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Abstract

Background: Although significant research has explored the digital phenotype in mood disorders, the time-lagged and bidirectional
relationship between mood and global positioning system (GPS) mobility remains relatively unexplored. Leveraging the widespread
use of smartphones, we examined correlations between mood and behavioral changes, which could inform future scalable
interventions and personalized mental health monitoring.

Objective: This study aims to investigate the bidirectional time lag relationships between passive GPS data and active ecological
momentary assessment (EMA) data collected via smartphone app technology.

Methods: Between March 2020 and May 2022, we recruited 45 participants (mean age 42.3 years, SD 12.1 years) who were
followed up for 6 months: 35 individuals diagnosed with mood disorders referred by psychiatrists and 10 healthy control participants.
This resulted in a total of 5248 person-days of data. Over 6 months, we collected 2 types of smartphone data: passive data on
movement patterns with nearly 100,000 GPS data points per individual and active data through EMA capturing daily mood levels,
including fatigue, irritability, depressed, and manic mood. Our study is limited to Android users due to operating system constraints.

Results: Our findings revealed a significant negative correlation between normalized entropy (r=–0.353; P=.04) and weekly
depressed mood as well as between location variance (r=–0.364; P=.03) and depressed mood. In participants with mood disorders,
we observed bidirectional time-lagged associations. Specifically, changes in homestay were positively associated with fatigue
(β=0.256; P=.03), depressed mood (β=0.235; P=.01), and irritability (β=0.149; P=.03). A decrease in location variance was
significantly associated with higher depressed mood the following day (β=–0.015; P=.009). Conversely, an increase in depressed
mood was significantly associated with reduced location variance the next day (β=–0.869; P<.001). These findings suggest a
dynamic interplay between mood symptoms and mobility patterns.
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Conclusions: This study demonstrates the potential of utilizing active EMA data to assess mood levels and passive GPS data
to analyze mobility behaviors, with implications for managing disease progression in patients. Monitoring location variance and
homestay can provide valuable insights into this process. The daily use of smartphones has proven to be a convenient method
for monitoring patients’ conditions. Interventions should prioritize promoting physical movement while discouraging prolonged
periods of staying at home.

(J Med Internet Res 2024;26:e55635) doi: 10.2196/55635
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Introduction

Patients with major depressive disorder (MDD) and bipolar
disorder (BP) frequently experience symptoms during abnormal
mood swings. These mood symptoms not only affect an
individual’s overall functioning and quality of life but also
influence their behavior and activity patterns. Traditional
methods of measuring mood were limited to subjective
self-reporting, which lacked the frequency, convenience, and
long-term detection required for necessary assessment. With
the advent of digital phenotyping [1], collecting both active and
passive data is now possible in a more timely and efficient
manner. Digital phenotyping represents an unobtrusive and
nonintrusive surveillance approach, harnessing the growing
availability of health-related data to enhance our understanding
of disease-related status [2]. Currently, mental disorder
assessment heavily relies on subjective measures such as
paper-based questionnaires used in clinical diagnosis.
Additionally, doctors frequently have only a few minutes to
assess mood disorders, making a thorough evaluation of
symptoms and behaviors challenging within a limited time
frame.

A smartphone app has been developed to gather digital
phenotypic data from users, enabling the use of participants’
medical data as a foundation for developing systems for
long-term tracking and personalized health care [3]. The usage
and ownership of smartphones far surpass that of wearable
devices, while wearable devices have gained some popularity
[4]. Smartphones not only allow for passive data collection but
also allow active data collection through techniques such as
ecological momentary assessment (EMA) [5]. EMA involves
real-time, active self-reporting with smartphones or actigraphy,
which captures participants’ current behavior and experiences
in their natural environment [6]. Individuals can fill out surveys
multiple times per day through EMA, enabling a better
understanding of symptom variability over time [6]. EMA on
smartphones aims to minimize recall bias, maximize
generalizability, and study the effects of high-frequency surveys
on behavior in real-world settings [5].

Recent studies have introduced novel approaches to measure
behavior and activity by using global positioning system (GPS)
geographic location data as reliable indicators of distance
travelled or daily movement, which can be associated with mood
fluctuations [7]. Symptoms associated with MDD include energy
level changes and feelings of fatigue [8], while symptoms of

BP often involve irritability. Several studies have revealed a
correlation between reduced daily movement activity and
increased depressive symptoms at a 2-week follow-up [9,10].
Additionally, studies have examined the predictive value of
changes in GPS features related to locations and transitions in
determining variations in depression symptom severity [11].
Conversely, emotions have been found to affect subsequent
mobility behavior. Baseline measurements of depressive
symptom severity have been shown to affect GPS-based indices
over a 2-week follow-up period, including circadian movement,
location variance, and normalized entropy, which measures the
distribution of a participant’s time across different location
clusters [12,13]. Additionally, increased homestay is associated
with greater depressive symptom severity [14]. These studies
often investigate the relationships between mood and behavioral
patterns from a time lag perspective.

The infrequent assessment of mood, which is typically
conducted every 2 or 3 weeks [4,15-17], limits our ability to
capture the dynamic changes in mood experienced by
individuals. Tracking patients’ behavior and mood in a timelier
manner is essential to effectively monitor these fluctuations.
Assessing emotions at baseline and again after 2 weeks is
insufficient to capture individual changes over time. Therefore,
this study aims to monitor daily mood variations, focusing on
day-to-day changes rather than long-term shifts from baseline
to 2 weeks later. This is achieved by implementing a daily
self-reporting approach over 6 months, capturing participants’
daily experiences. The aims of this study are to (1) perform the
GPS feature selection by integrating EMA data across all
participants and (2) explore the temporal bidirectional
relationship between GPS features and EMA data over 6 months
in individuals with mood disorders, with a particular emphasis
on time lag effects.

Methods

Recruitment
We conducted a prospective study to continuously collect
passive smartphone GPS data and daily EMA data on
mood-related symptoms over a 6-month period. Participants
were enrolled from psychiatric clinics in 3 major hospitals in
Taipei between March 2020 and June 2022. Notably, the peak
of the COVID-19 outbreak in Taiwan began in May 2022.
Despite the global panic induced by the COVID-19 pandemic,
Taiwan’s prompt response effectively mitigated local
transmission rates [18]. Consequently, the impact of actual
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infections and related preventive measures on GPS data
collection was significant only after May 2022 and not during
the initial recruitment phase. This study targets outpatients aged
20-65 years who met the Diagnostic and Statistical Manual of
Mental Disorders criteria for MDD or BP. All participants were
diagnosed by psychiatrists and consented to formal interviews
conducted by our team interviewers. Patients who are night-shift
workers, with substance-induced mood disorders, intellectual
developmental disorder, or schizophrenia were excluded.
Healthy controls were recruited from the community near the
recruitment hospitals in Taipei, specifically targeting non–night
shift workers and individuals with no history of psychiatric
disorders. Initially, 95 participants were eligible for recruitment.
However, due to factors such as inability to establish contact
or the experience of panic attacks, only 45 participants were
successfully enrolled who completed the questionnaires.
Consequently, our study focused on these 45 participants,
tracking their daily moods over a 6-month period. This extended
monitoring allowed us to observe variations in the mood states
of the participants over time. In analyzing the correlation
between mood levels and mobility features derived from GPS
data, we included data from healthy controls to identify the key
variables for subsequent time lag analysis. The time lag analysis
itself was confined to data from participants diagnosed with
MDD and BP.

Ethics Approval
All participants provided written informed consent, and this
study received approval by the institutional review boards of
National Taiwan University Hospital (Approval number:
201811087RINA).

Measurement of Symptom Severity
We investigated whether the patients were in the acute stage at
baseline by using the Young Mania Rating Scale (YMRS) and
Hamilton Depression Rating Scale (HAMD) scores for
measurement to understand the disease severity. In this study,
depressive symptoms and their severity were evaluated using

HAMD [19]. The HAMD scores are interpreted as follows: 0-7
indicates a normal range, 8-16 suggests mild depression, 17-23
corresponds to moderate depression, and a score over 24
signifies severe depression. For assessing manic symptoms,
YMRS [20] was employed. In YMRS, scores of 0-11 indicate
remission, 12-15 suggest mild symptoms, 16-20 are indicative
of moderate symptoms, and 21-60 represent severe symptoms.
The cutoff value of <16 on YMRS denotes a nonacute stage of
manic symptoms. The Beck Depression Inventory-II [21]
measures the severity of symptoms, assessing the current
depressive severity over the past 2 weeks. The scale classifies
depression severity as follows: 0-13 indicates minimal, 14-19
indicates mild, 20-28 indicates moderate, and 29-63 indicates
severe depression. All patients in our study were not in the acute
stage of their conditions.

GPS Features and EMA Mood Collection
We collected GPS and EMA data by using the Beiwe platform
developed by the Harvard research team Onnela Lab
(Multimedia Appendix 1). It extracts biomedical and clinical
insights from smartphone data by using research platforms,
mobile apps, databases, and data analysis tools [2]. We collected
data from participants who started to use the Beiwe app on
March 16, 2020. The smartphone app is applied to Android and
iOS systems as part of the Beiwe research platform [22].
Therefore, we could collect raw data from individual-level
participants at every moment in actual real-world experiences
everywhere. However, Beiwe was presented in English version;
so, we worked with the Beiwe research team to develop a
traditional Chinese version suitable for our study. Two types
are currently available: Android and iOS versions. The Android
version was easier to launch and has begun to enroll participants.
However, problems remain with the data collection of the iOS
system in the Chinese version; thus, our study can only extract
data from the Android version. Therefore, out of the 95 eligible
participants, 35 participants were excluded who were using the
iOS version (Figure 1).
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Figure 1. Flowchart of the 6-month study period. BP: bipolar disorder; HC: healthy control; MDD: major depressive disorder.

The GPS data includes a timestamp, Universal Time
Coordinated, longitude, latitude, altitude, and accuracy. The
time recorded by the Beiwe platform is Universal Time
Coordinated. Taiwan time is 8 hours ahead of Universal Time
Coordinated; thus, it was converted to Taiwan time. We
collected GPS data generated by smartphone sensors 1000 times
a day for 1 participant and realized the path of movement [22].
The GPS could not be sampled continuously because this would
drain the smartphone’s battery within a few hours; so, the app
operated the GPS sensor at a prespecified frequency and regular
duration intervals [2]. The Beiwe platform uploads an Excel
file every hour, which is set as a rest interval of every 10 minutes
to record 1 minute of data. Ideally, 1 data would record per
second, but sometimes, the number of uploads would vary
depending on the smartphone type [16]. The GPS data collected
on the phone were encrypted at the moment of collection, and
the recorded GPS data were not in the original latitude and
longitude format. Additionally, the GPS data could not be
accessed on the phone itself, and encryption measures protected
the transmission process. Only when the data reached the
researchers could it be decrypted to obtain the original GPS
data. The mobility patterns following the features proposed by
Saeb et al [12,13] included location variance, speed mean, speed
variance, number of clusters, normalized entropy, homestay,
transition time, and total distance. Location variance quantifies
the variability in participants’ GPS locations. A higher value
of normalized entropy indicates a more uniform distribution of

time spent across all locations. Homestay is defined as the
proportion of time a participant spends at home. For detailed
definitions and formulas of these and other GPS variables, refer
to Multimedia Appendix 2.

In this study, active EMA data collection included monitoring
participants’ mood, sleep, and exercise states. Participants
completed questionnaires every day for 180 consecutive days.
The interviewers instructed participants to complete the
questionnaire at the times prompted by the app. However, if
they missed a prompt, they were allowed to complete it later at
a more convenient time. The app prompted participants to
complete the mood questionnaire (ie, EMA) twice daily at 12:45
PM and 5 PM, with response rates exceeding 95% for both
times. Although participants were encouraged to respond at
both times, the responses were generally consistent between
the 2 times. Among those who reported twice per day, the
intraclass correlations calculated for manic mood=0.888,
irritability=0.999, depressed mood=0.920, and fatigue=0.747,
indicating low within-day variations between the 2 prompted
times. Thus, we selected the 12:45 PM responses for subsequent
analysis due to a slightly higher completion rate. The mood
questions addressed fatigue, irritability, manic mood, and
depressed mood. EMA mood items were adopted from
questionnaires that have already been published in papers related
to treatment response [23]. They were asked 4 questions related
to their current mood: (1) How fatigued do you feel right now?
(2) How depressed do you feel right now? (3) How elated do
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you feel right now? (4) How irritable/angry do you feel right
now? Response options included 1 indicating “not at all, I’m
in a good mood now,” 2 indicating “a little bit,” 3 indicating
“moderate,” 4 indicating “serious,” and 5 indicating “serious
and lasted all day.” Participants were given a compensation of
approximately US $3.50 each time they completed a month of
EMA questionnaires.

GPS Data Preprocessing and Imputation
Generally, the location coordinate error of GPS is less than 50
m. The raw data are processed following the protocol provided
by the Onnela Lab research [22]. The process is as follows:

1. Take data points with an accuracy of <51, indicating high
accuracy.

2. Collapse the data points into 10-second intervals.
Additionally, calculate the value of longitude and latitude
at every 10-second interval, mainly to solve the problem
of sudden speed increase caused by GPS drift (Figure 2).

3. Check the distance and time interval between the 2 data
points. Moving is a distance that exceeds √10 meters for a
10-second interval. The first stage mainly aimed to confirm
(1) moving, (2) pause, (3) cannot define, and (4) missing.

4. The distance between any 2 locations within 300 seconds
of <60 m was considered to be a pause at the same location.
Represented by the distance length calculated by Mercator
projection.

5. Do GPS tracking imputation. Data imputation is prone to
achieve real-world distance because the GPS data of
smartphones usually contain various degrees of missing
data [24].

Figure 2. Average speed of the raw data and integrated 10-second data.

The following analysis is conducted based on a 10-time
simulation average (Multimedia Appendix 3).

Statistical Analysis
We employed 1-way analysis of variance to analyze differences
in the demographics, clinical characteristics, and data collection
factors among the heathy controls, BP, and MDD groups. To
explore the concurrent relationship between GPS features and
EMA mood scores, polyserial correlation was computed.
Initially, we analyzed all the samples to identify GPS features
that showed a significant correlation with mood variations. The
sample size was estimated based on the correlations between
GPS features and mood-related symptoms reported in previous
literature [12], which ranged between 0.49 and 0.63. Using a
correlation coefficient of r=0.5, an α level of .05, and desired
power levels of .80 and .90, the required sample sizes were 29
and 38, respectively. Thus, the current sample size is sufficient
for feature selection in subsequent analyses. Additionally, we
applied the generalized estimating equation models to capture
the dynamic associations between mobility features and EMA
mood states in patients with mood disorders, accounting for
time lag associations. This decision was driven by our specific
interest in exploring the fluctuations in mood, as captured by
the EMA, within the patient group. The working correlation

matrix in generalized estimating equation models can also select
different types of correlation structures. Typically, the first-order
autoregressive model is suitable for studies where the intervals
between repeated measurements are of the same length, such
as when the time intervals between different time points are
identical. For example, in our study, the interval between day
1 and day 2 is one day apart. We considered a 2-sided P value
of <.05 as statistically significant across all analyses. For the
generalized estimating equation models, we adopted the
first-order autoregressive working correlation structure to
effectively accommodate the within-person correlations over
the 6-month duration.

Results

Demographic and Clinical Characteristics
During the follow-up period of 6 months, 7 of the 45 participants
were lost to follow-up and had <2 weeks of the GPS and EMA
data due to various reasons such as the dislike of being located
or not being used to filling in questionnaires on a smartphone
daily. Therefore, this study analyzed data from 38 participants
over a 6-month period, encompassing 5137 person-days. Table
1 demonstrates the sociodemographic characteristics of the
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participants, including age, gender, social status, as well as the
severity of depressive and bipolar symptoms according to
affective status. The average age of the participants was 41.34
(SD 12.09) years, with approximately 63% (24/38) of them
being female. Additionally, a higher percentage of individuals
with BP were unemployed (6/11, 55%) compared to the MDD

group and the healthy controls. The adherence rate to the Beiwe
app, which calculated the proportion of days on which
participants completed EMA mood assessments, was 93.5%
(4803/5137) for the entire sample, and the clinical status
collection rate was 100%.

Table 1. Sociodemographic characteristics of the participants.

P valueMajor depressive disorder (n=17)Bipolar disorder (n=11)Healthy controls (n=10)

N/Aa225815371342Person-days (n)

.1143.65 (12.85)44.09 (9.97)34.40 (11.85)Age (years), mean (SD)

.867 (41)4 (36)3 (30)Male gender, n (%)

.0120.41 (17.29)20.73 (12.10)4.60 (5.89)BDI-IIb scores, mean (SD)

.807.29 (4.95)6.81 (4.79)—dHAMDc scores, mean (SD)

.0010.53 (1.33)5.09 (4.89)—YMRSe scores, mean (SD)

.043 (18)6 (55)1 (10)Unemployment, n (%)

.64135.12 (65.29)156.18 (46.72)134.20 (73.95)Collection days, mean (SD)

.888.03 (13.10)5.88 (6.29)3.48 (3.51)EMAf missing data percentage, mean (SD)

aN/A: not applicable.
bBDI-II: Beck Depression Inventory-II.
cHAMD: Hamilton Depression Rating Scale.
dNot available.
eYMRS: Young Mania Rating Scale.
fEMA: Ecological Momentary Assessment.

Raw Data Quality and Preprocessing of GPS Data
We examined both the overall and individual accuracy
distributions of the study participants to validate the selection
of an accuracy threshold of 50 for the GPS data (Multimedia
Appendix 4). Approximately 95% of the overall data points had
an accuracy value of <47.59, and approximately 99% had an
accuracy value of <76.03. Therefore, setting the threshold at 50

would encompass >90% of the data, with the majority of the
accuracy values falling within the range of 10-20 m. This aligns
with the recommendations of the research team at the Onnela
Lab [24]. The simulated data exhibited a closer resemblance to
the moving distance. We present the actual map distribution
before and after imputation for 1 participant in Figure 3 to
provide visual evidence.
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Figure 3. Global positioning system tracking covered on maps. (A) Original track (B) Imputation track. The green circles show the number of clusters.
The red circle indicates the location of home. GPS: global positioning system.

Two GPS Features Significantly Associated With
Depressed Mood in EMA Data
To investigate the potential influences of moods on individual
mobility, we conducted a correlation analysis involving GPS
features and EMA data for all participants over a 1-week period.
The correlation coefficients between 8 GPS features (location
variance, speed mean, speed variance, total distance, transition
time, number of clusters, homestay, and normalized entropy)
and 4 EMA variables (fatigue, depressed mood, manic mood,

and irritability) are presented in Table 2, revealing
predominantly negative correlations. Notably, the most
substantial absolute correlation was observed between depressed
mood and location variance (r=–0.364; P=.03), closely followed
by depressed mood and normalized entropy (r=–0.353; P=.04).
Furthermore, it is noteworthy that depressed mood exhibited a
positive correlation with homestay (r=0.239). Building on these
preliminary findings, we then delved into the daily time lag
relationship between mood and the aforementioned 3 GPS
features by using the 6-month dataset.

Table 2. Correlation analysis of the global positioning system features and ecological momentary assessment mood.

IrritabilityManic moodDepressed moodFatigue

P valueEstimate (r)P valueEstimate (r)P valueEstimate (r)P valueEstimate (r)

.75–0.055.57–0.098.03–0.364.64–0.080Location variance

.49–0.118.78–0.049.28–0.186.21–0.215Speed mean

.31–0.173.84–0.036.72–0.061.26–0.194Speed variance

.27–0.189.36–0.159.07–0.305.55–0.102Total distance

.19–0.224.30–0.177.07–0.308.73–0.060Transition time

.600.090.84–0.034.42–0.139.810.042Number of clusters

.740.058.730.059.160.239.410.142Homestay

.42–0.138.23–0.206.04–0.353.09–0.280Normalized entropy

Time Lagging Association of Changes in GPS Features
With EMA Mood
We further examined the bidirectional relationship and lagging
effect of GPS features on EMA mood by analyzing consecutive
6 months of EMA data and GPS coordinate collection. We
evaluated the impact of changes in GPS features on subsequent
EMA data as well as the influence of changes in EMA mood
on subsequent GPS features. The patient group (Table 3)
demonstrated significant associations between changes in GPS

features and EMA mood. An increase in location variance from
day 1 to day 2 was associated with lower depressed mood levels
(β=–0.015; P=.009) on day 2. Furthermore, an increase in
homestay from day 1 to day 2 was associated with higher fatigue
(β=0.256; P=.03), depressed mood (β=0.235; P=.01), and
irritability (β=0.149; P=.03) on day 2. However, changes in
normalized entropy did not significantly predict any EMA mood
within the patient group similar to the overall samples (see
Multimedia Appendix 5).

J Med Internet Res 2024 | vol. 26 | e55635 | p. 7https://www.jmir.org/2024/1/e55635
(page number not for citation purposes)

Lee et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Time lag association of the change in the global positioning system features with mood for the patient group (bipolar disorder and major
depressive disorder).

Irritabilityday 2Manic moodday 2Depressed moodday 2Fatigueday 2

P valueβP valueβP valueβP valueβ

Outcome 1

.31–0.004.350.005.009–0.015.06–0.007∆LVa
day 1-day 2

.62–0.003.980.000.04–0.017.001–0.022Age

.004–0.418.04–0.367.07–0.440.72–0.062Sex

.32–0.007.760.002.009–0.029.06–0.014LVday 1

Outcome 2

.48–0.094.580.065.19–0.279.310.206∆NENb
day 1-day 2

.60–0.003.99<0.001.04–0.018.001–0.023Age

.005–0.425.04–0.372.07–0.454.65–0.084Sex

.93–0.021.320.243.22–0.515.640.164NENday 1

Outcome 3

.030.149.74–0.042.010.235.030.256∆HSc
day 1-day 2

.44–0.005.99<0.001.02–0.020<.001–0.025Age

.005–0.393.04–0.361.08–0.419.92–0.017Sex

.070.249.890.020.010.396.0020.460HSday 1

aLV: location variance.
bNEN: normalized entropy.
cHS: homestay.

Time Lagging Association of Changes in EMA Mood
With GPS Features
Our analysis of the associations between changes in EMA mood
and subsequent GPS features revealed the following results
(Table 4). BP and MDD revealed less location variance if fatigue
(β=–0.492; P=.03) and depressed mood (β=–0.869; P<.001)
increased from day 1 to day 2. However, the homestay would

be greater if fatigue (β=0.047; P=.02) and depressed mood
(β=0.042; P<.001) increased from day 1 to day 2. In all samples
(Multimedia Appendix 6), location variance (β=–0.880; P=.001)
would be less and homestay (β=0.038; P=.01) would be greater
on day 2 if depressive status increased from day 1 to day 2.
Additionally, homestay (β=0.034; P=.03) would be higher on
day 2 if irritability increased from day 1 to day 2.
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Table 4. Time lag association of the changes in the ecological momentary assessment mood with global positioning system features for the patient
group (bipolar disorder and major depressive disorder).

Homestayday 2Normalized entropyday 2Location varianceday 2

P valueβP valueβP valueβ

Outcome 1

.020.047.330.011.03–0.492∆Fatigueday 1-day 2

<.0010.008.790.000.650.015Age

.02–0.132.330.038.211.074Sex

<.0010.097.890.003.03–1.040Fatigueday 1

Outcome 2

<.0010.042.21–0.014<.001–0.869∆Depressed moodday 1-day 2

.0020.007.930.000.680.011Age

.07–0.108.480.025.640.378Sex

.0030.063.21–0.026<.001–1.553Depressedday1

Outcome 3

.960.001.380.008.730.117∆Manic moodday 1-day 2

.020.006.830.000.260.039Age

.04–0.134.280.045.301.100Sex

.760.013.220.021.84–0.092Manic moodday 1

Outcome 4

.010.040.58–0.007.15–0.498∆Irritabilityday 1-day 2

.0080.006.830.000.260.036Age

.10–0.109.390.036.470.759Sex

.030.070.88–0.004.13–0.872Irritabilityday1

In our study, we summarized the bidirectional correlations
between changes in GPS features and EMA mood assessments
in mood disorders, as illustrated in Figure 4. Our key findings
are as follows:

1. Significant negative correlations were observed between
changes in location variance and depressed mood levels.
This suggests that greater variability in location is associated
with lower depressed mood scores.

2. We also identified significant positive correlations between
increase in homestay duration and elevated levels of fatigue,
depressed mood, and irritability. This indicates that
spending more time at home is linked to higher levels of
these mood symptoms.

3. Additionally, a unidirectional relationship was discovered
between increase in fatigue and subsequent changes in
location variance. This implies that higher fatigue levels
may lead to reduced variability in location.
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Figure 4. Summary of the time lag effect between the global positioning system features and the ecological momentary assessment moods for bipolar
disorder and major depressive disorder. EMA: ecological momentary assessment; GPS: global positioning system.

Discussion

This study investigates the association between GPS features
and EMA mood in individuals with MDD and BP, focusing on
correlation analysis and bidirectional time lag effects. Our study
enables each participant to generate nearly 100,000 GPS data
points by leveraging the abundant data collected from
smartphones. GPS-derived mobility patterns are highly
individual-specific and can accurately identify individuals based
on factors such as their time spent at home, providing a
comprehensive representation of their overall statistical mobility
patterns [25]. Our study reveals that location variance and
normalized entropy, among all GPS features, were moderately
correlated with mood symptoms across the entire sample when
analyzed on a weekly basis, similar to findings from previous
research [12,13,17,26]. Although earlier studies have reported
moderate to high correlations (–0.58 to –0.43), our correlations
ranging from –0.35 to –0.36 are slightly lower. Additionally,
in line with findings from another study [27], mobility patterns
correctly classified participants with at least mild depression
and those not classified as depressed in 82% of the cases. The
most predictive mobility features in that study were related to
location changes and entropy, with lower entropy associated
with greater inequality in time spent across different locations
and higher levels of depression [27]. Furthermore, a study
focusing on Android systems revealed correlations among
entropy, normalized entropy, location variance, and mood scores
[28]. Collectively, our findings indicate that individuals with
depressed mood tend to exhibit reduced mobility and a tendency
to concentrate in specific locations.

Our study reveals intriguing findings regarding the time lag
effect, demonstrating the dynamic bidirectional association
between location variance and fatigue and homestay and
depressed mood (Figure 4). The bidirectional relationship
coincides with previous studies [17] that revealed significant
correlations between location variance, homestay, and
subsequent depressed mood. Additionally, changes in depressed
mood status significantly affected the subsequent periodicity
of mobility measured by circadian rhythm. BP and MDD are
distinct diagnoses within the mood disorder spectrum, but they
share a common feature—the presence of depression. Our study
results are consistent with those of a previous study [14] that
demonstrated a positive relationship between homestay and the
severity of depressive symptoms in individuals with MDD and
other affective disorders, including unipolar disorder and BP
[29]. Thus, our results support the notion that increased
homestay is linked to higher severity of depressed mood. This
association suggests that individuals with MDD and BP who
spend more time at home may experience decreased energy
levels. Feelings of fatigue and loss of energy are relatively easy
to observe in the early stages of depression diagnosis [30].
Fatigue, a common early symptom in depression diagnosis, is
prevalent in MDD, with over 90% of the patients reporting it
as a prodromal or residual symptom [31]. Therefore, prolonged
homestay, a key indicator for mood monitoring in our study, is
correlated with increased fatigue, depressive symptoms, and
irritability in individuals diagnosed with MDD or BP.

Conversely, our findings did not establish a relationship between
manic mood states and GPS features. We observed no predictive
or time-lagged effects for mania symptoms in BP. This could
be attributed to the nature of our study cohort, which, over the
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6-month follow-up, predominantly consisted of nonsevere cases
due to dropout of more unstable cases. As a result, the low mania
scores in the EMA mood assessments were likely due to the
lower prevalence of mania symptoms, rendering it challenging
to detect any predictors. Additionally, the lack of insight into
manic symptoms in BP is a factor that our study could not
conclusively address. Although mania is a defining characteristic
of BP, depressive episodes and symptoms are more prevalent
over the course of the disorder [32]. Thus, even in patients with
mania, the response variation to manic states was minimal,
leading to more pronounced depressive outcomes in our
findings.

Proxies for social and physical behavior, derived from
smartphone sensor data such as GPS and phone usage, enable
context-sensitive and personalized interventions for individuals
with depressive symptoms. Long-term use of the app
significantly reduced self-reported symptom severity among
participants [33]. In line with this, a study by Rethorst et al [34]
explored the efficacy of behavioral activation interventions,
which specifically focus on increasing physical activity. Such
interventions have shown promise in improving treatment
outcomes for depression and enhancing physical health. This
underscores the potential benefits of incorporating physical
activity into treatment plans for individuals with depression.
Additionally, research by Merikangas et al [35] has shown that
individuals with bipolar illness exhibit increased cross-domain
reactivity, affecting various aspects such as motor activity, sleep,
mood, and energy levels. The concept of mobility patterns, akin
to activity levels, aligns with the idea that in patients with BP,
this heightened cross-domain reactivity suggests a lack of
centralized coordination in the network governing activity and
energy levels. This is indicative of a broader dysregulation rather
than being confined to a single domain. Our study contributes
novel insights to this area of research, further elucidating the
relationship between activity or mobility levels and mood states.
By examining these dynamics in the context of BP, our data
provide additional evidence supporting the theory of widespread
network dysregulation in these patients, particularly in how
their mobility patterns correlate with mood variations.

Previous research has highlighted the predictive power of
functional brain connectivity in determining individual mobility
patterns. Notably, Xia et al [25] observed that increased
connectivity between the somatomotor and limbic networks
could predict mobility over medium time scales, ranging from
weeks to months. Future research may explore the integration
of studies on mobility and brain connectivity, as this could
provide valuable insights into the interplay between physical
movements and behavioral approaches. Such investigations
may deepen our understanding of how brain function influences
daily behavior and mobility.

This study has certain limitations that warrant consideration.
First, the relatively small sample size poses questions regarding
the representativeness of our findings. With a correlation
coefficient of 0.364 this study, we achieved a moderate power
of .70. A larger scale study is needed to validate these findings.
Additionally, it is important to note that despite the limited
number of participants, the study capitalizes on the extensive
collection of GPS data. These data were gathered daily over a
6-month period, resulting in a substantial volume of person-days
EMA and GPS data. Such a dataset offered a more
comprehensive view of participants’behavior over time. Second,
data on the Apple iOS version are lacking, which may introduce
selection bias. In Taiwan, Apple smartphones hold a market
share of 52.55%. Third, the reasons for loss to follow-up varied,
with some data missing due to clinical management. When a
patient experienced an episode requiring hospitalization during
the follow-up period, they were unable to use a mobile phone
while hospitalized in Taiwan. Consequently, movement
variations during the hospitalization period and EMA completion
were not captured, causing a significant amount of missing
values due to inpatient health care. In our study, 2 participants
lost their data for this reason. Fourth, although participants could
complete the questionnaire at convenient times, potentially
introducing recall bias, this flexibility likely had minimal impact
on our findings. High completion rates and strong intraclass
correlations indicate consistent responses across times,
suggesting stable mood reporting. Thus, the potential bias from
variable response times appears negligible in affecting result
reliability. Lastly, the baseline participants demonstrated
considerable interest and willingness to answer the app
questionnaire daily for 6 months, but a dropout rate of
approximately 16% (7/45) was observed at the first 2 weeks
during the follow-up.

In conclusion, this study demonstrates a significant correlation
between the reported mood states of patients and their mobility
patterns. Utilizing a passive method such as carrying a
smartphone daily proved to be a convenient and effective way
to monitor patients’ conditions. The concept of digital
phenotyping employed in this study enabled nonintrusive and
noninterfering measurement of mobile behaviors by collecting
GPS data from smartphones without causing additional
disruptions. Our findings showed a time lag relationship between
real-time GPS monitoring combined with EMA. Mobility
patterns (location variance and homestay) were significant
indicators for detecting poor mood (irritability and depressed
mood) and low energy levels (fatigue) in individuals with mood
disorders. Therefore, interventions should prioritize promoting
physical movement while discouraging prolonged periods of
staying at home.
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