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Abstract

In this cross-sectional study, we evaluated the completeness, readability, and syntactic complexity of cardiovascular disease
prevention information produced by GPT-4 in response to 4 kinds of prompts.
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Introduction

Many web-based patient educational materials about
cardiovascular disease (CVD) are inaccessible for the general
public [1]. Artificial intelligence (AI) chatbots powered by large
language models (LLMs) are a potential source of public-facing
CVD information [2-4]. Generative language models present
risks related to information quality but also opportunities for
producing accessible information about CVD at scale, which
could advance the American Heart Association’s 2020 impact
goals related to health literacy [5]. Recent studies have used
LLMs to simplify medical information in different contexts
[3,6-8], but quantitative comparison of prompt engineering

strategies is needed to assess and optimize performance and to
ensure that the rapid deployment of clinical AI tools proceeds
in an equitable manner [9]. In this cross-sectional study, we
evaluated the completeness, readability, and syntactic
complexity of CVD prevention information produced by GPT-4
in response to 4 kinds of prompts.

Methods

A set of 25 questions about fundamental CVD prevention topics
was drawn from a previous study, which found that the GPT
3.5 version of ChatGPT provided generally appropriate
responses [2]. We devised 3 prompt strategies for generating
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simplified ChatGPT responses to these questions, including a
zero-shot prompt to use plain and easy-to-understand language,
a one-shot prompt with a sample simplified passage on an
unrelated subject, and a combined prompt to use simplified
language and cover specific key points (which we termed “rubric
prompting”; Multimedia Appendix 1). Responses to these three
prompts were compared to baseline responses for which the
prompt contained only the question about CVD. The full set of
responses is provided in Multimedia Appendix 2.

For each question and prompt type, 3 independent responses
were generated between April and June 2023, using the GPT-4
version of ChatGPT with default parameters, which was
available from OpenAI through a ChatGPT Plus subscription.
Two authors, who are preventive cardiologists (AS and NWK),
scored the responses as “complete,” “incomplete,” or
“inconsistent” according to a custom rubric (Multimedia
Appendix 3); disagreements were resolved by consensus. For
all generated responses, we calculated 5 readability scores, using

Readability Studio Professional (version 2019.3; Oleander
Software), and 2 measures of syntactic complexity, using the
L2 Syntactic Complexity Analyzer (version 3.3.3), as described
previously [10].

Differences from baseline completeness were assessed using
the Fisher exact test, and 2-sample readability and syntactic
complexity comparisons were done using the Wilcoxon
rank-sum test. Statistical significance was set as P<.05.

Results

Baseline responses to 80% (20/25) of the questions were scored
as “complete” (Table 1). Completeness was significantly lower
for both the zero-shot (8/25, 32%; P=.001) and one-shot (8/25,
32%; P=.001) simplification prompts but significantly higher
for the rubric prompts (25/25, 100%; P=.001). All 3 prompts
significantly improved readability according to every metric
and lowered 1 measure of syntactic complexity (Table 2).
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Table 1. Evaluation of the completeness of cardiovascular disease information generated using 4 large language model prompt strategies.

Consensus grade for each promptaQuestion

Plain language (rubric
prompt)

Plain language (one-
shot prompt)

Plain language (zero-
shot prompt)

Baseline

CompleteCompleteCompleteCompleteHow can I prevent heart disease?

CompleteCompleteCompleteCompleteWhat is the best diet for the heart?

CompleteCompleteCompleteCompleteWhat is the best diet for high blood pressure and
high cholesterol?

CompleteIncompleteInconsistentCompleteHow much should I exercise to stay healthy?

CompleteInconsistentInconsistentCompleteShould I do cardio or lift weights to prevent heart
disease?

CompleteInconsistentInconsistentCompleteHow can I lose weight?

CompleteIncompleteIncompleteInconsistentHow can I decrease LDLb?

CompleteCompleteCompleteCompleteHow can I decrease triglycerides?

CompleteIncompleteIncompleteCompleteWhat is lipoprotein(a)?

CompleteInconsistentCompleteCompleteHow can I quit smoking?

CompleteCompleteInconsistentCompleteWhat are the side effects of statins?

CompleteCompleteInconsistentInconsistentI have muscle pain with a statin. What should I do?

CompleteIncompleteIncompleteInconsistentMy cholesterol is still high and I’m already on a
statin. What should I do?

CompleteInconsistentCompleteCompleteWhat medications can reduce cholesterol other than
statins?

CompleteIncompleteInconsistentCompleteWhat is ezetimibe?

CompleteIncompleteIncompleteCompleteWhat are Repatha and Praluent?

CompleteIncompleteIncompleteCompleteWhat is inclisiran?

CompleteInconsistentCompleteCompleteWhat are the side effects of Repatha and Praluent?

CompleteCompleteCompleteCompleteShould I take aspirin to prevent heart disease?

CompleteCompleteInconsistentCompleteMy cholesterol panel shows triglycerides 400
mg/dL. How should I interpret this?

CompleteIncompleteIncompleteInconsistentMy LDL is 200 mg/dL. How should I interpret this?

CompleteIncompleteIncompleteCompleteWhat does a coronary calcium score of 0 mean?

CompleteIncompleteInconsistentInconsistentWhat does a coronary calcium score of 100 mean?

CompleteIncompleteIncompleteCompleteWhat does a coronary calcium score of 400 mean?

CompleteIncompleteInconsistentCompleteWhat genetic mutations can cause high cholesterol?

aFor every prompt strategy, we generated 3 responses to each of the 25 questions about cardiovascular disease prevention. “Complete” indicates that
all 3 responses received a full score according to our coverage rubric, “Incomplete” indicates that all 3 responses received less than a full score, and
“Inconsistent” indicates that some responses were “Complete” and others were “Incomplete.” Grades shown were determined by consensus between 2
reviewers.
bLDL: low-density lipoprotein.
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Table 2. Comparison of the readability and syntactic complexity of cardiovascular disease information generated using 4 large language model prompt

strategies.a

Prompts

Plain language (rubric prompt)Plain language (one-shot prompt)Plain language (zero-shot
prompt)

Baseline, median
(IQR)

Difference from

baselined, median
(IQR; P value)

Value, median
(IQR)

Difference from

baselinec, median
(IQR; P value)

Value, median
(IQR)

Difference from

baselineb, median
(IQR; P value)

Value, me-
dian (IQR)

Readability formulas

−5.3 (−6.6 to −4.0;
<.001)

8.0 (7.3 to 9.5)−9.4 (−11.1 to
−8.3; <.001)

3.8 (2.9 to 5.3)−4.2 (−5.7 to
−3.1; <.001)

9.7 (7.6 to
11.1)

13.4 (12.3 to 15.4)FKGLe

−4.1 (−5.4 to −3.0;
<.001)

10.9 (10.4 to
11.9)

−7.1 (−8.2 to −5.7;
<.001)

7.9 (7.2 to 9.2)−3.6 (−4.5 to
−2.4; <.001)

12.1 (10.2
to 13)

14.8 (13.7 to 16.5)SMOGf

−3.9 (−6.3 to −2.8;
<.001)

10.2 (8.9 to
11.3)

−7.5 (−10.3 to
−6.0; <.001)

6.3 (5.4 to 7.6)−4.0 (−5.6 to
−2.7; <.001)

11.3 (8.0 to
13)

14.0 (12.1 to 17)GFIg

−1.9 (−2.3 to −1.4;
<.001)

9.7 (9.3 to
10.2)

−2.7 (−3.4 to −2.3;
<.001)

8.8 (8.2 to 9.4)−1.3 (−1.8 to
−0.9; <.001)

10.2 (9.8 to
10.7)

11.5 (11.2 to 11.9)FOR-

CASTh

−4.5 (−5.4 to −3.5;
<.001)

9.4 (9.0 to
10.4)

−7.9 (−9.0 to −6.5;
<.001)

6.2 (5.1 to 7.3)−3.7 (−4.7 to
−2.4; <.001)

10.4 (9.0 to
11.8)

13.8 (13.2 to 15.1)CLIi

Syntactic complexity j

−4.2 (−6.9 to −3.1;
<.001)

9.6 (8.9 to
10.3)

−5.7 (−7.6 to −3.4;
<.001)

8.7 (7.8 to
10.7)

−1.8 (−4.4 to 0.9;
.01)

12.3 (10.5
to 15.5)

15.0 (12.7 to 16.6)MLCk

0.2 (0.1 to 0.4;
>.99)

0.6 (0.4 to 0.7)−0.2 (−0.3 to −0.1;
<.001)

0.2 (0.1 to 0.3)0 (−0.2 to 0.1;
.36)

0.3 (0.2 to
0.5)

0.3 (0.2 to 0.5)DC/Tl

aFor every prompt strategy, we generated 3 responses to each of the 25 questions about cardiovascular disease prevention. Lower scores indicate higher
readability.
bDifference between responses to the baseline prompts and prompts for plain language. P values are from a 1-tailed Wilcoxon signed rank test.
cDifference between responses to the baseline prompts and prompts for plain language with an example. P values are from a 1-tailed Wilcoxon signed
rank test.
dDifference between responses to the baseline prompts and prompts for plain language with coverage. P values are from a 1-tailed Wilcoxon signed
rank test.
eFKGL: Flesch-Kincaid Grade Level.
fSMOG: Simple Measure of Gobbledygook.
gGFI: Gunning Fog Index.
hFORCAST: Ford, Caylor, Sticht formula.
iCLI: Coleman-Liau Index.
jMLC is a measure of elaboration at the clause level (ie, number of words per clause), and DC/T is a measure of subordination.
kMLC: mean length of clause.
lDC/T: dependent clauses/T-unit.

Discussion

We found that zero- and one-shot prompting of GPT-4 to
produce simplified information about CVD generated more
readable but less comprehensive responses. This loss of
information, however, could be averted by combining a
zero-shot simplification prompt with a short reminder to include
critical information (rubric prompting). Our findings highlight
the importance of optimizing prompts and incorporating expert
clinical judgment when considering the use of LLMs to produce
patient education materials, including AI-drafted replies to
patient messages [3,6,7]. Accordingly, prospective guidelines
for the use of AI in medicine should address best practices for
prompt engineering, standardized evaluation of model outputs,

and outreach to clinicians and the public to cultivate relevant
skills [11]. Such guidelines will provide important parameters
for clinician-in-the-loop information simplification systems
[6,12,13], which have already been deployed to improve the
accessibility of surgical consent forms [14].

The limitations of this study include the evaluation of a single
model at a specific point in time and the absence of reading
comprehension data from patients. Since the prompt strategies
developed herein are not model specific, it should be
straightforward to extend these strategies to other LLMs. Future
research should further evaluate trade-offs between prompt
engineering and fine-tuning of LLMs for medical applications
using multiple models. It would also be useful to integrate
ongoing user testing with structured health literacy assessment
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of generated responses to identify types of simplification that are especially important for improving patient understanding.
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