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Abstract

Background: Machine learning models often use passively recorded sensor data streams as inputs to train machine learning
models that predict outcomes captured through ecological momentary assessments (EMA). Despite the growth of mobile data
collection, challenges in obtaining proper authorization to send notifications, receive background events, and perform background
tasks persist.

Objective: We investigated challenges faced by mobile sensing apps in real-world settings in order to develop design guidelines.
For active data, we compared 2 prompting strategies: setup prompting, where the app requests authorization during its initial run,
and contextual prompting, where authorization is requested when an event or notification occurs. Additionally, we evaluated 2
passive data collection paradigms: collection during scheduled background tasks and persistent reminders that trigger passive
data collection. We investigated the following research questions (RQs): (RQ1) how do setup prompting and contextual prompting
affect scheduled notification delivery and the response rate of notification-initiated EMA? (RQ2) Which authorization paradigm,
setup or contextual prompting, is more successful in leading users to grant authorization to receive background events? and (RQ3)
Which polling-based method, persistent reminders or scheduled background tasks, completes more background sessions?

Methods: We developed mobile sensing apps for iOS and Android devices and tested them through a 30-day user study asking
college students (n=145) about their stress levels. Participants responded to a daily EMA question to test active data collection.
The sensing apps collected background location events, polled for passive data with persistent reminders, and scheduled background
tasks to test passive data collection.

Results: For RQ1, setup and contextual prompting yielded no significant difference (ANOVA F1,144=0.0227; P=.88) in EMA
compliance, with an average of 23.4 (SD 7.36) out of 30 assessments completed. However, qualitative analysis revealed that
contextual prompting on iOS devices resulted in inconsistent notification deliveries. For RQ2, contextual prompting for background

events was 55.5% (χ2
1=4.4; P=.04) more effective in gaining authorization. For RQ3, users demonstrated resistance to installing

the persistent reminder, but when installed, the persistent reminder performed 226.5% more background sessions than traditional
background tasks.

Conclusions: We developed design guidelines for improving mobile sensing on consumer mobile devices based on our qualitative
and quantitative results. Our qualitative results demonstrated that contextual prompts on iOS devices resulted in inconsistent
notification deliveries, unlike setup prompting on Android devices. We therefore recommend using setup prompting for EMA
when possible. We found that contextual prompting is more efficient for authorizing background events. We therefore recommend
using contextual prompting for passive sensing. Finally, we conclude that developing a persistent reminder and requiring participants
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to install it provides an additional way to poll for sensor and user data and could improve data collection to support adaptive
interventions powered by machine learning.

(J Med Internet Res 2024;26:e55694) doi: 10.2196/55694
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Introduction

Mobile and ubiquitous devices are valuable tools for gathering
patient-generated health data in real-world settings [1-11]. Prior
to the advent of the smartphone, mobile devices were
predominantly used to collect data actively, usually through
ecological momentary assessments (EMA). EMA involves
“repeated sampling of participants’ current behaviors and
experiences in real-time in the participants’natural environment”

[12-14]. EMA can include completing journals, diaries, and
survey questions [15], providing audio or video samples [16,17],
or participating in digital or physical tests [18]. As mobile
devices evolved to include more sensors and access to health
data, mobile apps started to use passive data collection methods
[19-22], where mobile devices collect data without involving
the end user. Today, machine learning models often use
passively recorded sensor data streams as inputs to machine
learning models that predict health outcomes or events captured
through EMA [23-29] (Figure 1).

Figure 1. Machine learning models often use passively recorded sensor streams as inputs to predict outcomes captured through EMA. We explore the
feasibility of collecting both passive and active data on consumer mobile devices to answer the following research questions (RQs): (RQ1) how do
contextual prompting and setup prompting affect scheduled notification delivery and the response rate of notification-initiated EMA? (RQ2) Which
authorization paradigm, setup or contextual prompting, is more successful in leading users to grant authorization to receive background events? and
(RQ3) Which polling-based method, persistent reminders or scheduled background tasks, completes more background sessions? EMA: ecological
momentary assessment.

Despite the growth of mobile data collection in health research,
several challenges for mobile sensing on consumer mobile
devices persist. These challenges are due to implementation
decisions made by the developers of major mobile devices (ie,
iOS or iPhone and Android) to protect users’ privacy, preserve
battery life, and minimize distractions. Passive data collection

requires access to private user data, whereas active data
collection needs to interrupt users to initiate an EMA. In this
work, we studied how various user interface (UI) decisions for
obtaining authorization at the app level affect the success of
both active and passive mobile sensing. Specifically, we tested
the following authorization scenarios: (1) users explicitly
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granting authorization to receive notifications to initiate EMA,
(2) users explicitly granting authorization to access background
events, and (3) the system implicitly granting background
runtime to collect data through polling.

The specific authorization procedure for the first 2 scenarios
varies depending on the device. An Android device obtains
authorization through setup prompting, where the user is
prompted during the initial app launch. On the other hand, iOS
devices use contextual prompting, where the user is prompted
when the first event or notification occurs.

Background runtime for passive sensing is often obtained
implicitly. Android and iOS systems determine when to run
background tasks based on user actions and battery status.
Another way to obtain background runtime is through a
persistent reminder. A persistent reminder is a permanent UI
feature, like a home screen widget or persistent notification,
that receives background runtime to update its UI.

To explore these active and passive sensing implementation
scenarios, we developed mobile sensing apps for Android and
iOS devices that logged both passive and active data. We tested
our apps with a user study to answer the following research
questions (RQs; Figure 1): (RQ1) how do contextual prompting
and setup prompting affect scheduled notification delivery and
the response rate of notification-initiated EMA? We hypothesize

that contextual prompting will lead to better EMA compliance
because participants will not have to respond to a setup prompt
and will have more context when authorizing notifications;
(RQ2) which authorization paradigm, setup or contextual
prompting, is more successful in leading users to grant
authorization to receive background events? We hypothesize
that the contextual prompts will improve background event
authorization because the added context will help participants
understand and feel safe approving the permission prompt; and
(RQ3) which polling-based method, persistent reminders or
scheduled background tasks, completes more background
sessions? We hypothesize that persistent reminders will poll
for data more often than background tasks because the mobile
operating system (OS) is willing to expend resources to keep
the UI up-to-date.

Methods

Overview
This section is organized as follows. First, we introduce the
authorization procedures that can affect the success of mobile
sensing studies. Next, we describe how we used these procedures
in our mobile sensing app. Finally, we describe a user study we
performed to answer our RQs. A summary of the authorization
methods used for each RQ is found in Table 1.

Table 1. Summary of authorization methods used in each research question (RQ).

Authorization methodCondition

RQ1a

Setup prompting for notificationsAndroid

Contextual prompting for notificationsiOS

RQ2b

Setup prompting for background eventsAndroid

Contextual prompting for background eventsiOS

RQ3c

User actions, device status implies consentBackground tasks

Installation implies consentPersistent reminders

aRQ1 compares authorization methods for notification-initiated ecological momentary assessment.
bRQ2 compares authorization methods for event-driven data collection.
cRQ3 compares polling-based collection methods.

Authorization Procedures
For both Android and iOS, mobile apps must gain explicit
authorization before sending notifications or receiving events.
Explicit authorization is when a user grants authorization
through a permission prompt. At the time of writing, Android
devices use setup prompting for explicit authorization, where
the user is prompted to grant authorization during setup. The
setup prompt can be displayed during the initial launch or when
the feature requiring authorization is enabled. iOS devices, on
the other hand, use contextual prompting for explicit
authorization, where the user is prompted when the first event
or notification occurs.

Contextual prompting provides the user with more context to
enable a more informed decision. For example, with setup
prompting, the user is asked for background location access
after consenting, not knowing when or where the location will
be accessed. With contextual prompting, the user is prompted
when the location is first accessed, helping them understand
when their location is accessed. Providing this additional context
could help the users feel more comfortable with granting
permissions, knowing that the location will be accessed only at
a specific location. With setup prompting, on the other hand,
we hypothesize that the user might be overwhelmed during
setup and deny the request for location or notifications.

J Med Internet Res 2024 | vol. 26 | e55694 | p. 3https://www.jmir.org/2024/1/e55694
(page number not for citation purposes)

Slade et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


While explicit authorization procedures are required for
notifications, implicit authorization is needed to grant the
background runtime for sensing apps to automatically collect
passive sensor and use data. Implicit authorization is when the
mobile OS implies authorization based on user actions and
device status. Gaining background runtime for scheduled tasks
depends on user actions such as app use, swiping an app out of
the recent app switcher, and enabling power-saving mode.
Device status indicators, such as the battery level, charging
state, and network connectivity, are additional factors
determining when background runtime is granted. iOS devices
always use implicit authorization to determine when to grant
runtime. Android devices vary by model and version. However,
modern devices include the “adaptive battery” [30] feature,
which implicitly grants background runtime.

Installing a permanent UI feature, or persistent reminder, is
another way to gain background runtime through implicit
authorization. A persistent reminder is part of an app that is

always displayed on the mobile device’s home screen, lock
screen, or notification center. A persistent reminder gains
background runtime to keep its UI updated. In this case, the
installation of the persistent reminder implicitly grants
authorization to run in the background. The persistent reminder
can also remind the participant to complete EMA tasks.

Mobile Sensing Apps
We developed a mobile sensing app for iOS and Android
devices designed to collect active data through EMA and passive
data through polling-based and event-based data collection. The
native languages of each OS, Swift for iOS and Kotlin for
Android, were used for development. Besides native UI
differences and authorization procedures outlined above, iOS
and Android apps were designed to appear and function
identically. The apps featured a home screen widget displaying
the study’s progress and serving as a persistent reminder. The
main screen, EMA screen, and home screen widget are shown
in Figure 2.

Figure 2. Mobile sensing app. Left: the main screen displays the study progress. Middle: the EMA screen, which asks participants about their stress
levels. Participants were asked to complete one assessment per day. Right: the home screen widget is used as a persistent reminder. EMA: ecological
momentary assessment.

Development Process
We first developed the iOS app and then developed the Android
app to match the look and functionality of the iOS app. We
tested the apps simultaneously to ensure that Android and iOS
devices reported the same data and functioned similarly. We
ensured they reported the same number of location events, sent
notifications at the same time, and otherwise behaved similarly.

The authorization methods we used in this study reflect each
mobile OS’ preferred method for gaining authorization. At the
time of writing, Android devices do not support contextual
prompts for notifications or background events. iOS does not
directly support setup prompting for background events and
discourages setup prompting for notifications. We chose the
OS’ preferred authorization method because users should be
familiar with the procedure. Figure 3 highlights the authorization
differences.
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Figure 3. Overview of the difference between authorization procedures on Android and iOS devices. On iOS devices, both notification and background
location authorization prompts are received in context. The notification authorization prompt is presented with the first EMA reminder notification, and
the background location authorization is presented when the first location event occurs. For Android devices, those prompts are present during the initial
launch of the app. EMA: ecological momentary assessment.

We originally planned to upload all data to secure storage
through the background task. However, during testing, we
noticed an inconsistency in uploading the data using only the
background task. Thus, we also synced data whenever the app
was launched in the foreground. To ensure all data were
collected, the collection was confirmed before presenting a
“Study Finished” screen along with instructions to take a
screenshot.

RQ1: Notification-Initiated EMA
RQ1 compares setup and contextual prompting for notification
authorization to measure their effect on EMA compliance. We
compared EMA compliance using the iOS notification system,
which uses contextual prompting, against Android’s notification
system, which uses setup prompting. To answer RQ1, the apps
used notification-initiated EMA to collect active data. We
performed a simple single-question EMA once per day, for
which both Android and iOS apps reminded users to complete
their EMA through a notification. The Android setup prompt
and iOS contextual prompt are displayed in Figure 4.

Figure 4. Notification permission prompts. Left: contextual prompt on an iOS device. Right: setup prompt on an Android device. With setup prompting,
users are asked to approve notifications during the initial run of the app. Using contextual prompting, users are asked to approve notifications when the
first notification arrives.
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Notification systems on Android and iOS have other features
that could affect compliance. iOS 15 introduced “Focus” times
[31], which implements notification deferral, and notification
summaries [32]. Android devices also implement notification
deferral through a focus mode [33], pausing notifications from
selected apps when activated. These features might reduce EMA
compliance [34,35].

RQ2: Event-Based Passive Data Collection
RQ2 explores how setup and contextual prompting affect the
success of event-based passive data collection. In the
event-based collection, an event, such as a location change,
phone call, message, or health alert, initiates the data collection.
Sensing apps need explicit authorization to receive background
events. Our apps used location changes as the event of interest
and monitored a geofence, or circular region, where participants
frequently entered and exited, triggering a location event. iOS
devices used contextual prompting to authorize receipt of
background location events, and Android devices used setup
prompting.

RQ3: Polling-Based Passive Data Collection
RQ3 explores the ability of traditional background tasks and
persistent reminders to collect data passively. Both Android
and iOS apps implemented and scheduled a daily background
task. The background task logged the time and uploaded all
logs to cloud storage. We also uploaded the data upon app
launch to ensure that all data were collected. For persistent
reminders, we implemented a home screen widget, shown in
Figure 2, and requested a daily refresh, which was also logged.

We explored users’willingness to install the persistent reminder.
Each participant had an equal chance of being assigned to either
(1) a control group that did not receive prompts or notifications
to install the widget or (2) an experimental group that did receive
prompts and notifications. One group of participants was
provided verbal instructions for installing the widget.

Alternative Study Designs
We used the mobile OS’ default or preferred authorization
procedures to test their effectiveness in the wild, similar to other
studies that test the feasibility of cross-platform mobile sensing
[36-38]. The strength of this approach is that it does not limit
the study to users of one particular device (iOS or Android),
increasing the diversity of the participants. It also works to
understand mobile sensing in the wild, revealing insights into
potential pitfalls while developing cross-platform mobile sensing
frameworks. However, this limits our ability to isolate study
variables because other differences between the mobile OS
implementations or device hardware could impact our results.

Studies focusing on a single mobile OS sometimes sacrifice
user diversity in favor of isolating variables. These studies are
favored when testing new features [39,40] or focusing on
specific variables [41]. Android tends to be used in these studies
due to its more open programming interface.

User Study
We tested our sensing apps through a user study that aimed to
identify the impact of screen time and study time on college
students’ stress levels. Participants installed our apps on their

mobile devices and participated in our study for 30 days. To
test event-based collection, a geofence that contained the school
library and classrooms was used to calculate study time.
Background tasks purported to collect screen time statistics to
test polling-based collection.

Active data was collected through a simple EMA that asked
participants how they managed their stress levels, as shown in
Figure 2. A notification was sent each morning at 7:30 AM to
remind users to complete their EMA. Students could complete
their daily EMA until the end of the day (midnight). Participants
could respond with a thumbs up, thumbs down, or neutral.

Ethical Considerations
The University of Hawaii Institutional Review Board approved
the study under protocol #2022-0722, and the Brigham Young
University—Hawaii Institutional Review Board approved it
under protocol #22-72. All participants consented to participate
in the study through the sensing app and received extra credit
in their courses for participating. The following measures were
implemented to ensure user privacy and participant safety: (1)
after installation, the mobile app required the participants to
electronically consent before collecting any data; (2) students
who did not want to participate were given an alternative extra
credit assignment, representing the same time commitment as
completing the study; (3) the app anonymized all data collected
before being uploaded to cloud storage, so the instructors could
not identify the participants’ data, including their study habits;
(4) follow-up paper surveys were collected by a volunteer, not
the class instructor; and (5) at the end of the study, students
were instructed by the app to submit a screenshot to their
courses’ learning management system, and all students were
provided with the same amount of extra credit regardless of
EMA compliance or the amount of data collected.

Recruitment
We recruited 145 college students in Computer Science,
Information Technology, Business, and Science classes at
Brigham Young University—Hawaii. The students were offered
extra credit incentives to install our app on their mobile devices
and actively engage in the study for 30 days.

To ensure students that their professors could not identify their
study habits, specific demographic information was not
collected, and the app anonymized all data before uploading
logs to cloud storage. However, the general demographics of
the recruitment base included college students aged 18-26 years,
with around 60% being female and 40% being male. Students
represented a variety of races and cultures, with a distribution
of about 40% White or non-Hispanic, 15% Native Hawaiian
and Other Pacific Islanders, 25% Asian, 15% two or more races,
and 5% other.

Exit Survey
Upon completion of the study, a follow-up survey was provided
to participants, which 48 participants completed. The survey
was provided on paper during the course’s final exam. To ensure
privacy, a volunteer, not the instructor, distributed and collected
the survey from participants. To preserve privacy, we did not
correlate the survey with the data collected by the mobile app.
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The survey allowed us to gather qualitative insights regarding
the differing success rates across the authorization paradigms.
The participants were asked (1) what reminded them to complete
their assessment, (2) their general thoughts on granting
background location access, (3) whether they knew about and
installed the home screen widget and their thoughts on installing
a widget, and (4) suggestions to improve the app.

Results

Data Cleaning and Analysis
We initially logged 178 (126 iOS and 52 Android) users who
installed the app and consented to participate in the study. We
removed users from the study if the logs showed they
participated for fewer than 5 days, which meant that they deleted

the app fewer than 5 days after starting. We did not detect any
users who deleted the app after participating for 5 days. This
yielded 145 participants, representing 105 iOS and 40 Android
users. Each participant had an equal chance of being assigned
to the widget or control group by the app. A total of 52
individuals (34 iOS and 18 Android) were randomly assigned
to the widget group, where the app prompted them to install the
widget. In total, 82 participants were randomly assigned to the
control group, which did not receive the prompts, and 11
participants (8 iOS and 3 Android) received verbal instructions
to install the widget on their home screens.

To conduct our qualitative analysis, we coded responses to the
survey based on general patterns that emerged in at least five
responses. The questions and the number of themed responses
are listed in Table 2.

Table 2. Summary of exit survey responses for each question, separated by device. At the end of the study, participants were administered a paper
survey to complete during their final exam, of which 48 participants (33 iOS and 15 Android) completed. Responses were coded based on general
themes that emerged in at least 5 responses. Themes with fewer than 5 responses are not listed.

Android (n=15), n (%)iOS (n=33), n (%)

Question 1: What reminded you to check-in?

9 (60)12 (36)Notifications

0 (0)9 (27)Set alarm

0 (0)5 (15)Widget

3 (20)5 (15)Saw app

Question 2: Did you allow the app to use your location? Why or why not?

15 (100)25 (76)Yes

0 (0)2 (6)aNo

6 (40)7 (21)It would help the study

3 (20)4 (12)It was required

1 (7)4 (12)Safe

Question 3: Did you install the widget? Why or why not?

2 (13)15 (45)Yes

13 (87)15 (45)No

4 (27)7 (21)Did not know about it

1 (7)6 (18)Helped me remember to check-in

2 (13)4 (12)Did not want to change the home screen or do not use widgets

Question 4: Do you have any comments or suggestions on improving the app?

3 (20)15 (45)Better notifications

2 (13)4 (12)Select notification time

a1 worried about tracking.

RQ1: Notification-Initiated EMA
To answer RQ1, we compared notification authorization
procedures: contextual prompting implemented in iOS versus
setup prompting implemented in Android by measuring the
number of completed EMA. On average, participants across all
conditions completed 23.4 (SD 7.38) assessments out of 30.
iPhone users completed 23.46 (SD 7.02) assessments, and
Android users completed 23.25 (SD 7.9) assessments on

average. We observed no statistically significant difference in
the number of completed assessments when examining
device-specific differences as shown by an ANOVA test
(F1,144=0.0227; P=.88) or when comparing the widget group to
the control group (F1,144=1.33; P=.27).

Although our quantitative results demonstrated no difference
between devices, our qualitative results indicated that contextual
prompting, notification deferral, and notification summaries on
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iOS devices affected notification delivery. Nine Android users
reported that notifications were the primary method of reminding
them to complete their EMA. Despite 9 iOS users stating that
the notifications helped them remember to complete the task,
15 iOS users surveyed said the notifications did not appear
consistently. Nine participants even set their alarms or
reminders. For example, P32 stated, “Notifications weren’t
working, so I had an event in my calendar to remind me.”

RQ2: Event-Driven Passive Data Collection Results
In RQ2, we compared the effectiveness of contextual prompting
(iOS) and setup prompting (Android) in gaining authorization
to access background location events. A total of 28% (11/40)
of Android and 49% (51/105) of iOS users enabled background
location permission. Contextual and setup prompting differed

significantly (χ2
1=4.4; P=04). Thus, contextual prompting was

55.5% more effective than setup prompting in gaining
authorization for background location events.

Our poststudy survey asked participants about their willingness
to share their location with the sensing app. A total of 40
surveyed participants said they authorized background location
access versus 2 participants who reported not sharing their
location. Only one participant, P10 (iOS), expressed
apprehension about sharing their location, stating, “I was afraid
it could track me.” However, 13 participants surveyed expressed
a willingness to share their location to contribute to the study’s
objectives and thought they granted the needed authorization
to access background location events. P46 (Android)
exemplified this sentiment: “Yes, if it helps the study then I
don’t really mind if it has my location.” User’s willingness to
share location data for nonresearch reasons will most likely
vary, so we emphasize that these results only apply to the
context of research studies.

RQ3: Background Tasks and Persistent Reminders
RQ3 compared traditional background tasks to persistent
reminders for polling-based data collection. First, we present
our results on how willing users were to install the persistent
reminder, and then we present results comparing persistent
reminder refreshes to background tasks completed. Finally, we
compare background tasks completed by device type and present
our qualitative results.

We studied how willing participants were to install the persistent
reminder by randomly assigning users to an experimental group
where they were notified by the app to install the widget and a
control group that did not receive such prompts. In addition, a
subgroup of 11 users were given verbal instructions to install
the widget. Of 52 participants in the widget group, only 18
(35%) participants installed the home screen widget, with 16
being iOS users and 2 being Android users. One iOS participant
in the control group installed the widget. Of the 11 participants
who received verbal instructions to install the widget, 5 (46%)
participants complied accordingly, of whom 4 were iOS users
and 1 was an Android user.

Limiting our data to only users who installed the persistent
reminder, on average, the persistent reminder was refreshed
61.2 (SD 16.7) times throughout the study, and the devices

performed an average of 7.2 (SD 12.5) background tasks. The
two Android devices performed 23 and 42 widget refreshes,
with 8 and 6 background tasks, respectively. When users
installed the widget, persistent reminders refreshed 266.5%
more than background tasks were executed.

Focusing on the difference between Android and iOS, we also
observed a significant difference in background tasks completed
when comparing devices. iOS devices completed 7.73 (SD
16.32) background sessions during the study. Android devices
completed 25.7 (SD 13.96) background sessions. Using data
from all participants, an ANOVA test revealed a significant
difference in the total number of background sessions between
iOS devices and Android devices (F1,144=37.8; P<.001), showing
that Android devices were more permissive in granting
background runtime. Most iOS devices completed fewer than
10 background sessions, and many did not execute a single
background task. In addition, almost half of the Android devices
did not complete a daily background task. This demonstrates
our difficulty in consistently gaining background runtime,
especially on iOS devices.

Our qualitative analysis showed mixed results regarding the
installation of the home screen widget. Several participants
indicated that the widget helped them remember to complete
their daily assessment, as expressed by seven participants. For
example, P37 (iOS) stated, “The widget helped me to remember
to check in every day and what the study was about.” However,
6 users opted not to use the widget due to concerns about
modifying their home screen or preferring not to use widgets.
P22 (iOS) mentioned, “My home screen was already full and
organized,” while P35 (Android) stated, “I just don’t want to
change my home screen.” iOS users may be more willing to
add the widget to their home screen because iOS allows for
widget stacking, a feature not found in most Android devices.
This functionality enables the rotation of different widgets
within a stack, eliminating the need to reorganize the home
screen to install the widget.

Effects of Stress Level
Because students experiencing a high stress level might be more
motivated to authorize data collection and complete assessments,
we divided the participants into 2 groups: a low-stress group
(n=117) whose EMA responses averaged better than neutral
and a high-stress group (n=28) whose EMA responses averaged
lower than neutral. We then compared the two groups’
authorization and data collection rates. There was no statistical
difference between the groups in the number of EMA responses
(F1,144=0.928; P=.34), the number of background tasks executed
(F1,144=1.54; P=.22), the number of participants that enabled

location (χ2
1=0.4; P=.52), or whether they installed the widget

(χ2
1=0.5; P=.57). The stress level of the participants did not

significantly impact their willingness to grant authorization,
provide EMA responses, or install the widget.

Discussion

Based on our results, we present design principles to enhance
the success of mobile passive-sensing research studies.
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Notification-Initiated EMA
Setup prompts should generally be used for notifications.
Although our quantitative results showed no difference between
the iOS and Android notification systems, our qualitative
analysis revealed that many iOS users did not consistently
receive notifications to remind them to complete their EMA.
Nine iOS users reported setting their alarms or calendar
reminders to remember to complete their EMA. We conjecture
that if this study had required participants to complete multiple
tasks per day or to follow a strict time frame for EMA tasks,
then EMA compliance on iOS devices would have suffered.

We hypothesized that contextual prompts would work more
effectively. However, they lose their context when notification
deferrals and summaries are enabled. Only users who searched
through their notification summaries would have found the
contextual prompt and authorized future notifications. With
setup prompting, by contrast, users authorize the notifications
immediately after consenting.

Our qualitative results show that notification deferral and
notification summaries can cause delayed and missed responses
to EMA notifications on iOS devices. New methods should be
developed to help participants remember to complete their
assessments in a timely manner. iOS allows developers to mark
notifications as time-sensitive, which increases their visibility
to the user and should be used for time-sensitive EMA. This
study did not use time-sensitive notifications because our
assessment did not require a time-sensitive response. Future
work could analyze the effectiveness of time-sensitive
notifications versus basic notifications. However, even
time-sensitive notifications could be delayed or ignored based
on the user’s settings. We recommend that mobile sensing
researchers review notification settings during onboarding.
Persistent reminders offer an additional way to remind users to
complete tasks. Seven participants (6 iOS and 1 Android)
reported that the persistent reminder helped them to remember
to complete their assessment and could be an area to explore
further.

Besides notification deferral, notification summaries, and
contextual prompting, other notification system advances can
potentially disrupt notification-initiated EMA. Because
notifications disrupt users, sometimes causing stress [42-44],
several modifications to notification systems could be introduced
to consumer mobile devices. Lin et al [45] demonstrated how
notification summaries could be improved by letting users
determine the order of the notifications. Pejovic et al [46]
explored user contexts to understand user interruptability,
leading to the development of intelligent notification systems
[34,47]. Kandappu et al [48] also explored intelligently
interrupting users. Mobile sensing apps must adjust to these
advanced notification systems or find a different way to initiate
EMA. For example, Zhang et al [49] explored using a persistent
reminder on the lock screen to initiate EMA.

Event-Driven Passive Data Collection
For event-driven data collection, use carefully designed
contextual prompts. Our qualitative analysis revealed that most
participants were willing to authorize background location

access for research studies and were under the impression that
they enabled background location access. However, our
quantitative results revealed that many participants did not
authorize background location access. Many failed to grant
authorization for background events even though they intended
to authorize it. As we hypothesized, contextual prompting on
iOS was 55.5% more effective in gaining authorization for
background location events. This coincides with previous work
that shows additional context helps users make better privacy
decisions [39,50,51].

Even with contextual prompts, less than half of the participants
authorized access to background location events. Challenges
arise when users misinterpret authorization prompts, limiting
the success of event-based collection [39,41,51-53]. To improve
contextual prompt accuracy, Wijesekera et al [40] developed a
machine learning–based, contextual-aware permission model
that improves the permission accuracy rate above context
prompts, which should be considered if it becomes available
on consumer mobile devices. However, the current model
suggests providing “generic but well-formed data” when an app
is denied access. In the context of health sensing apps, this can
skew results and create adverse health interventions. We
recommend that such systems be designed to communicate to
the app about denials and that apps be constructed to handle
denials to ensure data fidelity. Further research must be
performed to balance the collection abilities of mobile sensing
apps and protect the privacy and security of their users [54].

Polling-Based Passive Data Collection
For polling, implement a persistent reminder that can be used
both as a means of collecting data and as a reminder to complete
EMA tasks. Collecting data through background tasks presented
significant challenges due to the use of an implied consent model
for granting background runtime that is inherent to mobile OS,
as described in previous work [36,55]. Although Android
devices are generally more permissive, too many factors are
under consideration to consistently guarantee background
runtime. However, as we hypothesized, using a persistent
reminder as a secondary means to poll for data yielded more
successful data collection. Installing a persistent reminder on
the user’s home screen signifies to the OS the intent to allocate
the necessary resources to maintain the reminder’s regular
updates, which can also be used for passive data collection.

Many users did not comply with installing the widget when
prompted by the app, especially among Android users. Verbal
prompts to install the widget did help to improve compliance
on Android and iOS. Our qualitative analysis indicated some
resistance to installing the widget because users did not want
to change their home screen layout, and some were unfamiliar
with how to install widgets or did not use widgets.

Several methods are available to overcome the resistance to
using widgets. First, participants who more directly benefit from
the data collection might be more willing to install a widget.
For instance, participants affected by a disease might be more
willing to install a widget, especially if the app offers
just-in-time, adaptive interventions. In addition, study incentives
can also be increased for participants who install the widget.
To assist users unfamiliar with widgets, the app can provide a
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video tutorial on installing the widget, or instructions can be
provided during study onboarding.

Limitations
There are other differences between iOS and Android devices
and users of those devices than what we tested for, which could
be confounding factors. In addition, we studied passive sensing
for research studies, and the results do not necessarily apply to
passive sensing in other contexts such as crowdsourcing or
commercial purposes.

This study involved college students, and while they represented
diverse academic disciplines, races, and countries of origin,
they were all aged 19-26 years and tended to be more familiar
with mobile devices. Further work should be conducted to
observe how these results would translate to a larger, more
heterogeneous population. Individuals less familiar with mobile
devices, such as geriatric patients, may exhibit more difficulty
granting and declining authorization due to different privacy
preferences or familiarity with smartphone technology.

For persistent reminders, only two Android users installed the
widget, with one device refreshing more than once per day and
the other refreshing 23 of the 30 days. These preliminary results
are promising. However, further work is required to ensure the
results are consistent with a larger sample size.

Future Work
Additional modifications to the mobile apps could be
implemented and tested in follow-up studies. Although Android
does not allow contextual prompts, contextual prompts could
be mimicked by randomly sending a notification asking for
background location access or notification access. Such a study
would eliminate potential confounding factors that could have
influenced the results.

Our sensing apps could be used in additional health studies
incorporating other populations with different motivations to
comply with study procedures. Comparing our results with
studies involving more diverse health issues would be an
interesting avenue for future work.

Comparison With Prior Work
Numerous studies have contributed to a comprehensive
understanding of EMA compliance across research fields [56].
In a review of EMA studies, Wrzus and Neubauer [57] found
that compliance cannot be predicted by the number of
assessments or length of the study but that financial incentives
did improve compliance rates. Murray et al [58] explored the
role of participants’ emotional states in affecting compliance.
In the related field of crowdsourcing [59], gamification can
improve response rates [60]. Other efforts to improve EMA
compliance include the work by Schenider et al [61] on
just-in-time, adaptive EMA to reduce the burden on participants.
Zhang et al [49] explored unlock journaling, where users unlock
their devices by completing an EMA. This work built upon this

by examining how notification permissions affected EMA
compliance.

Mobile sensing depends upon gaining proper authorization to
collect data and interrupting participants to initiate an EMA.
Research into permissions on mobile devices has shown that
users often misinterpret permission prompts [52,53]. Wijesekera
et al [39,40] showed that contextual prompts help users correctly
interpret permission prompts. Alsoubai et al [41] profiled users
to help understand differing privacy strategies, which helps
improve intelligent permission systems [40]. Our mobile sensing
apps explored contextual prompts and permissions and their
role in passive data collection.

Prior work has demonstrated that collecting consistent data
across iOS and Android devices remains challenging [62]. Most
mobile sensing studies use Android devices due to their more
open programming interface, but some work has been conducted
to improve mobile sensing on iOS devices. The AWARE-iOS
research team [55] explored background data collection methods
on iOS and developed guidelines for sustainable data collection
on iOS. AWARE-iOS has successfully collected passive data
on iOS devices [63]. RADAR-base [64,65] is an open-source
mobile health platform for collecting and analyzing large-scale
data from various devices including passive and active mobile
apps. We expand upon this inspirational prior work by adding
design guidelines for consistent active and passive data
collection across Android and iOS devices. Consistent data
collection is needed to support just-in-time adaptive
interventions on consumer mobile devices, necessitating further
research [66].

Conclusions
We developed and tested mobile sensing apps for iOS and
Android to answer our RQs: (RQ1) How do contextual
prompting and setup prompting affect scheduled notification
delivery and the response rate of notification-initiated EMA?
(RQ2) Which authorization paradigm, setup or contextual
prompting, is more successful in leading users to grant
authorization to receive background events? and (RQ3) Which
polling-based method, persistent reminders or scheduled
background tasks, completes more background sessions?
Although contextual prompts for notification authorization on
iOS devices did not impact EMA compliance rates compared
to setup prompts on Android devices, many iOS users reported
not receiving notifications. For background event authorization,
contextual prompts on iOS devices were 55.5% more effective
in gaining authorization than setup prompts on Android devices.
Finally, persistent reminders resulted in a completion of
background sessions 266.5% more often than when using
traditional background tasks. However, we observed some user
resistance to installing persistent reminders. Although mobile
sensing on consumer mobile devices continues to exhibit
challenges, our results suggest that persistent reminders and
proper authorization procedures can improve user compliance.
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