soles of my feet
has calmed down a lot with this ointment”). Some examples of
S records that were predicted as HFS positive by the model are
shown in Table S1 in Multimedia Appendix 2.

The same examination was conducted with interview transcripts
from DIPEx-Japan. Only 1 (0.2%) transcript was extracted as
HFS positive by the HFS model, and it was a true adverse event
signal (100%). The actual transcript extracted as HFS positive
is shown in Table S2 in Multimedia Appendix 2.
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Table 2. Sa records extracted as HFSb positive by the HFS model.

ValuesItem

119 (4.8)Positive patients (n=2479), n (%)

167 (0.5)Positive S records (n=30,784), n (%)

1.40 (0.92)Positive S records per patient, mean (SD)

Breakdown of patient numbers by number of positive S records, n (%)

91 (76.5)1 record

18 (15.1)2 records

4 (3.4)3 records

4 (3.4)4 records

2 (1.7)6 records

Adverse event signal, n (%)

152 (91)Yes

15 (9)No (ie, false-positivec)

aS: subjective.
bHFS: hand-foot syndrome.
cAll false-positive S records were denial of symptoms or confirmation of improving condition.

Interventions by Health Care Professionals
The 167 S records extracted as HFS positive as well as 200
randomly selected records were checked for interventions by
health care professionals (Figure 1). The proportion showing
any action by health care professionals was 64.1% for 167
HFS-positive S records compared to 13% for the 200 random

S records. Among the actions taken for HFS positives, “adding
symptomatic treatment” was the most common, accounting for
around half (n=79, 47.3%), followed by “other” (n=18, 10.8%).
Most “other” actions were educational guidance from
pharmacists, such as instructions on moisturizing, nail care, or
application of ointment and advice on daily living (eg, “avoid
tight socks”).

Figure 1. Interventions in cases with HFS-positive S records and in random cases. HFS: hand-foot syndrome; HP: health care professional.

Anticancer Drugs Prescribed
The types of anticancer drugs prescribed for HFS-positive
patients are summarized based on the prescription histories in

Table 3. For the 152 adverse event signals identified by the HFS
model in the previous section, the most common MoA class of
anticancer drugs used for the patients was antimetabolite (n=62,
40.8%), specifically fluoropyrimidines (n=59, 38.8%). Kinase
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inhibitors were next (n=49, 32.2%), with epidermal growth
factor receptor (EGFR) inhibitors and multikinase inhibitors as
major subgroups (n=28, 18.4% and n=14, 9.2%, respectively).

The third and fourth most common MoAs were aromatase
inhibitors (n=24, 15.8%) and antiandrogen or estrogen drugs
(n=7, 4.6% each) for hormone therapy.

Table 3. MoA classes of anticancer drugs prescribed for patients with adverse event signals identified by the HFS model (n=152).

Adverse event signals identified by HFS model, n (%)Anticancer drugs

Antimetabolites

62 (40.8)Overall

59 (38.8)Fluoropyrimidine

3 (2)Folate analog

Kinase inhibitors

49 (32.2)Overall

28 (18.4)EGFRa

14 (9.2)Multi

6 (3.9)VEGFb

1 (0.7)HER2c

24 (15.8)Aromatase inhibitors

7 (4.6)Antiandrogens

7 (4.6)Antiestrogens

3 (2)CDK4/6d inhibitors

1 (0.7)Alkylating agents

aEGFR: epidermal growth factor receptor.
bVEGF: vascular endothelial growth factor.
cHER2: human epidermal growth factor receptor-2.
dCDK4/6: cyclin-dependent kinase 4/6.

Application of the All AE or AE-L model

Overview
The All AE and AE-L models were also applied to the same S
records for patients with cancer. The T5-based model was used
for this research as it gave the best performance score in our
previous work [43].

S Records Extracted as All AE or AE-L positive
The numbers of S records extracted as positive were 7604
(24.7%) for 1797 patients and 196 (0.6%) for 142 patients for
All AE and AE-L, respectively. In the case of All AE, patients
tended to have multiple adverse event positives in their S records
(n=1315, 73.2% of patients had at least 2 positives). In the case
of AE-L, most patients had only 1 AE-L positive (n=104,
73.2%), and the largest number of AE-L positives for 1 patient
was 4 (2.8%; Table 4).

We focused on AE-L evaluation due to its greater importance
from a medical viewpoint and lower workload for manual
assessment, considering the number of positive S records. Of
the 197 AE-L–positive S records, it was confirmed that 157
(80.1%) records accurately extracted adverse event signals,
while 39 (19.9%) records were false-positives that did not

include any adverse event signals (Table 4). The contents of the
39 false-positives were all descriptions about the absence of
symptoms or confirmation of improving condition, showing a
similar tendency to the HFS false-positives (eg, “The diarrhea
has calmed down so far. Symptoms in hands and feet are
currently fine” and “No symptoms for the following: upset in
stomach, diarrhea, nausea, abdominal pain, abdominal pain or
stomach cramps, constipation”). Examples of S records that
were predicted as AE-L positive are shown in Table S3 in
Multimedia Appendix 2.

The deep learning models were also applied to interview
transcripts from DIPEx-Japan in the same manner. The deep
learning models identified 84 (16.5%) and 18 (3.5%) transcripts
as All AE or AE-L positive, respectively. Of the 84 All
AE–positive transcripts, 73 (86.9%) were true adverse event
signals. The false-positives of All AE (n=11, 13.1%) were
categorized into any of the following 3 types: explanations about
the disease or its prognosis, stories when their cancer was
discovered, or emotional changes that did not include clear
adverse event mentions. With regard to AE-L, all the 18 (100%)
positives were true adverse event signals (Table S4 in
Multimedia Appendix 2). Examples of actual transcripts
extracted as All AE or AE-L positive are shown in Table S5 in
Multimedia Appendix 2.
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Table 4. Sa records extracted as positive by the All AEb or AE-Lc model.

ValuesItem

All AE positive

1797 (72.5)Positive patients (n=2479), n (%)

7604 (24.7)Positive S records (n=30,784), n (%)

4.23 (4.17)Positive S records per patient, mean (SD)

Breakdown of patient numbers by number of positive S records, n (%)

482 (26.8)1 record

849 (47.3)2-5 records

337 (18.8)6-10 records

114 (6.3)11-20 records

15 (0.8)>20 records

AE-L positive

142 (5.7)Positive patients (n=2479), n (%)

196 (0.6)Positive S records (n=30,784), n (%)

1.38 (0.72)Positive S records per patient, mean (SD)

Breakdown of patient numbers by number of positive S records, n (%)

104 (73.2)1 record

26 (18.3)2 records

8 (5.6)3 records

4 (2.8)4 records

Adverse event signal, n (%)

157 (80.1)Yes

39 (19.9)No (ie, false-positived)

aS: subjective.
bAll AE: all (or any of) adverse event.
cAE-L: adverse events limiting patients’ daily lives.
dAll false-positive S records were denial of symptoms or confirmation of improving condition.

Interventions by Health Care Professionals
Whether or not interventions were made by health care
professionals was investigated for the 196 AE-L–positive S
records. As in the HFS model evaluation, data from 200
randomly selected S records were used for comparison (Figure
2). In total, 91 (46.4%) records in the 196 AE-L–positive records
were accompanied by an intervention, while the corresponding

figure in the 200 random records was 26 (13%) records. The
most common action in response to adverse event signals
identified by the AE-L model was “adding symptomatic
treatment” (n=71, 36.2%), followed by “other” (n=11, 5.6%).
“Other” included educational guidance from pharmacists,
inquiries from pharmacists to physicians, or recommendations
for patients to visit a doctor.
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Figure 2. Interventions in cases with AE-L-positive S records and in random cases. AE-L: adverse events limiting patients’ daily lives; HP: health care
professional.

Anticancer Drugs Prescribed
The types of anticancer drugs prescribed for patients with
adverse event signals identified by the AE-L model were
summarized based on the prescription histories (Table 5). In
connection with the 157 adverse event signals, the most common
MoA of the prescribed anticancer drug was antimetabolite

(n=62, 39.5%) and fluoropyrimidine (n=53, 33.8%), which
accounted for the majority. Kinase inhibitor (n=31, 19.7%) was
the next largest category with multikinase inhibitor (n=14, 8.9%)
as the major subgroup. These were followed by antiandrogen
(n=27, 17.2%), antiestrogen (n=10, 6.4%), and aromatase
inhibitor (n=10, 6.4%) for hormone therapy.
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Table 5. MoA classes of anticancer drugs prescribed for patients with adverse event signals identified by the AE-L model (n=157).

Adverse event signals identified by AE-L model, n (%)Anticancer drugs

Antimetabolites

62 (39.5)Overall

53 (33.8)Fluoropyrimidine

5 (3.2)Trifluridine

3 (1.9)Purine analog

1 (0.6)Folate analog

1 (0.6)Ribonucelotide reductase inhibitor

Kinase inhibitors

31 (19.7)Overall

14 (8.9)Multi

9 (5.7)EGFRa

3 (1.9)JAKb

2 (1.3)VEGFc

2 (1.3)BTKd

1 (0.6)FLT3e

27 (17.2)Antiandrogens

10 (6.4)Antiestrogens

10 (6.4)Aromatase inhibitors

6 (3.8)Topoisomerase inhibitors

6 (3.8)PARPf inhibitors

4 (2.5)CDK4/6g inhibitors

1 (0.6)Alkylating agents

1 (0.6)Anti-CD20h antibodies

aEGFR: epidermal growth factor receptor.
bJAK: janus kinase.
cVEGF: vascular endothelial growth factor.
cHER2: human epidermal growth factor receptor-2.
dBTK: bruton tyrosine kinase.
eFLT3: FMS-like tyrosine kinase-3.
fPARP: poly-ADP ribose polymerase.
gCDK4/6: cyclin-dependent kinase 4/6.
hCD20: cluster of differentiation 20.

Adverse Event Symptoms
For the 157 adverse event signals identified by the AE-L model,
the symptoms were categorized according to the predefined
guideline in our previous work [43]. “Pain or numbness” (n=57,
36.3%) accounted for the largest proportion followed by “fever”
(n=46, 29.3%) and “nausea” (n=40, 25.5%; Table 6). Symptoms
classified as “others” included chills, tinnitus, running tears,
dry or peeling skin, and frequent urination. When comparing

the proportion of the symptoms associated with or without
interventions by health care professionals, a trend toward a
greater proportion of interventions was observed in “fever,”
“nausea,” “diarrhea,” “constipation,” “vomiting,” and “edema”
(Figure 3, black boxes). On the other hand, a smaller proportion
was observed in “pain or numbness,” “fatigue,” “appetite loss,”
“rash or itchy,” “taste disorder,” and “dizziness” (Figure 3, gray
boxes).

J Med Internet Res 2024 | vol. 26 | e55794 | p. 9https://www.jmir.org/2024/1/e55794
(page number not for citation purposes)

Nishioka et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 6. Symptoms of adverse event signals identified by the AE-L model from subjective records (n=157).

Adverse event signals identified by the AE-L model, n (%)Symptoms

57 (36.3)Pain or numbness

46 (29.3)Fever

40 (25.5)Nausea

23 (14.6)Fatigue

17 (10.8)Rash or itchy

16 (10.2)Appetite loss

16 (10.2)Diarrhea

11 (7)Constipation

8 (5.1)Vomiting

7 (4.5)Taste disorder

6 (3.8)Dizziness

1 (0.6)Edema

0 (0)Menstrual irregularity

0 (0)Hair loss

0 (0)Sleep disorder

21 (13.4)Others

Figure 3. Symptoms of adverse event signals identified by the AE-L model from subjective records by intervention (n=157). AE-L: adverse events
limiting patients’ daily lives.

Discussion

Overview
This study was designed to evaluate our deep learning models,
previously constructed based on patient-authored texts posted
in an online community, by applying them to pharmaceutical

care records that contain both patients’ subjective concerns and
medical information created by pharmacists. Based on the
results, we discuss whether these deep learning models can
extract clinically important adverse event signals that require
medical intervention, and what characteristics they show when
applied to data on patients’ concerns in pharmaceutical care
records.
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Performance for Adverse Event Signal Extraction
The first requirement for the deep learning models is to extract
adverse event signals from patients’ narratives precisely. In this
study, we evaluated the proportion of true adverse event signals
in positive S records extracted by the HFS or AE-L model. True
adverse event signals amounted to 152 (91%) and 157 (80.1%)
for the HFS and AE-L models, respectively (Tables 2 and 4).
Given that the proportion of true adverse event signals in 200
randomly extracted S records without deep learning models was
54 (27%; categories other than “no adverse event” in Figures 1
and 2), the HFS and AE-L models were able to concentrate S
records with adverse event mentions. Although 15 (9%) for the
HFS model and 39 (19.9%) for the AE-L model were
false-positives, it was confirmed all of the false-positive records
described a lack of symptoms or confirmation of improving
condition. We considered that such false-positives are due to
the unique feature of pharmaceutical care records, where
pharmacists might proactively interview patients about potential
side effects of their medications. As the data set of blog articles
we used to construct the deep learning models included few
such cases (especially comments on lack of symptoms), our
models seemed unable to exclude them correctly. Even though
we confirmed that the proportion of true “adverse event” signals
extracted from the S records by the HFS or AE-L model was
more than 80%, the performance scores to extract true “HFS”
or “AE-L” signals were not so high based on the performance
check using 1000 randomly extracted S records (F1-scores were
0.50 and 0.22 for true HFS and AE-L signals, respectively;
Table S1 in Multimedia Appendix 1). It is considered that the
performance to extract true HFS and AE-L signals was relatively
low due to the short length of texts in the S records, providing
less context to judge the impact on patients’ daily lives,
especially for the AE-L model (the mean word number of the
S records was 38.8 [SD 29.4; Table 1], similar to the
sentence-level tasks in our previous work [42,43]). However,
we consider a true adverse event signal proportion of more than
80% in this study represents a promising outcome, as this is the
first attempt to apply our deep learning models to a different
source of patients’concern data, and the extracted positive cases
would be worthy of evaluation by a medical professional, as
the potential adverse events could be caused by drugs taken by
the patients.

When the deep learning models were applied to DIPEx-Japan
interview transcripts, including patients’ concerns, the
proportion of true adverse event signals was also more than
80% (for All AE: n=73, 86.9% and for HFS and AE-L: n=18,
100%). The difference in the results between pharmaceutical
care S records and DIPEx-Japan interview transcripts was the
features of false-positives, descriptions about lack of symptoms
or confirmation of improving condition in S records versus
explanations about disease or its prognosis, stories about when
their cancer was discovered, or emotional changes in interview
transcripts. This is considered due to the difference in the nature
of the data source; the pharmaceutical care records were
generated in a real-time manner by pharmacists through their
daily work, where adverse event signals are proactively
monitored, while the interview transcripts were purely based
on patients’ retrospective memories. Our deep learning models

were able to extract true adverse event signals with an accuracy
of more than 80% from both text data sources in spite of the
difference in their nature. When looking at future
implementation of the deep learning models in society
(discussed in the Potential for Deep Learning Model
Implementation in Society section), it may be desirable to further
adjust deep learning models to reduce false-positives depending
upon the features of the data source.

Identification of Important Adverse Events Requiring
Medical Intervention
To assess whether the models could extract clinically important
adverse event signals, we investigated interventions by health
care professionals connected with the adverse event signals that
are identified by our deep learning models. In the 200 randomly
extracted S records, only 26 (13%) consisted of adverse event
signals, leading to any intervention by health care professionals.
On the other hand, the proportion of signals associated with
interventions was increased to 107 (64.1%) and 91 (46.4%) in
the S records extracted as positive by the HFS and AE-L models,
respectively (Figures 1 and 2). These results suggest that both
deep learning models can screen clinically important adverse
event signals that require intervention from health care
professionals. The performance level in screening adverse event
signals requiring medical intervention was higher in the HFS
model than in the AE-L model (n=107, 64.1% vs n=91, 46.4%;
Figures 1 and 2). Since the target events were specific and
adverse event signals of HFS were narrowly defined, which is
one of the typical side effects of some anticancer drugs, we
consider that health care providers paid special attention to
HFS-related signals and took action proactively. In both deep
learning models, similar trends were observed in actions taken
by health care professionals in response to extracted adverse
event signals; common actions were attempts to manage adverse
event symptoms by symptomatic treatment or other mild
interventions, including educational guidance from pharmacists
or recommendations for patients to visit a doctor. More direct
interventions focused on the causative drugs (ie, “dose reduction
or discontinuation of anticancer treatment”) amounted to less
than 5%; 7 (4.2%) for the HFS model and 6 (3.1%) for the AE-L
model (Figures 1 and 2). Thus, it appears that our deep learning
models can contribute to screening mild to moderate adverse
event signals that require preventive actions such as
symptomatic treatments or professional advice from health care
providers, especially for patients with less sensitivity to adverse
event signals or who have few opportunities to visit clinics and
pharmacies.

Ability to Catch Real Side Effect Signals of Anticancer
Drugs
Based on the drug prescription history associated with S records
extracted as HFS or AE-L positive, the type and duration of
anticancer drugs taken by patients experiencing the adverse
event signals were investigated. For the HFS model, the most
common MoA of anticancer drug was antimetabolite
(fluoropyrimidine: n=59, 38.8%), followed by kinase inhibitors
(n=49, 32.2%, of which EGFR inhibitors and multikinase
inhibitors accounted for n=28, 18.4% and n=14, 9.2%,
respectively) and aromatase inhibitors (n=24, 15.8%; Table 3).
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It is known that fluoropyrimidine and multikinase inhibitors are
typical HFS-inducing drugs [55-58], suggesting that the HFS
model accurately extracted HFS side effect signals derived from
these drugs. Note that symptoms such as acneiform rash, xerosis,
eczema, paronychia, changes in the nails, arthralgia, or stiffness
of limb joints, which are common side effects of EGFR
inhibitors or aromatase inhibitors [59,60], might be extracted
as closely related expressions to those of HFS signals. When
looking at the MoA of anticancer drugs for patients with adverse
event signals identified by the AE-L model, antimetabolite
(fluoropyrimidine) was the most common one (n=53, 33.8%),
as in the case of those identified by the HFS model, followed
by kinase inhibitors (n=31, 19.7%) and antiandrogens (n=27,
17.2%; Table 5). Since the AE-L model targets a broad range
of adverse event symptoms, it is difficult to rationalize the
relationship between the adverse event signals and types of
anticancer drugs. However, the type of anticancer drugs would
presumably closely correspond to the standard treatments of
the cancer types of the patients. Based on the prescribed
anticancer drugs, we can infer that a large percentage of the
patients had breast or lung cancer, indicating that our study
results were based on data from such a population. Thus, a
possible direction for the expansion of this research would be
adjusting the deep learning models by additional training with
expressions for typical side effects associated with standard
treatments of other cancer types. To interpret these results
correctly, it should be noted that we could not investigate
anticancer treatments conducted outside of the pharmacies (eg,
the time-course relationship with intravenously administered
drugs would be missed, as the administration will be done at
hospitals). To further evaluate how useful this model is in side
effect signal monitoring for patients with cancer, comprehensive
medical information for the eligible patients would be required.

Suitability of the Deep Learning Models for Specific
Adverse Event Symptoms
Among the adverse event signals identified by the AE-L model,
the type of symptom was categorized according to a predefined
annotation guideline that we previously developed [43]. The
most frequently recorded adverse event signals identified by
the AE-L model were “pain or numbness” (n=57, 36.3%),
“fever” (n=46, 29.3%), and “nausea” (n=40, 25.5%; Table 6).
Since the pharmaceutical care records had information about
interventions by health care professionals, the frequency of the
presence or absence of the interventions for each symptom was
examined. A trend toward a greater proportion of interventions
was observed in “fever,” “nausea,” “diarrhea,” “constipation,”
“vomiting,” and “edema” (Figure 3, black boxes). There seem
to be 2 possible explanations for this: these symptoms are of
high importance and require early medical intervention or
effective symptomatic treatments are available for these
symptoms in clinical practice so that medical intervention is an
easy option. On the other hand, a trend for a smaller proportion
of adverse event signals to result in interventions was observed
for “pain or numbness,” “fatigue,” “appetite loss,” “rash or
itchy,” “taste disorder,” and “dizziness” (Figure 3, gray boxes).
The reason for this may be the lack of effective symptomatic
treatments or the difficulty of judging whether the severity of
these symptoms justifies medical intervention by health care

providers. In either case, there may be room for improvement
in the quality of medical care for these symptoms. We expect
that our research will contribute to a quality improvement in
safety monitoring in clinical practice by supporting adverse
event signal detection in a cost-effective manner.

Potential for Deep Learning Model Implementation
in Society
Although we evaluated our deep learning models using
pharmaceutical care records in this study, the main target of
future implementation of our deep learning models in society
would be narrative texts that patients directly write to record
their daily experiences. For example, the application of these
deep learning models to electronic media where patients record
their daily experiences in their lives with disease (eg, health
care–related e-communities and disease diary applications)
could enable information about adverse event signal onset that
patients experience to be provided to health care providers in a
timely manner. Adverse event signals can automatically be
identified and shared with health care providers based on the
concern texts that patients post to any platform. This system
will have the advantage that health care providers can efficiently
grasp safety-related events that patients experience outside of
clinic visits so that they can conduct more focused or
personalized interactions with patients at their clinic visits.
However, consideration should be given to avoid an excessive
burden on health care providers. For instance, limiting the
sharing of adverse event signals to those of high severity or
summarizing adverse event signals over a week rather than
sharing each one in a real-time manner may be reasonable
approaches for medical staff. We also need to think about how
to encourage patients to record their daily experiences using
electronic tools. Not only technical progress and support but
also the establishment of an ecosystem where both patients and
medical staff can feel benefit will be required. Prospective
studies with deep learning models to follow up patients in the
long term and evaluate outcomes will be needed. We primarily
looked at patient-authored texts as targets of implementation,
but our deep learning models may also be worth using medical
data including patients’ subjective concerns, such as
pharmaceutical care S records. As this study confirmed that our
deep learning models are applicable to patients’ concern texts
tracked by pharmacists, it should be possible to use them to
analyze other “patient voice-like” medical text data that have
not been actively investigated so far.

Limitations
First, the major limitation of this study was that we were not
able to collect complete medical information of the patients.
Although we designed this study to analyze patients’ concerns
extracted by the deep learning models and their relationship
with medical information contained in the pharmaceutical care
records, some information could not be tracked (eg, missing
history of medical interventions or anticancer treatment at
hospitals as well as diagnosis of patients’ primary cancers).
Second, there might be a data creation bias in S records for
patients’concerns by pharmacists. For example, symptoms that
have little impact on intervention decisions might less likely be
recorded by them. It should be also noted that the characteristics
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of S records may not be consistent at different community
pharmacies.

Conclusions
Our deep learning models were able to screen clinically
important adverse event signals that require intervention by
health care professionals from patients’ concerns in
pharmaceutical care records. Thus, these models have the
potential to support real-time adverse event monitoring of

individual patients taking anticancer treatments in an efficient
manner. We also confirmed that these deep learning models
constructed based on patient-authored texts could be applied to
patients’subjective information recorded by pharmacists through
their daily work. Further research may help to expand the
applicability of the deep learning models for implementation
in society or for analysis of data on patients’ concerns
accumulated in professional records at pharmacies or hospitals.
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